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Abstract

In this article, the construction of confidence regions by approximating the sampling
distribution of some statistic is studied. The true sampling distribution is estimated by
an appropriate normalization of the values of the statistic computed over subsamples of
the data. In the ii.d. context, the method has been studied by Wu (1990) in regular
situations where the statistic is asymptotically normal. The goal of the present work is to
prove the method yields asymptotically valid confidence regions under minimal conditions.
Essentially all that is required is that the statistic, suitably normalized, possesses a limit
distribution under the true model. Unlike the bootstrap, the convergence to the limit
distribution need not be uniform in any sense. In fact, our method corrects the failure
of the bootstrap in the several known counterexamples to the bootstrap. The method is
readily adapted to parameters of stationary time series or, more generally, homogeneous
random fields. In this context, analogous results are proved under the weak hypothesis
of convergence in distribution of a normalized statistic. For example, an immediate ap-
plication is the construction of a confidence interval for the spectral density function of a
homogeneous random field.



1. INTRODUCTION

In this article, a general theory for the construction of confidence intervals or regions is pre-
sented. The basic idea is to approximate the sampling distribution of a statistic based on the values
of the statistic computed over smaller subsets of the data. For example, in the case where the data
are n observations which are independent and identically distributed, a statistic is computed based
on the entire data set and is recomputed over all (Z) data sets of size b. Implicit is the notion of
a statistic sequence, so that the statistic is defined for samples of size n and b. These recomputed
values of the statistic are suitably normalized to approximate the true sampling distribution.

The approach presented here is perhaps the most general theory for the construction of first
order asymptotically valid confidence regions. That is, it will be seen that, under very weak
assumptions on b, the method is valid whenever the original statistic, suitably normalized, has a
limit distribution under the true model. Other methods, such as the bootstrap, require that the
distribution of the statistic is somehow locally smooth as a function of the unknown model. In
fact, many papers have been devoted to showing the convergence of a suitably normalized statistic
to its limiting distribution is appropriately uniform as a function of the unknown model in specific
situations. In contrast, no such assuml')tion or verification of such smoothness is required in our
theory. Indeed, the method here is applicable even in the several known situations which represe/nt
counterexamples to the bootstrap. To appreciate why our method behaves well under such weak
assumptions, note that each subset of size b (taken without replacement from the original data) is
indeed a sample of size b from the true model. Hence, it should be intuitively clear that one can at
least approximate the sampling distribution of the (normalized) statistic based on a sample of si-ze
b. But, under the weak convergence hypothesis, the sampling distributions based on samples of
size b and n should be close. The bootstrap, on the other hand, is based on recomputing a statistic
over a sample of size n from some estimated model which is hopefully close to the true model.

The method has a clear extension to the context of a stationary time series or, more generally,
a homogeneous random field. The only difference is that the statistic is computed over a smaller
number of subsets of the data that retain the dependence structure of the observations. For example,

if Xi,..., X, represent n observations from some stationary time series, the statistic is recomputed
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over the n — b+ 1 subsets of size b of the form {Xi, Xig1,... yXi+b—1}. The obvious extension to
homogeneous random fields will be described later.

The use of subsample values to approximate the variance of a statistic is well—known. The
Quenouille-Tukey jackknife estimates of bias and variance based on computing a statistic over all
subsamples of size n— 1 has been well-studied and is closely related to the meaﬁ and variance of our
estimated sampling distribution with b = n — 1. Half sampling methods have been well-studied in
the context of sampling theory; see McCarthy (1969). Hartigan (1969) has introduced what Efron
(1982) calls a random subsampling method, which is based on the computation of a statistic over all
2" — 1 nonempty subsets of the data. His method is seen to produce exact confidence limits in the
special context of the symmetric location problem. Hartigan (1975) has adapted his finite sample
results to a more general context of certain classes of estimators which have asymptotic normal
distributions. Even in this context, the asymptotic results assume the number of subsamples used
to recompute the statistic remains fixed as n — co. Both the jackknife and random subsampling
methods are similar in that they both use subsets of the data to approximate standard errors of
a statistic, or perhaps even to approximate a sampling distribution. The method presented here
retains the conceptual simplicity of these methods and is ségn to be applicable under very minimal
assumptions.

Efron’s (1979) bootstrap, while sharing some similar properties to the aforementioned meth-
ods, has corrected some deficiencies in the jackknife, and has tackled the more ambitious goal of
approximating an entire sampling distribution. Shao and Wu (1989) have shown that, by basing
a jackknife estimate of variance on the statistic computed over subsamples with d observations
deleted, many of the deficiences of the usual d = 1 jackknife estimate of variance can be removed.
Later, Wu (1990) used these subsample values to approximate an entire sampling distribution by
what he calls a jackknife histogram, but only in regular i.i.d. situations where the statistic is ap-
propriately linear so that asymptotic normality ensues. Here, we show how these subsample values
can accurately estimate a sampling distribution without any assumptions of asymptotic normality,
by only assuﬁing the existence of a limiting distribution. In summary, while the method developed
in this paper is quite related to several well-studied techniques, the simplicity of our arguments has

lead to asymptotic justification under the most general conditions.

-9



In addition, we extend our results to the setting of stationary time series and homogeneous
random fields. In this case, the existence of a limiting distribution and a very weak mixing condition
yields asymptotically valid estimates of the true sampling distribution. In the context of a stationary
time series, Carlstein (1986) has considered the problem of estimating the variance of a statistic
based on the values of the statistic computed over subseries. Here, we develop consistent properties
for an estimated samplihg distribution under weaker assumptions. |

The main drawback to our method as presented is its lack of second order correctness. How-
ever, Tu (1992) has shown how, in some situations where Edgeworth expansions are valid, the
approxima.tion of a sampling distribution based on jackknife pseudo-values can be appropriately
modified to yield second order accuracy. Here, we have insisted upon a general first order theory,
but Tu’s work has demonstrated the possibility that our method can be adapted to yield desirable
higher order properties.
| In Section 2, the method is described in the context of i.i.d. observations. The main theorem
is presented and several examples are given. Some comparisons with the bootstrap are drawn. In
Section 3, the method is adapted to homogeneous random fields. The theorem yields such general
asymptotic results under such weak assumptions, that the problem of constructing a confidence
interval for the spectral density function of a homogeneous random field is an immediate application.

In addition? the problem of bias reduction using the subsampling method is discussed.



2. GENERAL THEOREM IN THE 1.I.D. CASE
2.1 The Basic Theorem.

Throughout this section, Xj,...,X, is a sample of n independent and identically distributed
random variables taking values in an arbitrary sample space S. The common probability measure
generating the observations is denoted P. The goal is to construct a confidence region for some
parameter H(P) For now, assume 6 is real-valued, but this can be considerably generalized to
allow for the construction of confidence regions for multivariate parameters or confidence bands for
functions.

Let T, = T (X;4,...,X,) be an estimator of 6(P). It is desired to estimate or approximate th'e
true sampling distribution of T}, in order to make inferences about . Nothing is assumed about
the form of the estimator, though it is natural in the i.i.d. context to assume T, is symmetric in
its arguments. |

Define J,(P) to be the sampling distribution of 7,(T, — 8(P)) based on a sample of size n

from P. Also define the corresponding cumulative distribution function:
Jn(z, P) = Probp{r,[Tn(X1,...,X,) — 6(P)] < z}.

Essentially, the only assumption that we will need to construct asymptotically valid confidence
intervals for §(P) is the following.

Assumption A. J,(P) converges weakly to a limit law J (P) as n — oo.

Assumption A will be required to hold for some sequence 7,. It will be necessary, however,
that 7, is such that the limit law J(P) is nondegenerate.

To describe the method studied in this section, let Y1,..., YN, beequal to the N,, = (Z) subsets
of {X3,...,X,}, ordered in any fashion. Only a very weak assumption on b will be required. In
typical situations, it will be assumed that b/n — 0 and b — 00 as n — co. Now, let Sn,: be equal
to the statistic T} evaluated at the data set Y;. The approximation to J,(z, P) we study is defined
by

N,
La(z) = N7 1{n(Snyi ~ T) < 3z} (2.1)
=1
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The motivation behind the method is the following. For any i, Y; is a random sample of size b
from P. Hence, the ezact distribution of 74(S, ; — §(P)) is J(P). The empirical distribution of the
Ny values of 7,(Sy,; — 6(P)) should then serve as a good approximation to J,(P). Of course, §(P)
is unknown, so we replace §(P) by T,, which is asymptotically permissible because (Tn — 6(P))
is of order /1, — 0.

Now, specialize to the case when T}, = X,, is the sample mean of n i.i.d. observations having
mean §. Assuming the variance of X; is finite, so 7, = n!/2. One can compute the variance of the
distribution Ly, (-), and is given by [(n —b)/n]- S2, where §2 = > i(Xi—X,)?/(n—1). In this case,
this variance depends on b, due to the dependencies of the Sn,i with each other and with T},. So, it
seems desirable to then replace 7, in (2.1) by 7 - [n/(n — b)]'/2 so that the resulting approximating
distribution has variance S2, independent of b. In our theorems, n/(n—>b) — 1 so that the first order
asymptotic properties are the same‘ in either case. By making this change, however, our estimator
more closely resembles that of Wu (1990), and the variance of the approximating distribution
corresponds to Shao and Wu'’s (1989) delete d = n — b jackknife estimate of variance. Henceforth,
however, we do not modify 7, in (2.1) because the above modification is only justified for linear
statistics. Keep in mind, however, that such a modification may improve the approximation in
some situations.

The above example also helps to explain the lack of consideration of using jaékknife pseudo
values to approximate a sampling distribution; a notable exception is Wu (1990). In the sample
mean case, if b =n — 1 and if Y; is the original sample with X; deleted, then (n=1)[8s,; —T]) =
(Xa — X;). The empirical distribution of these values converges uniformly to the distribution
of & — X; with probability one. Hence, the use of our technique (with Wu’s scaling) results in
inconsistency, except in the special case that X; is normally distributed. Also, no choice of rescaling
can correct the problem. This example points to the failure of the use of the traditional Jackknife
pseudo values when only one observation is deleted at a time. See example 2.2.2 for an example
where ta;king b of the same order as n results in inconsistency. In the opposite extreme, if b = 1
and Y; = X, then S,; — T,, = X; — X,,, and the empirical distribution of these values converges
uniformly to the distribution of X; — @ with probability one; inconsistency follows. Aside from

these extreme choices of b, our theory is typically applicable when b/n — 0 and b — .
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Theorem 2.1. Assume Assumption A. Also assume To/Tn — 0, b — 00 and b/n — 0 asn — oo.

Let z be a continuity point of J(-, P).
(i). Then, Ly(z) — J(z,P) in probability.
(it). If J(-, P) is continuous, then
sup |Ln(z) = Jn(z, P)| > 0 (2.2)
in probability.

(41). Let cn(1 — a) = inf{z : L,(z) > 1 — a}. Correspondingly, define c(1 — o, P) = inf{z :
-J(x,P) 21— «a}. If J(-, P) is continuous at c(1 — c, P), then

Probp{m[T, —0(P)]| < c,(1-a)} - 1-a (2.3)

asn — oo. Thus, the asymptotic coverage probability under P of the interval [T, — 7,7 1c, (1~ ), c0)

18 the nominal level 1 — «.

(iv). Assume, for everyd > 0, 37 exp{—d[n/b]} < co and 7,(T, —0(P)) — 0 almost surely. Then,

the convergences in (i) and (i) hold with probability one.

Proof. Let

Na
Un(z) = N7 D " 1{n[Sn; — 8(P)] < z}.
i=1

To prove (i), it suffices to show U, (z) converges in probability to J(z, P) for every continuity point

z of J(z, P). To see why,
La(@) = N 3 1{n[Sn: =~ 6(P)] + n[8(P) ~ T,] < },
so that for every € > 0,
Un(z = €)1(En) < La(2)1(En) < Un(z + ),

where 1(E,) is the indicator of the event E, = {n|0(P) — T] < €}. But, the event E, has

probability tending to one. So, with probability tending to one,

Un(z—€) < Ln(z) < Upn(z +¢€)
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for any € > 0. hence, if 2+ ¢ and = — ¢ are continuity points of J{(, P), then U, (z+¢) — J(z *e¢, P)
in probability implies
J(x—G,P)—ES Ln(z) < J($+€,P)+€

with probability tending to one. Now, let € — 0 so that z =+ € are continuity points of J(-, P).
Therefore, it suffices to show U,(z) — J(z, P) in probability for all continuity points z of J(-, P).
But, U,(z) is a U-statistic of degree b. Also, 0 < Un(z) < 1 and E[U,(z)] = Jy(z, P). By an
inequality of Hoeffding (1963) (see Serfling (1980), Theorem A, p.201): for any ¢ > 0,

Probp{Un(z) — Jo(z, P) > t} < exp{—2[n/b]t*}. (2.4)

One can obtain a similar inequality for ¢ < 0 by considering the U-statistic —U,(z). Hence,
Un(z) — Jo(z, P) — 0 in probability. The result (i) follows since Jo(z, P) — J(z, P). To prove (ii),
given any subsequence {7}, one can extract a further subsequence {n&,} so that L, g (z) — J(z, P)
almost surely. Hence, L, K (z) — J(z, P) almost surely for all z in some countable dense set of the
real line. So, Ln,,j tends weakly to J(z, P) and this convergence is uniform by Polya’s theorem.
Hence, the result (ii) holds. The proof of (iii) is very similar to the proof of Theorem 1 of Beran
(1984) given our result (i). To prove (iv), follow the same argument, using the added assumptions

and the Borel-Cantelli Lemma on the inequality (2.4).

Remark 2.1. The assumptions b/n — 0 and b — oo need not imply 73/7, — 0. For example, in
the unusual case 7, = log(n), if b = n? and v > 0, the assumption 7,/7, — 0 is not satisfied. In
regular cases, T, = n!/2, and the assumptions on b simplify to b/n — 0 and b — oo. The further
assumption on b in part (iv) of the Theorem will then hold, for example, if b = n? for any v € (0, 1).

In fact, it is easy to see that it holds if blog(n) /n— 0.

Remark 2.2. The assumptions on b are as weak as possible under the weak assumptions of the
theorem. However, in some cases, the choice b = O(n) yields similar results; this occurs in Wu
(1990), where the statistic is approkjmately linear with an asymptotic Gaussian distribution and

1/2

Tn = n°/*. This choice will not work in general; see example 2.2.2.

Assumption A is satisfied in numerous examples. Next, we offer an interesting example which

illustrates the scope of our method, as it falls outside the range of n'/2-consistent estimators and
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normal limits. While methods like the bootstrap are potentially applicable in this example, the
validity of the bootstrap is not known. At the very least, the bootstrap method would require a

somewhat tedious argument to justify its asymptotic validity.

Example 2.1.1. Optimal replacement time. Consider the problem of age replacement where
replacements of a unit X occur at failure of the unit or at age t, whichever comes first. X is
assumed continuous with an increasing failure rate distribution F having density f, finite mean,
and F(0) = 0. Suppose a cost ¢, is incurred for each failed unit which is replaced and a cost ¢3 < ¢;
is suffered for each nonfailed unit which is excha.ngéd. It is easy to see that the average cost per
time unit, over an infinite time horizon, based on the strategy of preventively replacing the unit at

time ¢ is given by
c1 F(t) + ca[l — F(t)]'
Il = F(z)ldz

A(t, F) =

The problem is to find §(F) which minimizes A(¢, F) over t. Ifr(z) = f(z)/[1 — F(z)] is the failure
rate of F, then if r(z) is assumed continuous and increasing to oo, then 6(F) is well-defined. The

optimal minimum cost is then

B(F) = (c1 — e2)r(8(F)).

In practice, F' is unknown, so our problem is to construct a confidence interval for 0(F) based
on a random sample Xi,..., X, from F. Let F‘n denote the empirical distribution of the data,
and let T, be a value of ¢ minimizing A(t, F,); that is, T, = B(Fn). For the purposes of the
discussion here, don’t worry about problems of existence or uniqueness; see Arunkumar (1972)
for a careful description. Arunkumar (1972) has shown that nl/3 [T — 6(F)] has a nondegenerate
limiting distriBution, so our Condition A is verified with 7,, = n!/3, The asymptotic distribution is
the distribution of ¢(F) times the value of ¢ which minimizes [W (¢) — ¢2], where W (2) is a two-sided
Wiener-Lévy process and the constant ¢(F) depends on intricate properties of F such as F(O(F)).
Hence, the asymptotic distribution is of little use towards the construction of confidence intervals
for (F). Léger and Cléroux (1990) have constructed bootstrap confidence intervals for B(F). The
approach here may be used for this problem as well because nl/ 2[B(F,) — B(F)] has a limiting

normal distribution.



2.2. Comparison With The Bootstrap.

The usual bootstrap approximation to J,(z, P) is J,(z,Q,), where Q. is some estimate of P.
In many (but not all) i.i.d. situations, Qn is taken to be the empirical distribution of the sample
X1,...,Xy. The analogous results to (2.2) and (2.3) with L,(z) replaced by J, (z,0Q,) have been
proved in many situations; see Bickel and Freedman (1981) and Beran (1984). In fact, dozens
of other papers exist whose sole purpose is to prove such results in very specific situations. Qur
theorem immediately applies very generally with no further work.

To elaborate a little further, analogous bootstrap limit results are typically proved in the
following manner. For some choice of metric (or pseudo-metric) d on the space of probability
measures, it must be known that d(P,, P) — 0 implies J,(P,) converges weakly to J (P). That
is, Assumption A must be strengthed so that the convergence of J, (P) to J(P) is suitably locally
uniform in P. In addition, the estimator Qn must then be known to satisfy d(Qn, P) — 0 almost
surely or in probability under P. In contrast, no such strengthing of Assumption A is required
in Theorem 2.1. In the known counterexamples to the bootstrap, it is precisely a certain lack of
uniformity in convergence which leads to failure of the bootstrap.

In some special cases, it. has been realized that a sample size trick can often remedy the incon-
sistency of the bootstrap. To describe how, focus on the case where Q.. is the empirical measure,
denoted P,. Rather than approximating J, (P) by J,(P,), the suggestion is to approximate J,, (P)
by Ju(P,) for some b which usually satisfies b/n — 0 and b — oco. The resulting estimator J,(z, P,)
is obviously quite similar to our L, (z) given in (2.1). In words, J(z, P,) is the bootstrap approk—
imation defined by the distribution (conditional on the original data) of o[ To (XS, ..., X)) — Tol,
where X7, ..., X} are chosen with replacement from X, - - yXn. In contrast, L,(z) is the distri-
bution (conditional on the data) of [T} (Yy", ..., Yy*) — Tp)], where Yy, ..., Y are chosen without
réplacement from Xj,...,X,. Clearly, these two approaches must be similar if b is so small that
sampling with and without replacement are essentially the same. Indeed, if one resamples b num-
bers (or indices) from the set {1,...,n}, then the chance that none of the indices is duplicated is
H?;ll(l - i) This probability tends to 0 if b/n — 0. (To see why, take logs and do a Taylor

expansion analysis.) Hence, the following is true.
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Corollary 2.1. Under the further assumption that b%/n — 0, parts (i)- (iit) of Theorem 2.1

remain valid if L,(x) is replaced by the bootstrap approzimation Jo(z, P;).

In spite of the Cbrollary, we point out that L, is more generally valid. Indeed, without the
assumption b%/n — 0, Jb(x,Pn) can be inconsistent. To see why, let P be any distribution on
the real line with a density (with respect to Lebesgue m(;asure). Consider any statistic T, 7,
and 0(P) satisfying Assumption A. Even the sample mean will work here. Now, modify T}, to 7,
so that the statistic T, (X,... ,Xn) completely misbehaves if any of the observations Xi,...,. X,
are identical. The bootstrap approximation to the distribution of T, must then misbehave as well
unless b2 /n — 0, while the consistency of L,, remains intact.

The above example, though artificial, was designed to illustrate a point. Below, some known

counterexamples to the bootstrap are reviewed.

Example 2.2.1. U-statistics of degree 2. Let Xi,...,X, be ii.d. on the line with c.d.f.
F. Denote by F, the empirical distribution of the data. Let (F) = [ [w(z,y)dF(z)dF(y), and
assume w(z,y) = w(y,r). Assume Jw¥(z,y)dF(z)dF(y) < co. Set 1, = n!/2 and T, = 0(F,).
Then, it is well known that J,(F) coﬁverges weakly to J(F'), the normal distribution with mean 0

and variance given by
(F) = 4 [ {w(a,)dF (1) PP (z) - 0*(F).

Hence, our condition A is satisfied. However, in order for the bootstrap to succeed, the additionaJI
condition [w?(z,z)dF(z) < oo is required. Bickel and Freedman (1981) give a counterexample to
show the inconsistency of the bootstrap without this additional condition.

Interestingly, the bootstrap may fail even if Jw?(z,z)dF(z) < oo, stemming from the possi-
bility that v2(F) = 0. (Otherwise, Bickel and Freedman’s argument justifies the bootstrap.) As an
example, let w(z,y) = zy. In this case, 8(£,) = X, — 52 /n, where 52 is the usual unbiased sample
variance. If §(F) = 0, then v(F) = 0. Then, n[8(F,) — 0(F)] converges weakly to 0%(F)(Z2 - 1),
where Z denotes a standard normal random variable and o2 (F) denotes the variance of F. How-
ever, it is easy to see that the bootstrap approximation to the distribution of n[0(F,) — 6(F)] has

a representation 02(F)Z? + 2Z0(F)n'/2X,,. Thus, failure of the bootstrap follows.
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In the context of U-statistics, the possibility of using a reduced sample size in the resampling

has been considered in Bretagnolle (1983); an alternative correction is given by Arcones (1990).

Example 2.2.2, Extreme order statistic. Bickel and Freedman (1981) provide the following
counterexample. If X,..., X, are i.i.d. uniform on (0,9), then n{max(Xj, ... y Xn)— 6] has a limit
distribution given by the distribution of —6X , where X is exponential with mean one. Hence,
Assumption A is satisfied here. However, the usual bootstrap fails. Note in Theorem 2.1 that the
conditions on b (with 7, = n) reduce to b/n — 0 and b — co. In this example, at least, it is clear
that we cannot assume b/n — ¢, where ¢ > 0. Indeed, L, (z) places mass b/n at 0. Thus, wh11e it
is sometimes true that, under further conditions such as Wu (1990) assumes, we can assume b is of
the same order as n, this example makes it clear that we cannot in general weaken our assumptions

on b without assuming further structure.

Example 2.2.3. The mean in the infinite variance case. Let X 1y...,Xp beii.d. real-valued
random variables with c.d.f. F and mean (F). If the Qa.riance of F is not finite, the bootstrap
is known to fail; see Babu (1984), Athreya (1987), Knight (1989) and Kinateder (1992). In this
example, it has been realized that taking a smaller bootstrap sample size can result in consistency of
the bootstrap; see Arcones (1990), who attributes the idea to an unpublished report of Athreya; also
see Wu, Carlstein and Cambanis (1989) and Arcones and Giné (1989). For our method, Theorem
2.1 is generally applicable if F is in the domain of attraction of a stable law of index greater than

one.

Example 2.2.4. Density estimation. Let Xi1,...,X, be iid. real-valued random variables
with density f. Suppose f is smooth and unimodal, with mode denoted by 6(f). Let fn,h(t) =
(nh)~! 32, K[(t — X;)/h], and let 6, ;, denote a mode of Fan. Under regularity (nh3)1/2(8,, , — 6)
has a limiting normal distribution, so Theorem 2.1 is applicable. The optimal choice for A in
this case is to take h proportional to n=1/7. For such a choice of h, bootstrap methods based on
resampling from the empirical distribution are not consistent. Indeed, bootstrap methods based
on resampling from the empirical will work if the choice of bandwidth & for estimating the mode
is suboptimal. In the optimal choice of bandwidth case, the bootstrap can be fixed by resampling
from fn,g, where g is large compared with h. This phenomenon of having to resample from an

appropriately oversmooth density estimate occurs in many other contexts involving functionals of
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a density. In short, the results depend upon delicate choices of smoothing parameters. For details,

see Romano (1988).

Example 2.2.5. Superefficient estimator. Consider Hodges’ famous example of a superefficient
estimator. In this example, X;,..., X, are i.i.d. according the normal distribution with mean 6
and variance one. Let T, = cX, if |X,| < n=1/4 and T, = X, otherwise. Here, ¢ > 0. As is well
known, nl/2(T, — 0) has a limit distribution for every 8, so the conditions for our Theorem 2.1
remain applicable. However, Beran (1984) shows that the sampling distribution of n!/2(T, — 0)

cannot be bootstrapped, even if one is willing to apply a parametric bootstrap!

2.3. Stochastic Approximation. Because (Z) may be large, L,, may be difficult to compute. In-
stead, a stochastic approximation may be employed. For example, let I, ... I, be chosen randomly

with or without replacement from {1,2,..., N,}. Then, L,(z) may be approximated by

8
Lo(2) =713 1{my(Sn,z; — Tn) < 3}
i=1
Corollary 2.2. Under the assumptions of Theorem 2.1 and the assumption s — oo as n — 0,

the results of Theorem 2.1 are vakid if L, (z) is replaced by L,(z).

Proof. In the case the I; are sampled with replacement, sup, |L,(z) — L, (z)[ — 0 almost surely
by the Dvoretzky, Kiefer, Wolfowitz inequality; see Serfling (1980, p. 59). This result is also true

in the case the I; are sampled without replacement by a similar inequality; see Romano (1989).

An alternative approach, which also requires fewer computations, is the following. Rather than
considering all (’;) subsamples of size b from X7,..., X,, just use the n—b+1 subsamples of size b
of the form {X,-, Xit1,--., Xiyp—1}. Notice, some ordering of the data is fixed and retained in the
subsamples. Indeed, this is the approach that is applied in the next section for time series data,
Even in the i.i.d. case, this approach may be desirable to ensure robustness against possible serial
correlation. Most inferential procedures based on i.i.d. models are simply not valid (i.e., not even
first order correct) if the independence assumption is violated, so it seems worthwhile to account

for possible dependencies in the data if we do not sacrifice too much in efficiency.
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2.4. General Parameters and Other Choices of Root.

In general, it may be desirable to approximate the sampling distribution of other roots. Be-
low, two cofnmon choices are considered. The first generalization concerns the approximation of
studentized root. The second generalization applies to general parameters which need not be real-
valued. In particular, the setup is designed to handle confidence bands for functional parameters.
We leave it to the reader to consider further obvious generalizations whose asymptotic validity may

be justified by mimicking the proof of Theorem 2.1.

2.4.1. Studentized roots. Here, the goal is to approximate the distribution of 7, [T}, — 6(P)}/6x,
where &, is some estimate of scale. Let 0n,; be equal to the estimate of scale based on the ith

subsample of size b from the original data. Analogous to (2.1), define

N, .
Kn(z) = N2> 1{n(Sni = Tn) /6y < ) (2.5)
i=1
Then, the following theorem holds. The proof is similar to that of Theorem 2.1, and so it is omitted. -

Theorem 2.2. Assume Assumption A. Also assume 1,/1, — 0, b — 0o and b/n -0 as n — co.
Assume 6, — o in probability, where o = o(P) is a positive constant. Let z - o(P) be a continuity

“point of J(-, P).
(1). Then, K,(z) — J(z - o(P), P) in probability.

(#). If J(-, P) is continuous, then
5Up | L (z) = Ju(z - o(P), P)| = 0

in probability.
(). Let dn(1— ) =inf{z : K,(z) > 1~ a}. If J(-, P) is continuous at c(1 — a, P) - o(P), then

Probp{rn[Ts, — 6(P)]/6n < dn(l - a)}—-1-c

as n — 0. Thus, the asymptotic coverage probability of the interval [T, — 6,7 d (1 — a), 00) is

the nominal level 1 — «.
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(iv). Assume, for every d > 0, 3, ezp{~d[n/b]} < oo, 7(Tn — 0(P)) — 0 almost surely, and

6n — 0(P) almost surely. Then, the convergences in (i) and (i) hold with probability one.

2.4.2. General Parameter Space. It is often-desirable to construct confidence regions for
multiva.ria,te'pa.rameters, or for parameters taking values in a function space. For example, consider
the problem of constructing confidence bands for the density or distribution function, which may
form the basis of a goodness of fit test. Assume 6(P) takes values in a normed linear space O, with
norm denoted || -||. Let T}, be an estimate of §(P). Assume Assumption A, with the interpretation
that 7,[T,, — 6(P)] has a distribution in 6. Here, © is'endowed with an appropriate o-field so
that 7, [T, — 6(P)] is measurable and an appropriate weak convergence theory ensues, though we
omit such measurability issues here. Let H,(P) denote the distribution of To|[Tn — 6(P)|| under
P, with corresponding c.d.f H,(z, P). Assumption A implies H,(P) converges weakly to H(P),
the distribution of ¢, where ¢ has distribution J (P). The corresponding cdf of H(P) is denoted
H(z, P). The approximation to H,(z) we study is defined analogously to (2.1):

N,
Ha(2) = NP3 1{n||S: - Tull < o).

i=1

Theorem 2.3. Assume Assumption A. Also assume 1/, — 0, b — co and b/n — 0 as n — co.

Let z be a continuity point of H(-, P).
(i). Then, H,(z) — H(z, P) in probability.

(it). If H(-, P) is continuous, then
sup |H, (z) — H,(z,P)|—0
xr

i probability.
(iti). Let ho(1 — @) = inf{z : Hy(z) > 1 — a}. Correspondingly, define h(1 — a, P) = inf{z :
H(z,P) > 1—a}. If H(-, P) is continuous at h(1 — a, P), then

Probp{m||Tn —6(P)| < hn(l-a)} = 1—a

as n — oo. Thus, the asymptotic coverage probability of the set {0 €0 :7||Th — 0| < ha(l— @)}

is the nominal level 1 — .
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(iv). Assume, for everyd >0, 3, exp{—d[n/b]} < co and (T, —6(P)) — 0 almost surely. Then,

the convergences in (i) and (ii) hold with probability one.

The proof of the above theorem is similar to that of Theorem 2.1, and is omitted. Immediate
applications of the theorem result in uniform confidence bands for a cumulative distribution func-
tion F, based on iid observations from F or in the case where observations are censored. The theory
is also applicable to bjased sampling models, including stratified sampling, enriched statified sam-
pling,. choice-based sampling, and case-control stﬁdies; these models are developed in Gill, Vardi,
and Wellner (1988), where they show Assumption A is satisfied under weak assumptions. Since
distributional theory is quite hard in these models, our method offers simplicity in implementation

and mathematical justification.

2.5. Second Order Asymptotics and Choice of b.

Fortunately, the theory developed thus far assumes little about the choice of b. In Ppractice,
however, the implementation of the method requires a particular choice. In order to choose b
optimally, higher order considerations are necessary.

Consider the case where 6 is a univariate mean. As in Section 4 of Wu (1990), consider the

Edgeworth expansion of the usual studentized statistic:
Prob{n/*(X, - 0) /5, <t} = ®(t) + (26 + 1)$(t)yn"2/2/6 + o(n=1/2), (2.6)

where v = E(X — 6)*/o®. Then, K,(z) given in (2.5) has the expansion (see Babu and Singh
(1985) and Wu (1990)):

Kalt(1 = M%) = 8(2) + (3 = T2~ 1)1~ DV2003,0- /6 4+ 0p(672),  (27)

where Jn = 32,(X; — X,.)%/né3 and f = b/n. The difference between (2.6) and (2.7) is minimized
if b= O(n?/?), in which case the difference between the two expressions is of order n~'/3, A good
second order theory would demand the difference to be o(n‘l./ 2. Basically, the problem lies in the
fact that K n Serves as a good approximation to the studentized statistic based on a sample of size

b (not n), and has skewness approximately v/b*/? instead of /nl/2.
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The above considerations can be generalized somewhat without the use of Edgeworth expan-
sions by the following heuristic argument. Assume J,(z,P) = J (z,P) + n=Pc(P) + o(n~P) for
some 3 > 0. Here, J, could represent the distribution of a studentized or unstudentized root. OQur
approximation L,(z) serves as a good approximation to Jo(z, P), with the main error due to the
fact that T}, in (2.1) is not 6(P). Specifically, L, — J, is of order b/n in probability. To appreciate
why, L, is the distribution, conditional on Xj, ..., X,, of 75[Sn,1 — 0(P)] + 75[6(P) — T,], where I
is uniform on 1,...,N,. The distribution, U,, of the first term Zn1 = Tal[Sn,r — 8(P)] is a good
approximation to the distribution Jj; indeed, one can show, in regular situations (by a variance
calculation) that U, differs from J; by_Op(n‘l/ 2). The second term, Zny = To[0(P) = Ty] is of
order 7,/7T, in probability. In regular cases, T, = n!/ 2, in which case the second term is order

(5/n)*/? in probability. Hence,
Ln(t) = PTOb{Zn,l + Zn,2 < thl, R ,.Xn} = Un(t - Zn,2)-

Now, assuming n'/2[T, — 6(P)] converges weakly to the normal distribution with mean 0 and

variance 02 (or any distribution with mean 0 and finite variance), we have
Un(t = Znz) ~ / Un(t = (b/n)/22)d®(20) ~ / To(t = (b/n)!/22)d®(2/o) = Jy(t) + O(b/n)

by a Taylor expaision argument, using the fact that ® has mean 0. Thus, in regular cases, L,, — J,
is order b/n in probaBility. Now, the difference between J, and J, is of order b=7. In the case
B = 1/2, the difference between J, and L, is then of order 5~1/2 + b/n in probability. The choice
b = n2/3 minimizes this order.

We would also like to point out that the choice of depends crucially on the desired goal.
Consider the use of our approximation L, for the purposes of estimating the bias of T},. Typically,
7o = n!/2 and E(T,) - §(P) = a(P)/n + o(1/n). If the mean of n!/2[T, — 6(P)] is approximated
by my, the mean of L,, then our estimate of E(T},) — 6(P) becomes n~1/?m,,. But, n=/2m,, has
mean

n"2B(Ty) — E(T,)] = n~2=Y2a(P) + o((nb)~1/2).

Hence, in order to accurately estimate the bias of T, we should at least require b/n — 1. This is

consistent with the usual jackknife estimate of bias which uses b = n — 1.

~16 -



In summary, the optimal choice of b is difficult and future work will focus on this problem. Tu
(1992) has shown how jackknife values may be used appropriately to obtain second order accuracy.
Basically, Tu (1992) makes use of a normalizing transformation, and a similar approach could be
applied here. A further possibility, in cases where Edgeworth expansions exist so that second order
accuracy is obtainable, is to consider a k-fold convolution of our estimated sampling distribution.
If k is chosen so k£ ~ n/b, then the new distribution has the appropriate skewness term. Such
considerations are beyond the scope of the present work, whose goal is to establish the broad
applicability of a particular methodology. In general, the optimal choi(;e of b and construction of

suitably defined pseudo-values will depend on the particular nature of the problem.
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3. STATIONARY TIME SERIES AND HOMOGENEOUS RANDOM FIELDS

3.1. Some Motivation: the Simplest Example.

To fix ideas, suppose the sample X1, ..., X, is known or suspected to exhibit serial dependence,
and that it can generally be modeled as a stationary time series. Assume that the parameter of
interest 6 is the common mean EX;, and the statistic T}, is the sample mean X, = n~! Y X If
the serial dependence is weak enough such that |R(k)| < oo, where R(k) = Cou(Xy, X14%), then
(under regularity conditions, cf. Brockwell and Davis (1991)) X, is asymptotically normal, i.e.,
v1(X,, — ) has the limiting normal N (0,02.) distribution, where 0% = Var(X1) + 2352, R(k).
Note that 02, = lim,_, 02, where o2 = Var(ynX,) = Var(Xy) +2 Y. (1= i|/n)R(k).

Now to construct confidence intervals for ¢ using the previously mentioned Central Limit
Theorem, a consistent estimate of o2, is required. A straightforward approach would be to estimate
the covariances R(k), k = 1,...,n, and plug them in the formula for o2, since o2 — o2.. However,
this naive procedure is not consistent, because the estimates of R(k) for k close to n are highly
inaccurate; indeed, since 02 is just a constant multiple of the spectral density of the time series
evaluated at point zero, this is a well known difficulty in the literature concerning spectral estimation
(cf., for example, Priestley (1981)). Apparently, based on a sample of size n we could only accurately

estimate R(k), for k = 1,...,b, where b << n. It then follows that we can only hope to estimate

well 02, and not o2, where o = Var(X;) + 2 2:;1(1 — |i|/b)R(k). But there is a natural way

to estimate o? from Xj,..., X, namely to look at the sample variability of 71; ::?_1 X, for
1=1,...,n—b+ 1. This is equivalent to considering the ‘sample variance’ estimator
1 n—b+41 1 i+b-1
A2 v \2
= — — X: - VX
0y n—b+1 ; (\/I; ; t \/_ n)

that was studied in Carlstein (1986) and in Politis and Romano (1993). This proposed estimator is
consistent, under some moment and mixing conditions, essentially because both o2 and o2 converge
asymptotically to o2 , if both b and n are assumed to tend to infinity.

In the same light, one could look at the more general problem of estimating the distribution

of /n(X, — 8). But this can be done by looking at the sample variability of % ::?_1 X, for
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t1=1,...,n2 —b+1, and defining the corresponding ‘empirical’ distribution

n—=>b+1 i+b—1
La@)=(r=b+17" 3 1{Vb0™ 3 Xi~ X,) <z}
i=1 t=i

as an approximation to the sampling distribution of \/n(X, — 6). Here the underlying principle is
that both \/I;()_( »—0) and \/n(X, — ) have the same asymptotic distribution, (which just happens
to be the normal N (0,02,) distribution), where of course X = b~ Yo X

Although variance estimation is intimately linked with the assumption of asymptotic normality,
this more general idea of directly approximating the sampling distribution would work in a variety
of different situations, including cases where asymptotic normality does not hold, where. the rate
of convergence is not \/n, or where variance estimation is not consistent. Suppose that T, =
Tu(X1,...,X,) is thevsta.tistic of interest, where X3,..., X, is an observed stretch of a stationary
time series, and that assumption A of the previous section is satisfied. Let Sn.,i be the statistic T}
evaluated at the subseries X(i—=1)h+15- - s X(i=1)h4b- As will be proved in the following sections,

the ‘empirical’ distribution
q
La(z) = ¢ ) 1{n(Sn; — Ty) < z} (3.1)
i=1 .

is a consistent approximation to the limit law J(z, P) under very weak assumptions; here A is some
integer that may depend on n, and q = [(n — b)/h] + 1, where [-] is the integer part. In general, as

will be argued later on, it is suggested to let h = 1, and b — co as 1 — oo.

3.2. Basic Definitions.

Suppose {X(t),t € Z%} is a random field in d dimensions, with d € Z*, i.e., a collection of
random variables X (t) taking values in a state space S, defined on a probability space (2, A, P),
and indexed by the variable t € Z9. The random field {X(t)} is assumed to be homogeneous,
meaning that for any set E C Z¢ , and for any point i € Z%, the joint distribution of the random
variables {X(t),t € E} is identical to the joint distribution of {X(t),t € E+i}. In the very

important special case where d = 1, the random field {X (t)} is just a stationary time series.
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For two points t = (#1,...,%4) and u = (uy,...,uq) in Z%, define the sup-distance in Z¢ by
d(t,u) = sup; |t; — u;|, and for two sets E1,E; in Z¢, define d(E,, E,) = inf{d(t,u): t € Ej,u €
E,}.

Our goal again is to construct a confidence region for a real-valued parameter 6 = §(P), on the
basis of observing {X (t),t € En}; Ey, is the rectangle consisting of the points t = (t1,t2,...,tq) €
Z4 such that 1 < #, S Nk, where k = 1,2,...,d, and n = (ny,na,...,nq). The sample size is again
denoted by n, although now n = H:'i=1 n; = |Ey|, where |E| denotes the cardinality of the set E.

The random field {X(t)} will be assumed to satisfy a certain weak dependence condition.
Define 2 collection of strong mixing coefficients by

ax(k;h,lo)= sup {IP(AlﬂAz)—P(Al)P(Az)I t A € F(E;), |E;| < liyi = 1,2,d(Eq,Ep) > k}
E, E,CZ4 .

where F(E) is the o-algebra generated by {X(t),t € E}. A weak dependence condition is formu-
lated if ax (k;l1,12) is assumed to converge to zero at some rate, as k tends to infinity, and I, 1,
either remain fixed or tend to infinity as well. It is interesting to note that ax (k;11,13) is decreas-
ing in each of its arguments I1,l; separately. In particular, if we let ax (k) = ax(k; 00, 00) be the
usual strong mixing coefficient of Rosenblatt (1985), it is apparent that ax(k;l,l2) < ax(k). If
ax (k) — 0 as k — oo, then the random field {X (t)} is simply said to be strong mixing.

In the case of a stationary sequence (d = 1), the condition of strong mixing is rather weak and
is satisfied by a whole host of interesting examples (cf. Ibragimov and Rozanov (1978)). There are
still many examples of strong mixing random fields in the case d > 1 (cf. Rosenblatt (1985)), e.g.,
Gaussian fields with continuous and positive spectral density function. However, an interesting class
of random fields (with d > 1), the so-called Gibbs states (Markov field models), are not necessarily
strong mixing (cf Dobrushin (1968) for an example), but do satisfy weak dependence conditions
involving the ax(k;l1,ls) coefficients (cf. Neaderhouser (1980), Bolthausen (1982), Zhurbenko
(1986), Bradley (1991)).
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3.3. The General Theorem in the Case of Dependent Data.

As in Section 2, let T, = To(X(t),t € E,), and let J,(P) be the sampling distribution of

Ta(Tn — 6(P)). Again the only assumption that will be needed is assumption A restated here:
Assumption A. J,(P) converges weakly to a limit law J(P), as n; — oo, for i = 1,...,d.

Define Y; to be the block of size b of the consecutive data {X(t),t € E;bn}, where j =
(J1,J2,---,7a) and E;jp p is the smaller rectangle consisting of the points i = (33,%3,...,74) € Z¢
such that (jr —1)he+1 < i < (= Dhe+bg, fork=1,2,...,d; b= (b1,...,ba), h = (hy,..., hg)
are points in Z? that depend in general on n and E,. The point b indicates the shape and size of
rectangle E; 1, and the point h indicates the amount of ‘overlap’ between the rectangles Ejp -
for neighboring i’s, i.e., the size of their intersection; for example, if h = b there is no overlap
between E;p 1, and E;p 1, for i # j, while if h = (1,1,..., 1) the overlap is the maximum possible.
It will generally be assumed that either h = (1,1,...,1), or that as b; — oo, hif/b; — a; € (0,1],
for1=1,2,...,d.

As before, denote b = H:‘i=1 b;, and h = H:'i=1 hi, and observe that, with E,, and n fixed, Yjis
defined only for j such that 1 < jx < qi , where g = [m‘h:—b&] + 1, and thus the total number of
the Yj blocks available from the data is ¢ = H:'i=1 ¢i- (The number ¢ should be compared to the
number N, in the i.i.d. case of Section 2.)

Similarly to Section 2, let Sp; be equal to the statistic T} evaluated at the data set Y;. The

approximation to Jy(z, P) we study is now defined by

q1 q2 qd
Ln(:l:) = q—l Z Z tre Z l{Tb(Sn,i - Tn) S :l:} (32)
1'1=1 i2=1 ld=1

Theorem 3.1. Assume Assumption A, and that /T — 0, b; — 00, and n; — oo, for i =
1,2,...,d. Also assume that H?___l bj/(nj—b;) — 0, and that ¢~! ZZ;I k4Yax (k;b,b) — 0, where

*

¢" = max;¢;. Let x be a continuity point of J(-, P). Then conclusions (i)-(iii) of Theorem 2.1

remain true (with n replaced by n).
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Proof. In what follows, cg,c1,cg,... will denote some positive constants. As in the proof of

Theorem 2.1, to prove (i) it suffices to show that U, (z) converges in probability to J(z, P), where

Un(z) = q_1 Z Z Z H5(Sn,i — 6(P)) < z}.
i1=11i=1 ig=1

Since EUn(z) = Jo(z, P), and Jy(z, P) = J(z, P) as b; — oo, for i = 1,2,...,d, (by assump-
tion A), it suffices to look at Var(Uy,(z)). By the homogeneity of the random field {X(t)} it follows

that

q1 q2 qd i i 'i
VarWa@)=a 3 3 0 3 (1—%)(1—%)---(1—%)0@),

f1=—q1 i2=—q2  i4=—qq
where C(i) denotes the covariance between l{Tb(lS;n,]_ —'0(P)) <z} and 1{7,(Sn,14i — 0(P)) £ z};
note that C(i) = C(~i). Let E; = {i € Z¢: |i;| < ¢;,7 = 1,2,...,d}, and E* = {ieZd: | <
[i/k;],7=1,2,...,d}, where [] is the integer part. Then Var(Uy,(z)) = A* + A, where

w =gty a-Bha B e,

ieE*

and

LY a- '”')(1 ey - ';‘i' ).

icE,—E~

Looking at A* it is seen that it is a sum of H;;l (2[bj/h;] 4 1) ~ 2b/h terms of order O(q™!);
since ¢ = H;Ll([ﬁ"%b‘] +1) ~ H;-i=1(nj — b;)/hj, it follows that [4*| = O(H}i=1 b;/(n; — b;)).

Now by the well known mixing inequality for the covariance between two bounded random
variables (cf. Roussas and Icannides (1987)), |C(i)| < coax (i*h* — b*;b,b), where i* = max; k],
b* = max; b;, and h* = min; h;. Therefore,

|A] < coq™?! Z ax(@*h* = b*;b,b) < c1q7d Z W(k)ax(kh* — b*;b,b),
i€E,—E* k=[b* /h*]+1
where W (k) is the cardinality of the set {i € Z% : iy = k,0 < 4; < i1,j = 2,...,d}. By a
combinatorial argument it now follows that W (k) < k9~1, and therefore,

*

q
4] < czl > kT lax(kR* —b%;b,b).
k=[b*/h*]+1
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It is obvious that by the imposed conditions both terms above converge to zero, and hence
Var(U,;(z)) — 0, which completes the proof of (i). The proof of (ii) and (iii) is now exactly

analogous to the proof of Theorem 2.1.

It should be noted that, using stronger mixing assumptions, the fourth moments of Ly (z) could
be appropriately bounded and convergence with probability one (conclusion (iv) of Theorem 2.1)
would hold here too. Since however our emphasis is on obtaining asymptotically valid confidence
regions under minimal assumptidns, this approach will not be pursued further.

The conditions of Theorem 3.1 are as weak as possible. In practice, since one gets to choose the
design parameters b and h as functions of the given sample size, a realistic set of conditions would
satisfy b; — oo, with b;/n; — 0, as n; — oo, and either h = (1,1,...,1), or that h;/b; — a; € [0,1],
for2=1,2,...,d. In the most important case of maximum ovei'lap between the fecta.ngles, ie., if

h=(1,1,...,1), the statement of the theorem simplifies and the following corollary is true.

Corollary 3.1. Assume Assumption A, and that Ty /Tn — 0, b; — 0o, and bi/n; — 0, as n; — oo,
fori=1,2,...,d. Also seth = (1,1,...,1), and assume that n™! EZ;I k% lax(k;b,b) — 0, where

*

n* = max;n;. Let z be a continuity point of J(:, P). Then conclusions (i)-(iii) of Theorem 2.1

remain true (with n replaced by n).

~ Remark 3.1. It is easy to see that if the random field is actually strong mixing, then a sufficient
weak dependence condition for Corollary 3.1 to hold is that k%~ lax(k) — 0 as k — co. For the
case d > 1, a sufficient condition is that k% lax (k) converges to some finite number as k — 00,
and for the important special case of a time series (d = 1), this sufficient condition boils down to
the minimal assumption that the time series is strong mixing, i.e., that ax (k) — 0 as k — co. As
a matt';er of fact, Theorem 3.1 limited to the time series case is remarkably similar to Theorem 2.1;

we include it here as a corollary.

Corollary 3.2. Let d = 1. Assume Assumption A, and that 1,/7, — 0, b — oo, and b/n — 0, as
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n — co. Also let 1 < h < ¢pb, for some ¢y > 0, and assume the time series is strong mizing. Let x
be a continuity point of J(-, P). Then conclusions (3)-(i) of Theorem 2.1 remain true (with L, (-)

defined as in equation (3.1)).

Theorem 3.1 can also be extended to studentized roots and general parameter spaces, in the
same manner Theorem 2.1 was generalized to Theorems 2.2 and 2.3; the details are obvious and
are omitted. However, there is an interesting extension of Theorem 3.1 or Corollary 3.1 that should
be mentioned here.

Suppose that instead of having a limit theorem where n; — oo, for 1 = 1,...,d, we have a

modified version of Assumption A that reads:

Assumption A*. J,(P) converges weakly to a limit law J(P), as n; — oo, for ¢ =1,...,d*, and

nj — Qj, for j =d* +1,...,d, where 1 < d* < d, and the Q;’s are some fixed positive integers.

This notation allows for the case of a limit theorem where not all dimensions n; of the sample
diverge to infinity; for an example of such a limit theorem in the sample mean case, see Bradley
(1992). To appreciate where such a limit theorem might be useful in practice, consider the case
d = 2, and suppose the data are observed on a very long and thin strip on the plane; that is,
suppose that ny is small for all practical purposes, whereas n; is large.

.Since the index set cannot be thought to extend arbitrarily in all dimensions, it seems that
d* is the ‘effective’ dimension, and the set-up seems equivalent to a vector—valuéd random’ field
in d* dimensions. This point of view however obscures the fact that the probability structure is
shift-invariant in d dimensions, a fact that should be used in the analysis. The following corollary

addresses this set-up; its proof is analogous to the proof of Theorem 3.1.

Corollary 3.3. Assume Assumption A*, and that To/Ta — 0, b; — 00, and b;/n; — 0, asn; — 0,
fori=1,2,...,d* whereasb; — Q;, andn; — Q;, forj =d*+1,...,d. Also seth = (1,1,...,1),
and assume that n—1 EZ;I kd*_lax(k; b,b) — 0, where n* = mMaX;=1,..q+ Ni. Let T be a continuity

point of J(-, P). Then conclusions (i)-(iii) of Theorem 2.1 remain true (with n replaced by n).
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3.4. Variance Estimation and Bias Reduction.

3.4.1. Variance estimation and choice of the design parameters. In this section, denote
by mg), ;A{), and p(9) the jth (noncentral) moments of distributions Ly(+), Ja(:, P), and J(-, P)
respectively, assuming pEJ) and p() exist. It follows that if in the assumptions of Theorem 3.1
we include that m£,2) converges to u(2), then the subsampling methodology can also be used for
estimating the variance of the statistic T,,. As a matter of fact, in the case where Th is the sample
mean or a closely related statistic, convergence of ms.z) to u(? can actually be proven under stronger
moment and mixing conditions and does not have to be included in the assumptions; see the next
section for a brief review of the literature on this problem.

Note that this variance estimation might be important only in situations where J (P) is a mean
zero normal distribution, whose variance is the sole unknown. As demonstrated in Theorem 3.1,
it is quite unnecessary to assume stronger moment and mixing conditions if the goal is just to
construct asymptotically valid confidence intervals.

Nevertheless, looking at the problem of variance estimation can yield useful insights. For
example, a most interesting question for practical applications is how to choose b and h as functions
of n. In the case of sample mean type statistics, it turns out that to have é. most accurate (from the
point of view of asymptotic mean squared error) variance estimator, one should let h = (1,1,...,1),
and b ~ An#, (cf. Politis and Romano (1992b, 1993)); the constant A > 0 can in principle be
calculated (or estimated) given the specifics of the problem, (see Kiinsch (1989) for an explicit
calculation in the sample mean example for the case d = 1).

The variance of the variance estimator mS?’ can be shown to be of order O(b/n), in the sample
mean and related examples (cf. Politis and Romano (1992b)), regardless of choice of h. However,
taking h = (1,1,...,1) is preferred because it decreases the variance of m{? by a constant factor.
Intuitively this makes sense, since the case h = (1,1,..., 1) corresponds to a maximum overlap
between the rectangles E;p 1, for i such that 1 < 4 < qi, k = 1,...,d, which in turn (for given
b and n) maximizes ¢, the number of subsamples available from the data, making it equal to
H;Ll(n,- —bi +1). On the other hand, taking h;/b; — a; € [0,1] would imply that a proportion of
the H;;l (n; — b; + 1) available Sy, ;’s are thrown away when computing the ‘empirical’ estimate L,

and its variance.
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Another insight offered by the problem of variance estimation is apparent by comparing the
1i.d. case of Section 2 and the dependent case of Section 3. The difference is that, whereas in the
iid. case (under some extra conditions) b can be taken of the same order as n, this cannot be
done in the dependent case, even in the simplest setting of the mean. This is manifested by the
fact that, as mentioned, the variance of the variance estimator mﬁ,z) is of order O(b/n), in contrast
to the i.i.d. case where the variance of m{2is of order O(1/n), independent of b.

To fix ideas, consider again the example of the sample mean of a stationary sequence of

‘Section 3.1. Then the va.ria.n(;e estimator mEE) is asymptotically equivalent to a kernel smoothed
(with Bartlett’s kernel) estimator of the spectral density at the origin (Kiinsch (1989)). It is now
well-known (cf. Priestley (1981)) that the bias of m? is of order O(1/b), and the variance of m?

is of order O(b/n); this of course implies that consistent variance estimation requires b — oo as

well as b/n — 0.

3.4.2. Bias reduction. Since statistics calculated from time series and random fields are often
heavily biased, the subsampling methodology could be used for bias reduction, in the same vein as
the original proposition of a ‘jackknife’ by Quenouille (1949). To outline the method, assume that
 assumption A holds together with #511) — p) and mg,l) — pM); usually, but not always, it will be
the case that u(*) = 0. Then, since Ln(-) and Jn(-, P) have the same limiting distribution J{(-, P),
(witﬁ first moments converging as well), one can approximate Bias(T,) = ET, — 0 by a re-scaled

version of the ‘empirical’ bias, i.e., by

A 1 T
Bias(T,) = — m{l) = —T" (Ave(Sni) — Tn)
n n

where Ave(Sni) = ¢ ' 8 307 -+ T, Saj; correspondingly one can form the bias corrected
estimator
To = Tn — Bias(Ta) = (1 + 2)Tp — 2 Ave(Sa ;). (3.3)
Tn Tn

It is obvious that this is an asymptotic bias correction. For example, in the simplest case
where T}, is the sample mean (which is unbiased), Bias(Tn) # 0, due to edge effects; nevertheless
Bias(T,) — 0 as it should (cf. Politis and Romano (1992a)). In the following theorem the

conditions of Theorem 3.1 are strengthened to ensure that the bias correction suggested in equation
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(3.3) is indeed asymptotically valid. The argument is actually most relevant when pB) =£ 0, such
as in the case of an optimally smoothed spectral density estimator (see example 3.6.2). In regular,
\/n— consistent cases, the bias correction (3.3) can be seen to be efficacious as well, by similar
arguments as in the i.i.d. case (see Section 2.5).

Theorem 3.2. Assume Assumption A strengthened to include ;LS,I) — 1D gssume To/Tn —
0, b; = o0, and n; — oo, fori = 1,2,...,d. Also assume that H;l:l bj/(n; — b;) — 0, that
E|Sn1|**® < C, and that ¢~} EZ;I k%= ax (k; b, b)}o/2+8) . 0, where 6 and C are two positive
constants independent of n, S’n,l = Sn,l/\/m,vand ¢* = max; q;. Then |m£,1) — u&,l)| -0
in probability. '

Proof. First note that EmS,l) = Tp(ESny — ETy) = ,uf)l) - -;3,4,1) = /1,5)1) + o(1), and that

],ug) - ,usll)| — 0, by the (strengthened) assumption A. Now

Var(mg,l)) = Var(mp(Ave(Sn,;i) — Th))

= Var(Tb(Ave(Sn,i) — ESn1) — 76(Ta — ESn,1)) = Var(ms(Ave(Sni) = ESn1)) + o(1),

because Var(m,(Th — ESn,1)) — 0 as 7p/Tn — 0. But

Var(m,(Ave(Sn) — ESnn)) =g ) (1~ '“' M)---(l— M)c:ou(s,,,l,S,,,Hi)
icE, q2 qd

and thus

IVGT(Tb(A'Ue(Sn,i) - ESn,l))l < q—l Z Cov(gn,lagn,1+i)’
i€E,

where it was taken into account that Var(S,y) = O(1/72), and E, was defined in the proof of
Theorem 3.1. Finally, by a similar argument to the proof of Theorem 3.1, and using the mixing
inequality

|Cov(Sn,1,5n,141)| < 10C* {ax (i*h* — b*; b, b)}/(2+9)

(cf. Roussas and Ioannides (1987)), it follows that Var(m ¢ )) — 0 and the theorem is proved.

A bias correction identical to the one suggested in equation (3.3) can be employed in the i.i.d.
set-up of section 2 as well; in that case of course, Ave(Sy,i) should be redefined to be the average

of all available S, ;.
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3.5. Comparison with other resampling methods. |

As mentioned in section 3.4.1, the subsampling methodology for dependent data has been used
in the past for variance estimation (Carlstein (1986), Rais (1992), Politis and Romano (1992a,1992b,
1993)), and is closely related to other nonparametric resampling methods, such as the ‘moving
. blocks’ jackknife and bootstrap (Kiinsch (1989), Liu and Singh (1992), Rais and Moore (1990),
Politis and Romano (1992a)).

In the case of a stationary strong mixing sequence (d = 1), Carlstein (1986) used mﬁf), ie.,
the variance of the ‘empirical’ L,(z), to estimate ﬂﬁf) , 1.e., the variance of 7,T,. Assuming strong
enough conditions ensuring that 7, = /n and T, is asymptotically normally distributed, and
specializing to the case A = b, (no overlap between the blocks of data used to compute Sp,: and
Shnji+1), Carlstein showed the consistency of mﬁf) as an estimator of uﬁf).

Carlstein’s idea was generalized in Politis and Romano (1993) to a certain class of statistics of
‘linear’ type that are not necessarily /n—consistent. In addition, the important case where either
h=1,or h/b — a € (0,1)], was studied, and the variance estimator mslz) with h = 1 was shown to
be more accurate than the one with h/b — a € (0,1]. The subsampling variance estimator m{?
was also generalized to the case of homogeneous random fields (d > 1) by Rais (1992) and Politis
and Romano (1992b). .

The fact that taking h = 1 is preferrable to taking A = b was also discussed in Kiinsch
(1989). As it turns out, the so-called ‘moving blocks’ jackknife estimate of the variance of TnTh
(cf. Kiinsch (1989), Liu and Singh (1992)) is identical to m'> with h = 1. Let Jn(z, P) denote the
‘moving blocks’ bootstrap estimate of J,(z, P) (cf. Kiinsch (1989), Liu and Singh (1992)); as can
be calculated, the variance of J,(z, P) is approximately (up to an asymptotically negligible factor)
equal to m? vWith h = 1, and indeed J,(z, P) is very closely related to the ‘empirical’ L, (z). For
an extension of the ‘moving blocks’ jackknife and bootstrap to the case of homogeneous random
fields see Rais and Moore (1990) and Politis and Romano (1992b).

It turns out that, for the case of the sample mean considered in Section 3.1, J, (=, P)isa k—fold
convolution of Ly (z) with itself, where k ~ [n/b]. Since it is a necessary assumption that b/n — 0
(see Section 3.4.1), it follows that J,(z, P) will always be asymptotically normal if L,(z) is well
behaved; this is proved in Kiinsch (1989) and Liu and Singh (1992)). Under conditions ensuring
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the consistency of the variance estimator mslz) , the ‘moving blocks’ bootstrap estimate J, (z, Pj is
consistent as an estimator of J(z, P), assuming the limit distribution J (z, P) is itself Gaussian.
The above discussion helps put the subsampling methodology into perspective. To summarize,
in the case where the limit distribution J(z, P) is normal, for example in the case of the sample mean
or related statistics (differentiable statistics or statistics of the ‘linear’ type), variance estimation by
subsampling or ‘moving blocks’ jackknife, and distribution estimation by subsampling or ‘moving
blocks’ bootstrap are both applicable. The point to be made in this paper is that distribution
estimation by subsampling is actually applicable in quite more general situations, for instance
when asymptotic normality does not hold, or where variance estimation is not consistent. Indeed,
distribution estimation by subsampling is consistent under the minimal assumptions that there is a
limiting distribution J(z, P), and that the data are weakly dependent (so that consistent estimation

is even possible).

3.6. Some Examples.

The examples will address some rather unorthodox cases; in all standard cases of statistics
from time series and random fields that possess asymptotic distributions, e.g., the sample mean, the
sample autocovariances and autocorrelations, estimates of the spectral and cross-spectral density,
estimates of the coherency function, etc., the subsampling methodology outlined in Section 3 is
obviously applicable. |

For the examples consider the case of a real valued stationary sequence (d = 1), in which
case the notation is much simpler, although all examples have immediate analogs in the random
field case. So suppose the sample {X;,t=1,...,n} is observed from the stationary strong mixing

sequence {X;,t € Z}.

3.6.1. Robust statistics from time series. Suppose the first marginal of the sequence {X,},
i.e., the distribution of the random variable X 1, is symmetric and unimodal, with unknown location
6. Much of the methodology of robustness can be applied to the case of dependent data as well
(cf. Gastwirth and Rubin (1975), Kiinsch (1984), Martin and Yohai (1986)). Under regularity
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conditions, the median, the trimmed mean, the Hodges-Lehmann estimator, linear combinations
of order statistics, etc., all possess asymptotic distributions, and hence Theorem 3.1 is directly
applicable.

As an example, consider a Gaussian strong mixing sequence {X+}, satisfying 3~ |R(k)| < oo,
where R(k) = Cov(Xy,X14%). Then (cf. Gastwirth and Rubin (1975)) the Hodges-Lehmann
estimator, i.e., the median of all pairwise averages of the data, is asymptotically normal, with
mean ¢ and variance proportional to 2n~! Y"2° _ _ arcsin(R(k)/2). It is apparent that to use this
asymptotic normal distribution to set confidence intervals for 6, the constant > arcsin(R(k)/2)
should be consistently estimated which is a difficult task. To appreciate the difficulty recall than
even estimating 3 o> ___ R(k) is hard and amounts to estimation of the spectral density function at
the origin. Using Theorem 3.1 to set approximate confidence intervals for 6 bypasses this difficult

problem.

3.6.2. The spectral density function. As before assume that Y |R(k)] < oo, and define
the spectral density function f by f(w) = % e o R(k)e~**, Fix a point w € [~m, 7], and
consider a kernel smoothed estimator of f(w) given by f(w) = 2—11; Y he—n Bn (k)R(k)e=**  where
R(k) = 1 ::lk X+ X141k is the usual sample autocovariance, and B, (k) is the ‘lag-window’. Under
regularity conditions (cf. Priestley (1981) and the references therein), there is a sequence 7,,
corresponding to a particular choice of a sequence of lag—wiﬁdows B (-), such that 7,( fw)~¥ (w))
has an asymptotic normal distribution.

To fix ideas, suppose By(-) is the Parzen window (cf. Priestley (1981), p. 443); here m, is a
sequence of design parameters that should be chosen appropriately depending on n. Then, under
moment and weak dependence conditions (the latter having a correspondence to conditions on the
smoothness of the spectral density, cf. Ibragimov and Rozanov (1978)), it can be calculated (see

Parzen (1961) or Priestley (1981), p. 462) that asymptotically

. 2
Var(f(w)) ~ 2200

n
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and that 7,(f(w) — Ef(w)) is asymptotically normal N (0,02), where 7, = \/n/m.,, and b,, and

2

Ow

are constants depending on w and on f.

By Slutsky’s theorem it follows that for a choice of my, satisfying n'//m, — 0, as n — oo,
\/m (fw)—f (w)) is also asymptotically normal N (0,02 ). Thus Assumption A is satisfied, and
the subsampling methodology can be used to set confidence intervals for f(w). The same ideas are
directly applicable in the case of homogeneous random fields (d > 1); kernel smoothed estimators
of f(w) for w € [—m,x]¢ are formed in analogous manner, and are shown to be asymptotically
normally distributed under regularity conditions (cf. Rosenblatt (1985)).

Note however that to have a most accurate (from the point of view of asymptotic mean squared -
error) estimator f(w), we should choose m, ~ (46%,/02)1/501/5, In this case, the Bias(f(w)) is
significant and is of the same order as 1/ Var(f(w)); the asymptotic distribution of Vnfm, (f(w)—
f(w)) is now normal N(%10,,02), where the % sign corresponds to the sign of b,,. Since b,
and o2, are generally unknown, they could either be éstima.ted, or the choice m, ~ An!/® can
be made, for some constant A > 0; this choice would imply that the asymptotic distribution of
Vnfm, (f(w) - f (w)) is normal N(const.,o2). In other words, if m, is of the optimal order of
magnitude n'/3, there exists an asymptotic distribution for 7, (f(w) - f (w)), but it generally has
nonzerolmea.n. Therefore, a bias correction in the spirit of Theorem 3.2 is useful here. To ensure
that we have a nonnegative estimate of f(w), the positive part of the bias corrected estimator may

also be taken which is also justified by asymptotic considerations.

3.6.3. Nonparametric estimation of the first marginal distribution. Let F(-) denote the
distribution of the random variable X;, and let F(z) = n~1 Yoiei H{X; < z}. Under regularity
conditions (cf. Gydrfi et al. (1989)), v/n(F(z) — F(z)) possesses a limiting normal distribution,
and hence Assumption A is satisfied. Furthermore, /n(F(-) — F(-)), viewed as a random function,
.converges weakly to a Gaussian process (cf. Deo (1973)). Looking at the sup-norm sup, [vr(F(z)-
F(z))|, uniform confidence bands for the unknown distribution F(-) can be set by the subsampling
methodology, similarly to the i.i.d. case of Section 2.4.

If it is known that F(-) is absolutely continuous with probability density F’(-), then F' () may

be estimated by the derivative of a smoothed version of £(-). The subsampling methodology will be
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useful here too, although the rate 7, is no longer /n, and the problem of bias and bias correction

becomes important, in exact analogy to the example of the spectral density function.

3.6.4. The sample mean of a time series with long range dependence. Let X, =
n! Z:l=1 X: be the sample mean, and § = EX, be the mean; this example was considered in
Section 3.1 under the assumption that ) |R(k)| < co. We now abandon this assumption, and
instead suppose that, although the sequence {X,} is strong mixing, the mixing coefficients decrease
to zero slowly enough so that the variance of X, is not of order n=!. Suppose that actually
Y k=1 R(k) ~ n?’, and therefore Var(X,) ~ 02n?¢~1, for some 0 < B < 1/2, and o2, > 0.
Assuming E|X|?*® < oo, for some § > 0, it follows from Rosenblatt (1984) that nz=# (X, — 6) has
an asymptotic normal N(0,02,) distribution, and thus Assumption A is satisfied with 7, = n3—5,
The number S could be estimated (cf. Beran (1986), Kiinsch (1989)) if it is not known, as will

typically be the case.
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4. CONCLUSION

In this paper, we have demonstrated how the sampling distributions of normalized statistics can
be estimated through the use of jackknife pseudo-values or, equivalently, the values of the statistic
computed over certain subsets of the data. The applicability of such methods has been discussed
in complicated i.i.d. situations and in the setting of homogeneous random fields. The viability
of such methods in the context of tirﬁe series and random fields is particularly important because
the distribution theory of many estimators is quite complicated. Our results are powerful enough
that the intricate problem of constructing a confidence interval for the spectral density function,
for example, is immediate frqm our general results. Indeed, in all of our results, the asymptotic
justification of the method studied hinges on the simple assumption of a limit distribution for the
normalized statistic. Hence, the method is applicable in quite complex settings.

Future work will focus on the higher order asymptotic properties of these methods, which was
somewhat discussed in Section 2.5. In particular, the choice of b remains a practical and theoretical
issue, in spite of our results which support the view that the method is justified over a wide range
of subsample size. As previously mentioned in Section 2.5, there are undoubtedly several possible
routes to construct second order correct procedures in regular situations. Tu (1992) has presented
such a scheme. Outside of the i.i.d. context, very little is known about higher order accuracy in the
nonparametric analysis of time series. Our method immediately applies to most of the interesting
statistics in time series, unlike bootstrap methods such as the moving blocks of Kiinsch (1989) and
Liu and Singh (1988) or the stationary bootstrap of Politis and Romano (1991). Indeed, as in
the i.i.d. case, bootstrap methods require the weak convergence of the statistic to be smooth as a
function of the model, and the verification of such smoothness can be challenging even in specific
situations. In contrast, the first order validity of our method is quite apparent in general with
little further work. Now that there exist methods that possess minimal consistency requirements
without having to invoke unrealistic model assumptions, further work should compare and refine
these methods so that inferences can be valid to a high degree of accuracy in a broad range of

situations.
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