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ABSTRACT

We introduce a class of random sets in R? that include McMullen’s “generalized Sier-
pinski carpets”. We give exact expressions for the Hausdorff and Bouligand-Minkowski
(box) dimensions of these sets, and find in particular that typically they are not equal.
Our expression for the Hausdorff dimension is not what one would expect by analogy with
McMullen’s formula for the Hausdorff dimension of a generalized Sierpinski carpet.



1. Introduction

Let Ay, As,..., A, be affine contractions of R%. A result of Hutchinson [Hu] implies
that there exists a unique, nonempty, compact set A C R? such that A = _le A;(A); such
=

a set A is called (strictly) self-affine. If the maps A; are contractive similarity transforma-
tions then A is called (strictly) self-similar. Although dimensional properties of self-similar
sets are well understood (see, e.g., [Mo], [Hu], [Ma]), surprisingly little is known about self-
affine sets in general. The best general result to date seems to be that of [Fa];, which gives
a formula for the Hausdorff and Bouligand-Minkowski (box) dimension in an “almost ev-
erywhere” sense, but does not indicate for which self-affine sets the formula is valid. Also
noteworthy is the main result of [Mc], which gives the Hausdorff dimension explicitly for
a rather restricted (and countable) collection of self-affine sets called generalized Sierpin-
ski carpets. (See also [Be];—2, [GL].) This paper indicates that, at least for generalized
Sierpinski carpets, the Hausdorff and Bouligand-Minkowski dimensions are equal only in
exceptional cases, in contrast to the situation for self-similar sets.

In this paper we introduce and study a class of sets which we will call statistically
self-affine. These sets are obtained by injecting an element of randomness into the con-
struction of McMullen’s generalized Sierpinski carpets. We will give exact expressions for
the Hausdorff and Bouligand-Minkowski dimensions of our sets in terms of the statisti-
cal parameters of the construction, finding again that the two dimensions are equal only
rarely. More noteworthy, our expressions are not what one would expect by analogy with
[Mc] (in particular, they are not always what one obtains by substituting expectations into
the formulas of [Mc]). Thus, the randomness in the construction has a subtle effect on
dimensional properties.

Other random constructions have been studied in [Mal];, [MW], [Fa),, [Fa]s, [DG], and
elsewhere. These constructions lead to what we would call “statistically self-similar sets”,
as similarity transformations are used in place of affine transformations. Their dimensional
properties are quite different from those of our sets — in particular, the values of box and
Hausdorff dimensions are generally the same. The machinery of branching processes is an
important tool in [MW], [Fa]z, [Fals, and [DG], as it 1s here, but the details of its use are
somewhat different here.

The paper is organized as follows. Details of the construction are given in section 2,
and the main results are stated; relevant features of the theory of branching processes are
reviewed in section 3; the box dimension is computed in section 4; and finally, in section
5, the Hausdorff dimension is determined.

2. Statistically Self-Affine Sets

Throughout the paper (2, F, P) will be the underlying probability space supporting
the randomizations used in the construction of our random set K. We assume that this
probability space is large enough to accommodate additional random variables independent
of those used in the construction of K. To avoid notational clutter we will omit explicit
reference to the functional dependence of random sets, random variables, etc., on w € £:
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for instance we will write K instead of K(w).

Let Ko be the unit square [0,1]%, and let m,n be integers satisfying 1 < m < n.
Divide Kj into the mn congruent rectangles

Rij=[n G+ D7 x [jm™, (G + Dm ™,

and let A,,v € {1,2,3,...,mn} be the natural affine transformations of R? mapping
[0, 1]? onto the rectangles R;j. Let G be a probability distribution on the set of subsets of
S ={1,2,3,...,mn}. Build random compact sets

Ko DK, DK;D...

as follows. Choose a random subset S of S according to the distribution G and let K,
be the union of the n™! x m™! rectangles A4, Ko, where v € S. Then, for each rectangle
A,, Ky chosen in the first stage of the construction, choose another random subset S’ of S
according to the distribution G (independent of S and of all other random subsets chosen
at this stage) and replace A,Ky by the union of the n™2 x m™2 rectangles 4,4, Ko,
where v' ranges over S'. Let K, be the aggregate of all n=2 x m~2 rectangles so obtained.
Continue in this fashion to define Ko O K; D Kz D ...: at the (k + 1)th stage of the
construction, replace all of the n=% x m~F rectangles from the kth stage by the union of
randomly chosen n=F~! x m~¥~1! subrectangles, with the random choice made according
to the distribution G. Define
K=n2,K,.

Observe that the construction may terminate after a finite number of steps, if at some
stage of the construction all the random subsets of S are empty. In this case, the set K is
empty.

It is easily seen that the set K so constructed has the following structure:
K = U,'EsA,'K(i)

where K(i),i € S are independent random sets, each with the same distribution as K.
This could in fact be taken as the defining property of K. Observe that if S is nonrandom,
i.e., if the distribution G is concentrated at a single subset of S, then K is nonrandom,
K = UiesAiK, and the construction is the same as that of McMullen [Mc].

For each k > 1, the random set K} is the union of a random number of n=% x m~—*

rectangles contained in the unit square: call this number M. Thus,
M} = # of kth generation rectangles.

It is apparent from the construction that the sequence M} is an (ordinary) Galton-Watson
process, and that K = ¢ iff My = 0 for some k£ > 0. We make the following standing

Assumption 1: EM,; > 1.



The rationale for this assumption is transparent: if EM; < 1 then by a fundamental
theorem in the theory of branching processes, My = 0 eventually, with probability one,
and therefore K = ¢ a.s. — not an interesting case.

Figure 1 here

We will identify points of the y-axis between 0 and 1 with their m-ary expansions.
Set
I={0,1,...,m—1};
T*=IxIx...xTI (k times);

I = {sequences with entries in T}.

The mapping T:Z® — [0,1] given by T(s) = Zs;m™* sets up a correspondence that is
onto and fails to be 1-to-1 only at the points im™7,5 > 1 and i < mJ. For y € [0,1] not of
the form im 7, we will write y1y2ys3 ... for the unique sequence T~ (y), and we will write
y in place of T~1(y) (thus the letter y may represent either a point of [0, 1] or the sequence
mapped to it by T). Although this leads to ambiguity for those y of the form y = im =7,
the ambiguity is of no consequence in the arguments below: when we cover K by balls, we
may cover points (z,im /) twice rather than just once, but this redundancy clearly will
have no effect on computations of box or Hausdorff dimensions.

Each finite sequence s = (s182...8x) €7 k¥ corresponds to an interval of length m—*
contained in [0, 1], namely
I, =[im™% (i + D)m™F),

k
1= E s,m* 7.
v=1

Note that I, consists of those y € [0,1] whose m-ary expansion begins with y, = s,,v =
1,2,...,k. The significance of the intervals I, is that the k*® generation rectangles in
the construction of K are arranged in “rows” [0,1] x I,,s € I*. For each sequence s =
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(s1,82,...), finite or infinite, of length > k, define random variables

Ni(s) = #k*™ generation rectangles in Kj N ([0,1] X I, s,...0, ),
N(s) = Ni(s) if k = length (s).

Observe that for each k > 1, My = £ ,c7x N(s). Even though EM; > 1 it is not necessarily
the case that all, or even any, of the expectations EN(z),: € Z, are > 1; but of course at
least one must be positive. Define

J = {i € T: EN() > 0}.

Assumption 2: #(J) > 2.

Assumption 3: 3i € J such that P{N(3) £ 1} > 0.

We use #F to denote the cardinality of a set F. If Assumption 2 were false, say
if J = {i}, then K would always be a random Cantor set contained in the segment
[0,1] x {¢/(m — 1)}, and would be a special case of the [MW] construction. If Assumption
3 were false, then the Hausdorff and Bouligand-Minkowski dimensions of K could be
obtained from those of proj,(K) = {y:(z,y) € K}, and in this case once again proj,(K)
would be a special case of the [MW] construction.

Our expressions for the Hausdorff and Bouligand-Minkowski dimensions §g(K) and
6B(K) involve a “thermodynamic” function () which is defined as follows:

P(6) =log {E(EN (i))o} :

€T

Observe that unless EN(:) = EN(j) Vi,j € J the function () has strictly positive
second derivative and therefore is strictly convex. If EN(:) = EN(j) V¢,j € J then ¢(6)
is linear in ; if EN(2) =1 Vi € J then ¢(8) = log{EM,}. In all but the last case, ¥(6)
attains its minimum value for 6 € [0, 1] uniquely at some ¢ € [0, 1]; if 9 is constant, define
t = 1. The main results of the paper (Theorems 4.1-5.1) are that P-almost surely on the

event {K # ¢},

2.1) §5(K) = % + (1 _ ll‘fg ’:) (t)/ log m
and

(2.2) 6u(K) = P(a)/logm

where

a = max(t,logm/logn).
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Several remarks are in order. First, if a = log, m then (2.2) agrees with the formula
of [Mc] in the sense that is obtained by substituting expectations in the [Mc] formula. But
examples where a > log, m are abundant and easy to construct. Notice that if ¢'(0) > 0
then ¢ = 0 so a = log, m; this is the case, for example, if EN(i) > 1 Vi € J. Thus, the
more interesting cases are where EN(i) < 1 for some i € J.

Second, if t = 1 then @ = 1 and so ¥(a) = ¥(t) = log(EM;). Comparison of (2.1)
and (2.2) shows that in this case ép(K) = ég(K). A sufficient condition for a =1 =1
is that EN(:) <1 Vi € J. A rough explanation for the fact that 6p(K) = éu(K) in
this case is that the horizontal fibers of K are so sparse that K and proj, K have the same
dimensional properties.

Third, if ¥'(1) > 0,a = ¢, and ¢" > 0 then ¥(a) < (1) = log EM, hence by
(2.1)-(2.2)
é8(K) # Su(K).

Since 1, EMjy, and t all vary continuously with the parameters of the construction (specif-
ically, the distribution G) it follows that g # éx on an open subset of the parameter
space (compare with [Fa];).

In section 6 we will show that g = ép iff t =1 or EN(i) = EN(j) for alls,5 € J.

Finally the conditions as to when i = §p verify a conjecture of Mandelbrot in [Ma]s.
He conjectures that g = 6p a.s. for two very special types of distributions G: 1) fix an
M > 1 and assign equal probabilities to all the ways of choosing M out of mn rectangles,
and 2) fix a 0 < p < 1 and keep any of the mn rectangles of size n~1 xm~! with probability
p, independently from on another. It is easily seen that for both these cases ¢ < 1 and
EN(i) = EN(j) for all 4,5 € J, hence g = 6p a.s.

Notation: We will not refer specifically to the affine transformations A, again. How-
ever, the notations Z, J, Mg, N(s), Nx(s), K, K, I,,%,t, and o will have the same meaning
throughout the paper as in this section.

3. Branching Processes in Varying and Random Environments

We have already observed that the sequence { My }i>0 is a supercritical Galton-Watson
process. Just as important for our purposes are the temporally inhomogeneous Galton-
Watson processes {Ni(s)}x>0, where s € T, which we will call branching processes in
varying environments. Define

G, = distribution of N(s),s € U T:.
E>1

For each s € I the sequence {Ni(s)}r>o has the following structure: Ny(s) = 1, and
Niy1(s) is obtained by adding Ni(s) independent random variables each with distribution

k
Gy, Consequently, for each s € J* the sequence {Nw(s)/ TI EN(sy)}s>1 is a nonneg-

v=1
ative martingale relative to the natural filtration, which, by the martingale convergence
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theorem, implies that

3.1) Noo(s) = lim _Hils)
VI;II EN(s,)

exists a.s. It will be important for us to know when Ny (s) > 0. Certainly if the process
{Ni(s)}x>1 reaches extinction, i.e., Nx(s) = 0 eventually, then Noo(s) = 0; we will see
that, at least for certain s € J°°,Noo(s) > 0 a.s. on {Nx(s) >1 Vk >1}.

When s is itself randomly selected, independently of the random objects used in the
construction of K then the sequence {Ni(s)}x>0 becomes (in the terminology of [AK];—2)
a branching process in random environments. Let (1,(s,... be a sequence of iid random
variables, valued in Z, such that (under P) the sequence {¢&}z>1 and the random sets used
in the construction of K are jointly independent. Let { = ({3 ---.

Theorem 3.1 [AK], ;

(3.2) P {kli_{EONk(C) = 0} +P {kllrrgo Ne(¢) = oo} =1

(3.3) P {kli_fr;oNk(C) = oo} >0 :ff ElogE[N((1)|¢G] > 0.
@) P{Nu(©)> 0] i NeQ) = oo} =1 it BlogBIV(C)iG] >0,

Here Elog[N(¢1)|¢1] = Zier(log EN(:))P(¢; = 7). Thus, it is reasonable to refer to the
BPRE as subcritical, critical, or supercritical according as Elog E[N({1)|(1] is negative,
zero, or positive.

Later it will be necessary to consider a somewhat more general kind of random envi-
ronment ¢ = (3(3 ..., where successive “blocks” (1(3...¢{r,(r1Cr+2 - - - Cory- .. of length r
areiid. The results of Theorem 3.1 are still applicable, because the sequence {Ni,(¢)}x>1 is
a BPRE to which the results of [AK];_» may be applied. The second and third statements
of the theorem must be modified as follows:

(3.5) P{klin;o Ni(¢) = oo} >0 iff ZElogE[N(c.,)lclcz...c,] > 0;
v=1

(36) P{Nw(¢) >0|imNx({)=c0} =1 if Y ElogE[N(()¢1la-. ¢ > 0.

v=1



Theorem 3.2

Assume that ( = (1(2 ... where successive r-blocks are iid and jointly independent of
the random sets in the construction of K. If

(3.7) P {Zlog E[N(C)C1y. -0 6] > 0} =1
then
(3.8) E(Ny(¢))? < oo.

Proof: It suffices to consider the case r = 1. Recall that N(¢) is the limit of the
martingale (3.1); thus, it suffices to prove that this martingale is L?-bounded. Let g(j) =
EN(j) and h(j) = var (N(j)) for j € J. By (3.7), P{g(¢1) > 1} = 1; since g((1) can
assume only finitely many values, there exists ¢ > 0 such that g((1) > 1+c and h({3) < e™!
a.s. Now conditioning on ¢ and on Ni({) one obtains

ElNes1(O1] = EINe(C)[Clgrs1(0)* + EIN(OICIA(Cis ), 2.5,
GRS N Ne(©) \ cir s ke
pl{—tl&) L p) RS L gy SRS e)k2,
= {n’::}g(cu)} s {H’:=lg<<u)} ¥ {H’:=lg<<u>}5 (<)

k
Since E{Ny(¢)/ II 9(¢v)} =1 it now follows that
v=1

ENoo(¢)? <1+4+¢e7%3(1+¢) < oo. |
Define
(3.9) Zy = Z L{n(@s)21)5
s€Tk

Zy is the number of k** generations “rows” still alive, i.e., containing k** generation
rectangles of K. The following theorem is a consequence of the main result of [De].

Theorem 3.3
(3.10) Jim kY log EZy = o(t).
Recall (section 2) that 1(6) attains its minimum value for 6 € [0,1] at § = ¢. Theorem

3.3 will be of crucial importance in the determination of the box dimension é§g(K) in
section 4.



Proposition 3.4

(3.11) P(t) >0

Proof: By Assumption 2 of section 2 there are at least two distinct ¢ € J, for which
EN(:) > 0. Suppose there exists i € J such that EN(i) > 1: then (EN(:))* > 1; and
since there is at least one other j € J for which EN(j) > 0, it follows that Z(EN(i))* > 1,
which implies (3.11). Suppose, then, that Vi € J,EN(:) < 1. In this case t = 1, so
Y(EN(:))* = SEN(i) = EM; > 1, by Assumption 1, proving (3.11). [

Proposition 3.5

On the event {K # ¢},
(3.12) klim kllog Zr = ¥(t) a.s.

Proof: By Theorem 3.3 and Proposition 3.4, for all ¢ > 0 sufficiently small there exists
k > 1 such that
EZy > exp{ky(t) — ke} > 1.

Construct a Galton-Watson process Y;,: > 0, as follows: set Y; = Z;; for each s € Ik
such that N(s) > 1 throw away all but one of the rectangles counted in N(s) before
continuing the construction; set Y; = the number of s € T2k counted in Zzx that are not
contained in one of the “thrown away” rectangles from the previous stage; for each s € Z%F
counted in Y; throw away all but one of the rectangles counted in N(s) before continuing
the construction; continue indefinitely. That ¥7,Y2,... is in fact a Galton-Watson process
is easily verified, and clearly the offspring distribution has mean EZ;. Consequently, on
the event of non-extinction, as ¢ — oo,

Y:/(EZy) — W >0 a.s.,

by a standard theorem in branching process theory (see [AN]). Now ¥; < Zj, so on the
event that {Y;}i>1 does not reach extinction

(3.13) lim inf 2 log Zix > log EZx > k(4(2) — €)

1—o0 1

almost surely.

It is possible that {¥;}i>1 may reach extinction on the event {K # ¢}, because we
have thrown away “growth opportunities” for K in the above construction. If this happens,
go back to one of the “thrown away” rectangles and begin afresh, constructing a new,
independent copy of {Y;}i>1 in the same manner as before. Once again Yi_i, < Zy for all
i (where i, is the generation number of the thrown away rectangle). Consequently, on the
event that this new copy does not reach extinction, (3.13) holds a.s. But on {K # ¢} we can
keep going back to “thrown away” rectangles until eventually finding one that engenders
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a copy of {Y;}i>1 that does not die out. (Keep in mind that, since EZ; > 1,{Y;}i>; is
supercritical and therefore has probability < 1 of extinction.) It follows that (3.13) holds
a.s. on the event {K # ¢}. Since ¢ > 0 was arbitrary, this proves that on {K # ¢},

liin inf-}c-log Zr 2 ¢Y(t) a.s.

The opposite inequality

lim sup-};log Zr < Y(t) a.s.

k—oo

may be proved by a much more straightforward argument using Theorem 3.3, the Markov
inequality, and the Borel-Cantelli lemma. |

4. The Bouligand-Minkowski (Box) Dimension

If X is a compact metric space then its Bouligand-Minkowski dimension ép (also
referred to as “box dimension” and “capacity”) is defined by

é6p = lim sup M
em0 —loge

where C(¢) is the cardinality of a minimal covering of X by e-balls. The object of this
section is to prove

Theorem 4.1

Conditional on K # ¢, the Bouligand-Minkowsk: dimension §p(K) of K i3, with probability
one, given by

log(EMl)

(4.1) sp(K) = eEM) | (1

logm\ #$(¢)
logn B ) logm

logn / logm’

We begin the proof by showing that it suffices to consider coverings of K by certain
rectangles which we call (following [Mc|]) “approximate squares”. For I = 1,2,... set
k = k; = [llogn/logm] (here [] denotes integer part); note that k3 < k; < ... is an
increasing sequence of positive integers, and that for each [ = 1,2, ...

m* < n' < mFtL,

Now for each ! > 1 define the [** generation approximate squares R;(p,q), where p €
{0,1,...,n' =1} and ¢ € {0,1,...,m* — 1}, by

Ri(p,q) =[pn ™ (p+ Dn7'] x [gm ™, (g + 1)m™*].
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Note that for distinct pairs (p, ¢), (9, ¢') the rectangles Ri(p, ¢) and Ri(p’, ¢') overlap either
in a line segment, a point, or not at all. Moreover, the ratio of height to width of R;(p,q)
is always between 1 and m; hence the term “approximate square”.

Lemma 4.2

lth

Let C; be the cardinality of a minimal covering of K by I*® generation approzimate squares.

Then o
. og Ci
ép(K) = lnlnqzl)lp Togn’

Proof: It suffices to show that no covering of K by e-balls is much more efficient than
the best covering by approximate squares of roughly the same size. Let ¢ > 0 be such
that n~'"! < ¢ < n~! for some ! > 1. Then any &-ball’s intersection with K is contained
in the union of (at most) nine I** generation approximate squares. Consequently, for any

covering of K by e-balls there is a covering by I** generation approximate squares with
nine times as many members. The lemma follows easily from this. [ |
Define
log( EM 1
(4.2) d=M+ ] 8™ ib_(g
logn logn / logm

To show that §5(K) < d it suffices to exhibit an efficient covering of K by I** generation
approximate squares for each | = 1,2,.... Consider the collection V; consisting of those
It generation approximate squares Ri(p, q) satisfying

Interior (Ri(p,q)) N K # ¢.
Clearly, V; is a covering of Kj, hence also of K.

Lemma 4.3

l— o0

(4.3) lim sup {l_og(livz_)} < dlogn a.s.

Proof: In order that an approximate square Rj(p,¢) be included in the collection V; it is

necessary and sufficient that it be entirely contained in one of the M rectangles that make
up K. Thus,

M,
(4.4) #V, = Z}/}(k—l)
=1

]=

where Yj(k—l) is the number of distinct I** generation approximate squares contained in

the j** of the M; rectangles that make up K;. Observe that, conditional on M; =r > 1,
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the random variables Yl(k_l),Yz(k_l),. . ,Yr(k_l) are iid. Moreover, Yl(k—l) has the same
distribution as Zj_;, defined by (3.9), so

EY* D =Ez,_,

is as described in Theorem 3.3. To see this, consider the process by which the random
set K is constructed: First, K; is constructed, consisting of a random number M; of
nonoverlapping n~! by m~! rectangles. Then in each of these M; rectangles the process is
continued another k —1 steps. For one of the M rectangles in K, say the j**, those “rows”
of width n=! and height m~* that “survive” another k — I generations, i.e., intersect K,

are precisely the approximate squares counted in Yj(k_l).

It follows from the foregoing representation that
E@#V) = (EMp)ps—1 = (EM1) s

where px_1 = EZ_;. Consequently, by the Markov inequality and the Borel-Cantelli
lemma, for any € > 0
P{#(V1) 2 (EM:)' pg—1e™} < e
= P{#(V) > (EMy) pr—1e' i.0.} =0.

Since k = ki = [llogn/logm], Theorem 3.3 now shows that with probability one the
inequality (4.3) in the statement of the lemma must hold. [

Each of the approximate squares in the collection V; has width n~! and height m~% ¢
[n=!,mn~!]. Therefore, Lemma 4.3 implies the upper bound

(4.5) ép(K) <d a.s.

It remains to establish the reverse inequality. This we will accomplish by showing that
the coverings cannot be improved in an essential way. Before doing this, however, we will
obtain an asymptotic lower bound for #V; to complement Lemma 4.3.

Lemma 4.4

(4.6) lHm inf{ﬂiﬂl} > dlogn a.s. on {K # ¢}.

l—oo

Proof: By (4.4), #V; is the sum of M; iid (conditional on the value of M;) random

variables Y*7" each having the same distribution as the random variable Z;_; defined
by (3.9). Recall that {M;}i>0 is a supercritical Galton-Watson process and that {K # ¢}
is precisely the event that {M;};>0 does not reach extinction. Consequently, there is a

random variable W such that W > 0 on {K # ¢} and as [ — oo,
M /(EMy) 25 W.
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Recall from Proposition 3.5 that on {K # ¢}, as k£ — oo,

%log Zx=59(t)

Hence, since k — [ — oo as [ — oo, for each ¢ > 0

DN |

P{Zx1 > exp{(k — D(#(t) — ©)}} 2

for all sufficiently large I. Since conditional on M; the random variables Y}(k_l) are iid

copies of Z_; it follows that for all sufficiently large [,
el - il k-1
#Vi=3 Y0 > | 360 | exn{(k - (%) - €)}
i=1 =1
where conditional on M;, gk—l), ceny g,’;l—l) are independent 0-1 random variables each with
P(e* D =1, My > 4) > LP(My > 4) (just take €70 = 1if V) > exp{(k—1)(9(t) —¢)}
and {;k_l) = 0 otherwise). Now for any 0 < § < 1 we have by Markov’s inequality

M,
P (Z ¢FD < ;ll-M, and M; > (EMI)(l“’)')

j=1

4
J=1 j=1

M1 Ml
_ 1
<P (§ PEF = 1My - Y 687Y > ~ My and My > (EMI)(I“’)’)

< 4(EM,)~ 0=

and since M;/(EM;)! - W > 0 a.s. on {K # ¢}, the Borel-Cantelli lemma implies that
lim inf © ll {MI ‘."“)} -1 M} >0
im inf - |log ;6, og My| 2

a.s. on {K # ¢}. Using this inequality together with the one for #V; above and the fact
that M;/(EM;)' — W > 0 again, one easily concludes that a.s. on {K # ¢},

lim inf{w} > log(EMy) + ($(t) — €) (l°g" - 1) .

{—o0 log m

Since € > 0 was arbitrary, (4.6) now follows. |

To complete the proof of Theorem 4.1 we must show that on the event {K # ¢},
ép(K)>d a.s.
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By Lemma 4.2 it suffices to show that on {K # ¢},

(4.7) lim sup % log C; > dlogn,

l—oo

where Cj is the cardinality of a minimal covering of K by I** generation approximate
squares. Clearly, any covering of K by I** generation approximate squares must include
all members of the collection

Wi = {Ri(p, q): Interior (Ri(p,q)) N K # ¢}.

Note that W; C V;. We will argue that on {K # ¢},

. . #Wl
—_ >
(4.8) luln 1nf( Vi ) p a.s.,

where p > 0is the survival probability of the Galton-Watson process {M; }j>1, equivalently,
p = P{K # ¢}. In view of (4.6) this will prove (4.7) and therefore complete the proof of
Theorem 4.1.

Recall that V; consists of those I** generation approximate squares R;(p, ) such that
Int (Ri(p,q)) N Kx # ¢. Thus, Ri(p,q) € Vi implies that R;(p,q) contains at least one
of the n=% by m~F rectangles that make up K;. Each such n™* by m~* rectangle has
probability p of containing a point of K in its interior, and the events of “survival” for the
various n~F by m~F rectangles in K} are independent. Therefore,

#V1 -
#WI Z Efj
=1

J=

where 5{’), - ,{g)vl are independent 0-1 random variables (conditional on #V;) each with

P(§§’)|#v,) > p. Since #V; — oo at an exponential rate, the result (4.8) follows by a
routine argument. |

5. The Hausdorff Dimension

For any subset X of R* the §-dimensional Hausdorff outer measure of X is defined as
follows:

= lim i |6. . | < .
Hy(X) = lim inf {; [U:|%: X c L=J1U and |U;| < e}
Here |U| indicates the diameter of U and the infimum is over all coverings of X by sets of
diameter < . When Hj is restricted to the Borel subsets of R¥ it becomes a measure —
see [Fal]s. The Hausdorff dimension §g(X) of X is defined by

Sp(X) =inf{6 > 0: Hs(X) < oo}.
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It is easily checked that
ou(X) < 8p(X)

where §g(X) is the Bouligand-Minkowski (box) dimension of X.

The purpose of this section is to prove

Theorem 5.1

Set a = max(t,log, m). Then on the event {K # ¢} the Hausdorff dimension §g(K) of
K 13 P-a.s. given by

(5.1) Su(K) = (a)/logm.

We note at the outset that §z(K) is almost surely constant on the event {K # ¢}.
The argument is as follows. Conditioning on the first k generations of the construction
shows that K is the union of M} sets A, K ("), where each A, is an affine map and K (s)
are iid copies of K. Consequently,

Su(K) = max 6u(K ),

where, conditional on My, the random variables (K (")) are 1id, each with the same
distribution as §g(K). Since {K # ¢} = {limg—_,oo M} = o0}, it follows that

0a(K) = 6,.1{K # ¢} a.s.,

where §, = sup{z € RT: P{6y(K) > z} > 0}.

In proving Theorem 5.1 we will consider the cases 1'(1) < 0 and ¥'(1) > 0 separately.
The first case is simpler: in this case K has the same Hausdorff and box dimensions as its
projection on the y-axis. So we will begin by computing the dimension(s) of this projection.
For any set F' C RZ%, define

proj, ' = {y € R:R x {y} N F # ¢}.

Proposition 5.2

On the event {K # ¢},
S (proj, K) = 6p(proj, K) = ¢(t)/logm a.s.
Proof: Let G; be the covering of proj; K consisting of those intervals [jm ', G+ 1)m™Y

whose interiors intersect proj; K;. These intervals are indexed by those s € J ! that are
counted in Z; (see (3.9)); hence #G; = Z;. Therefore, by Proposition 3.5, on {K # ¢}

65(proi, K) < $(t)/logm a.s.
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To complete the proof it suffices to show that on the event {K # ¢},6m(proj, K) >
¥(t)/logm. We will accomplish this by showing that Ve > 0 there is a set L* C K such
that 8z (proj,L*) > (¥(t) — €)/log m. The set proj; L* will be a special case of the [MW]

construction.

By Theorem 3.3 there exists for any ¢ > 0 an integer k = k. sufficiently large that
EZy > exp{k((t) — €)}. Fix this k, and consider the sets Kx D Kzr D ... in the
construction of K; recall that each K is the union of ( jk)** generation rectangles which
are arranged in the “rows” [0,1] x I,,s € J 3k Define sets L; C Kj; as follows. Throw
away all but the leftmost of the k** generation rectangles in each row, and let L; be the
union of those remaining. Note that projoL; = proj:Ki. To obtain Lji1 C K(jt1)z,
throw away all but the leftmost of the ((j + 1)k)** generation rectangles in each row of
K(j+1)k N Lj, and let Lj;; be the union of those remaining. Clearly, L; 5 Lz D ..., so
we may define L = jgl L;. By construction, L C K and hence proj:L C proj:K. But

projzL is a random Cantor set of the type considered in [MW] and [Fa]2; the main results
of either of these papers implies that on the event {L # ¢},

log BZ: | (¥(t) =2)
klogm logm

r1(proj,L) =

It is of course possible that L = ¢ even though K # ¢. This difficulty may be
handled by the same device used in the proof of Proposition 3.5. If L = ¢, return to the
first rectangle that was thrown away during the construction of L, and begin the entire
procedure again in this rectangle. The result will be another random set L', independent
of L, and such that for a suitable affine map A, AL’ has the same law as L. Thus on
{L' # ¢} the dimension §z(L') satisfies §g(L') > (¥(t) —¢)/logm as. If L' = ¢, go back
to yet another thrown away rectangle, and continue until eventually obtaining a nonempty
copy of L. |

The proof of Theorem 5.1 in the case ¥'(1) < 0 may now be given. If ¢'(1) < 0 then
t = 1, hence a = t, and so ¥(a) = ¥(t) = ¥(1) = log(EM;). But by Theorem 4.1,

§p(K) = Y(a)/logm a.s.
on {K # ¢}. By Proposition 5.2,
éua(K) > 8u(proj,K) = y(a)/logm a.s.
on {K # ¢}. Since g < 6p it follows that in this case both are equal, and so a.s. on
{K # ¢}
§g(K) = ép(K) = ¥(a)/logm. ||

The Case '(1) > 0

ASSUME for the remainder of section 5 that 1'(1) > 0. Thus, 0 <t < a <1, and
¥'(6) > 0 for every 6 > t. o
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The proof of (5.1) will be given in two stages: first, it will be shown that ¥(a)/logm
is a lower bound for §i(K); then, that it is an upper bound.

A. The Lower Bound

The strategy here is based on a theorem of Marstrand (see [Fa);, Theorem 5.8 and
Exercise 5.2). For F C R? and y € R define

F(y) = {‘T € R:(x’y) € F}’
proj, F' = {y € R: F(y) # ¢}.

Marstrand’s Theorem

If for each y € proj,F the fiber F(y) has Hausdorff dimension éx(F(y)) > 61 and if
Su(proj, F) > 62 then
6u(F) > 61 + 63.

To use Marstrand’s Theorem we will need to estimate the Hausdorff dimensions of
fibers F(y) and projections proj2F' of various F. The key tool for doing so is a lemma
of Frostman. Let v be a Borel probability measure on a Euclidean space R?; define its
Hausdorff dimension §g(v) to be the infimum of 65 (A) for sets A satisfying v(4) = 1.
Clearly, if F is any Borel set and v is any Borel probability measure supported by F (i.e.,
if ¥(F) = 1) then 6u(v) is a lower bound for §g(F).

Frostman’s Lemma

If
6, < lim inf 2BXEBEN) o o LsvBE)
r—0 logr r—0 logr

for v-a.e. z, then
61 S 6H(V) S 62.

Here B(z,r) denotes the ball of radius r centered at z. For a proof of Frostman'’s
lemma (in this form) see [Yo).

Define probability measures ug,# € R, on the unit interval [0, 1] as follows. Let
(1,(2,... be iid J-valued random variables with distribution

(5.2) P{G=j}=¢0(), jeJ
where

9(7) = EN(j).
Define p1g to be the distribution of X372, ¢ ;m~J. Note that
(5-3) Elogg(¢) = ¢'(6),

var (log g(¢1)) = 4" (6).
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Lemma 5.3
Fiz 6 > t, and let G C [0,1] be any Borel set such that pgo(G) = 1. Then P-a.s. on the
event {K # ¢},

$(6) - 68/(6)

j >
(5.4) §ua(G N proj, K) > Togm

Lemma 5.4

Assume that for every j € J,EN(j) > 1. Then for each 6 > t, on the event {K # §}
(5.5) pe{y € [0,1]: 6 (K(y)) > ¥'(6)/ log n} = pe(proj, K)

almost surely (P).

We have not been able to determine whether Lemma 5.4 remains true without the
hypothesis that EN(j) > 1 V j € J. Consequently, we will have to take a slightly more
roundabout route to proving the lower bound in the general case.

Before proving Lemmas 5.3-5.4, we will show how they imply the lower bound
(5.6) 6u(K) 2 ¢(a)/logm

a.s. (P) on {K # ¢} in the special case where EN(j) > 1forall j € J. Fix § > t. By
Lemma 5.4 there exists, a.s. (P) on {K # ¢}, a Borel set G C [0, 1] such that us(G) =1
and such that for every y € GN proj: K,

6u(K(y)) > ¢'(6)/ log n.
By Lemma 5.3, 6g(GN proj:K) 2> ((0) — 6v¢'(8))/logm. Consequently, Marstrand’s
theorem applied to GN proj, K implies that P-a.s. on {K # ¢},

V(6) , $(6) = 6¥(6)

. >
(5.7) Su(K) 2 logn logm

It is a simple exercise in calculus to verify that the supremum over 8 > ¢ of the expression
on the right is attained at § = a, proving (5.6). ||

Proof of Lemma 5.8: First we show that V 6 > t,
(5.8) P(pg(proj; K) > O|K # ¢) = 1.

Conditioning on the first step of the construction one sees that P{u¢(proj2K) = 0} is a
solution of the equation

z= isz{M1 =j}.

J=1
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There are two solutions to this equation, z = 1 and z = P{K = ¢}. To see that
P{ug(proj2 K) = 0} must be the smaller of these, observe that

Emﬁmmm=/'Pwem%Kme

[0,1]
=P{Nx(()21 VE>1)
>0

by Theorem 3.1 (specifically, (3.3)), since Elog E[N(¢1)|¢1] = ¢'(8) > 0 for 6 > t. (Note:
¢ = (¢ ... where (1,(s,... are iid with distribution (5.2).) Thus,

P{po(proj, K) > 0} = P{K # ¢},

and (5.8) clearly follows from this.

In view of (5.8),
ue(AN proj,K)
po(proj, K)
defines a probability measure vy on the Borel sets of [0, 1] (P-a.s. on {K # ¢}). We will

use Frostman’s lemma to obtain a lower bound for §g(vy). Let y € [0,1]] and 0 < r < 1;
then

ve(A) =

logve(B(y,r)) _ logps(B(y,r) N proj,K)  log pe(proj, K)
logr logr logr
5 logpe(B(y,r)) _ log pe(proj, K)
- log r logr

which implies that

lim inf log ve(B(y,r)) > lim inf loguo(B(y,r))'

T—0 logr r—0 log r

But it is a routine consequence of the SLLN that

i 8 B(B)) _ 4(6) = 040

r—0 logr logm

a.e. j1g, and hence also a.e. vy. Since v4(G) = 1 whenever ug(G) = 1, it follows that for
any G such that ug(G) = 1 it must be the case that v4(GN proj. K) = 1. But Frostman’s
lemma and the preceding argument implies that g (vg) > (¥(0) — 6¢'(6))/logm, so it
follows that (P-a.s. on {K # ¢}),8u(GN proj2K) > ((6) — 04'(9))/ log m. |
Proof of Lemma 5.4: Recall that { = (1{2... where (;,(2,... are iid J-valued random
variables each with distribution (5.2), and that pg is the distribution of ¥¢;m~*. Conse-
quently, to prove (5.5) it suffices to prove that

§u(K(¢)) = ¢'(8)/logn
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a.s. on {K(¢) # #}. By Frostman’s Lemma it suffices to exhibit a probability measure A
supported by K({) such that

. log MB(z,7)) o
(5.9) 1117{1_&)nf ~logr > ¢'(8)/logn
for A-a.e. z. Define \; to be normalized Lebesgue measure on Ki(¢),k > 1; by Helly’s
selection principle every subsequence of {Ax}r>1 has a subsequence that converges weak-
* to a limiting probability measure A\. Observe that any such A is supported by K((),
because )i is supported by Ki(¢), K1(¢) D K2(¢) D ... are all compact sets, and K({) =
O K3(¢). We will show that for some such A, (5.9) is valid. (Note: With more care it

can be shown that in fact there is only one possible limit A.)

Fix £k > 1 and let J,(ci),z' = 1,2,...,Ni(¢), be the nonoverlapping k** generation
intervals whose union is Kz({). Each J ,(;) is the intersection of [0,1] x {y} with one of the
k** generation rectangles whose union is Kj; hence each J ,(:) has length n=*. Moreover,

each J ,E') begets its own random construction, and, conditional on ¢ and the details of the
construction through generation k, the different constructions ¢ = 1,2,..., Nx(() are iid
replicas (scaled by the factor n~F) of the original construction for the sequence o*(. Here
0:T — T denotes the shift, so

0% = Cryrlisz .- -
Consequently, '
NP (a*¢)
Nk+r(()

where for each ¢ = 1,2,..., Nx(¢) the process {Nﬁi)(ak(')},zo is, conditional on (, a replica
of {N,(0¥¢)}r>0, and the different processes i = 1,2,..., Nk(() are, conditional on ¢ and
Ni(¢), independent. Note that

Aerr(J8D) =

Ni(€) .
Ner(Q) = Y NO@*Q).
=1

It now follows from (3.1) that there are random variables Ng,)(ak ¢) and No(() such that
for any weak-* limit A of a subsequence of {\;}r>1,

: (D) ( sk ) gk
(5.10) ’\(JIE’)) _ Nk(JZ;OO ( ‘ ¢) _ Nk (0%¢)
> NO(ok)  Neol) IT BN

Using this representation, the hypothesis that EN(i) > 1 Vi € J, and Theorem 3.2
we will prove (5.9). (Note: On the event {K(¢) # ¢} = {Nx(¢) =1 V k}, the random
variable Noo(() is a.s. positive, by Theorem 3.1.)
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The random variables No(¢) and NS (6%¢) are not independent (even conditionally
on () but they are identically distributed. If they were in fact bounded random variables

then it would follow from (5.10) and the fact that Noo(¢) > 0 on the event {K({) # ¢}
that for large k,

k
log \(J{) ~ Y log EIN(G)I¢] ~ k().
v=1
From this (5.9) could easily be deduced, since each interval J ,(:) has length n=*.
Unfortunately, the random variables Nc(x';)(ak ¢) are not bounded. This is where our
hypothesis that EN(3) > 1 V i € J enters the argument: in conjunction with The-
orem 3.2 (the case r = 1) it implies that ENoo({)* < oco. Together with (3.1) this

implies that ENoo(¢) = 1. Hence, by the Markov inequality, for every ¢ > 0 and
k=1,2,...,P{Noo(¢) > e*} < e~**, and so the Cauchy-Schwartz inequality implies

3" E{Noo($)1{Neo(¢) 2 €3}
k=1

< S BN (P22 < oo,

k=1

Fix ¢ > 0, and define By = B{ to be the set of indices ¢ among 1,2,... , N&(¢) such
that Ng;) (6%¢) > e*F. By the result of the preceding paragraph and the fact that Noo(()
and Ng)(akc ) have the same distribution,

E {f; (Nk(c)—l > Nés')(akc)) 1{N(¢) 2 1}} < co.

k=1 1€EB;

This implies, in particular, that the random variable inside the braces {} is almost surely

finite. Since Ni(¢)/ ﬁ E[N(&)|¢] = Nool€) a.s., by (3.1), it now follows from (5.10) that
v=1

oo

(5.11) Y M) < o0

k=1iEB;
almost surely on the event {K(¢) # ¢}

The result (5.9) is now easily deduced from (5.10) and (5.11). Consider a point z in
the support of A: z is an element of K(() so for each k =1,2,... the point z is an element

of one (or two) of the intervals J,Ei). Call this interval Ji(z). Then Ji(z) abuts on zero,
one, or two other J ,g'); call these Ji(z) and J}(z) (if they exist). Inequality (5.11) and the
Borel-Cantelli lemma, together with (5.10), imply that :
Mz: A(Jr(2)) + A(Ji(2)) + Mk (7)) 2
3eek

Noo(O) TTE_, EIN(G)IC)
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k
P-a.s. on the event {K(¢) # #}. By the SLLN, {[] E[N(&)IC]}* — e¥'® as. (see
v=1
(5.3)), so it follows that

3e2ek

—ky'(6) ; _
e 2.0.} = 0.
Noo(O) ’

Mz: MJk(2)) + A(Ja(2)) + MK () 2

Finally, take z in the support of A, and consider A(B(z,r)) for r > 0 small. In
proving (5.9) it is enough to consider r = n7%k = 1,2,.... If r = n~* then B(z,r) C
Je(z) U Ji(z) U J{ (z). Consequently, by the result of the previous paragraph,

lim uf 2EABE1)

r—0 log r

for A-a.e. z, P-a.s. on the event {K(({) # ¢}. Since € > 0 was arbitrary, (5.9) follows. W

> (¢'(6) —¢€)/logn

We now turn to the general case, where the hypothesis EN(3) >1 V¢ € J may fail.
The proof of Lemma 5.4 breaks down in this case. To circumvent this difficulty we will

replace the original family of measures ug by families ”gr), r =2,3,..., for which the proof
of Lemma 5.4 remains valid. For r > 2 define

Il ={ny:...y, € I [[ 9(w) > 1}

v=1

$.(6) = log {Z I g(yu)a}

r =
.7+ v=1

where g(i) = EN(z) as earlier. Let §§-r) = §;,7 2 1, be iid J]-valued random variables
with distributions

P{E" = yaga ...y} = e O [ o),
v=1

and let ( = (1(2(3... be the sequence obtained by concatenating the finite sequences
§1,§2,..‘.; thus € = (rk—1)+18r(k=1)+2---Crk. Define pgr) to be the distribution of
Zij—].
Lemma 5.3*
Fiz @ >t and let G = G, C [0,1] be any Borel set such that ygr)(G) = 1. Then for all
r=2,3,...,

¥r(6) — 69

rlogm

P (6H(G N proj,K) > ©) ‘K £ ¢) > 0.

Proof: This is very similar to the proof of Lemma 5.3; however, in place of (5.8) it suffices
here to prove that

P(u{” (proj,K) > 0|K # ¢) > 0.
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This follows because by (3.5), P{limg—oco Nk(¢) = oo} > 0, which implies that P{K(({) #
#} > 0.

The rest of the proof is virtually identical to the second half of the proof of Lemma
5.3: on the event {ugr)(prosz) > 0}, define

p$ (AN proj,K)
189 (proj, K)

v$(4) =

and proceed as before. ||

Lemma 5.4*

Fiz 6 > t. On the event {ugr)(prosz) > 0},

1Py € [0,1]: 6 (K (y)) > ¥i(6)/rlogn} = uf” (proj, K)
almost surely (P).

Proof: This is the same as that of Lemma 5.4. [ |

The same arguments as used earlier now lead to a lower bound for ég(K) on the event
{K # ¢}. By Lemma 5.3*-5.4* there exists, with positive P-probability, a Borel set G

such that
¥r(6) — 04,.(6)

rlogm

ér(G N proj,K) >
and such that for every y € GN proj2 K,

(K (y)) = 9r(6)/rlogn.

Consequently, Marstrand’s theorem implies that with positive P-probability, for every
0>t

¥1(6) | ¥:(6) = B44(6)

rlogn rlogm

(5.12) éu(K) >

Lemma 5.5

For each 0 > t,

(5.13) lim r~"4,(6) = $(6)
and
(5.14) lim r~90(6) = ¢'(6)-
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Proof: Recall that for 8 > t,v4'(6) = Elogg(¢1) > 0 (see (5.3)). Now

eV — Z:]r H 9(y,)?

v=1

(note that the sum is over all of J7, not just JJ), so

Y 11 o) .
exp{¢r(6)} _ t =1 _ o

O R P {D g9(Cv) > 0}
v=1

v=1
where (1, (s, ... are iid with distribution (5.2). But the SLLN (or WLLN) implies that this
probability converges to 1 as r — oo, since ¥'(6) = Elogg(¢1) > 0. This clearly implies
(5.13). Since ¥(0) and v,(8) are analytic functions of 8, (5.14) follows directly. ||

In view of Lemma 5.5, (5.12) implies that for every 6 > ¢, (5.7) holds with positive
P-probability. But §g(K) is a.s. constant on the event {K # ¢}, so in fact (5.7) holds

a.s. on {K # ¢}. Taking the supremum over 6 > t now yields

6u(K) = (a)/logm
a.s. on {K # ¢}, as before. ||
B. The Upper Bound

The basic strategy here is the same as in [Be]z, but the details of the coverings are
different, thanks to the randomness in the construction. We will partition K into subsets
whose projections on the y-axis consist of points whose m-ary expansions are approximately
“generic” for certain probability measures; and using again the results of section 3 we will
construct efficient covers for each of these subsets.

For y € [0, 1] with m-ary expansion y1y2ys3 . .. € J * define the frequency distributions
fe(y), k =1,2,..., as follows:

fi) = GO W))ies,
k
@) =k1Y Yy =iied.

We shall only consider points y whose m-ary expansions are contained in J*° because only
such y occur in proj, K (recall that EN(:) =0 Vi € I\J). For points y with multiple
m-ary expansions there are frequency distributions for each expansion; we will treat these
as essentially different points of [0, 1].

Define P to be the set of probability vectors on the index set J: ie.,, P = {p €
[0,1]7: Z;e7p; = 1}. For each p € P, define

H(p) = - pilogp
iegJ
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(with 0log0 = 0), and for § > 0 let Bs(p) be the L*°-ball of radius § centered at p, i.e.,
Bs(p) ={q €P:|pi—qi| <6 Vi€ T} For § >0 and p € P define
up)=) . pilog EN(i)
H
di(p) = (p) , )

logm = logn’

dx(p) = ——-—-—H(I;i;nf ),

A(p,6) = {y € [0,1]: fu(y) € Bs(p) i.0.};
A*(p,6) = {y € A(p,6):lim sup u(fr(y)) < sup u(q)};
k—oo qgeB;s(p)

F*(p,6) ={(z,y) € K:y € A*(p,6)}.

Observe that dz(p) is greater than, less than, or equal to d;(p) according as u(p) is greater
than, less than, or equal to 0. Observe also that for any fixed § > 0, the unit interval
[0, 1] may be covered by finitely many of the sets A*(p,8),p € P, and consequently K
may be covered by finitely many F*(p, §). Thus, the problem of obtaining an upper bound
for §(K) essentially reduces to that of obtaining upper bounds for the sets F*(p, §).
Lemma 5.6

For each € > 0 there exists § > 0 such that for every p € P, with probability one,
(5.15) 6u(F*(p,6)) < max(0, min(d1(p), d2(p))) + .

Proof: We will show that §g(F*(p,6)) < max{0,d:(p)} + € and §u(F*(p,d)) < max{0,
d2(p)} + €. We will begin with the second inequality which is simpler.

The condition defining A*(p, §) is not needed for this inequality and so we will show
something slightly stronger than §g(F*(p,6)) < max{0,dz(p)} + ¢. We will show that
Su(F(p,6)) < max{0,d2(p)} + € where

F(p,6) = {(z,y) € K:y € A(p,6)}.
Since clearly F*(p,6) C F(p,6) this will be sufficient.

For any finite sequence s € J* define the frequency distributions f(s) = ( 7O ())ies,
for 1 < r <k, in the same manner as for infinite sequences, specifically,

@)=Y s =1}, ied.

v=1

For k =1,2,... define

Ax(p,8) = {s € T*: fi(s) € Bs(p)},
Fk(p1 6) = {((L‘,y) € Kk:ylyZ < Yk € Ak(pa 6)}‘
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Clearly
F(p,é)C Y Fi(p,6)

for all k£ € N.

Consider the covering of Fi(p,8) consisting of all k** generation rectangles lying in
“rows” indexed by sequences s € Ax(p, §); call this covering Ux. Thus

Uy = {[jm—k,(j + l)m_k] x I, C Ki:s € Ax(p,6)}.

Each element of Uy is a rectangle with height m~* and width n~* and therefore has
diameter comparable to m~* (recall m < n). The cardinality of U} is

#h= ) Nis).

SEAx (P,5)

Now notice that if s € Ax(p, ) then u(fi(s)) < p(p) + v, where v = Zicz|log EN(i) is
a constant independent of ¥ and p. Thus for each s € Ax(p, )

ENi(s) = exp{kp(fi(s))} < exp{ku(p) + kv6}.
Furthermore, by standard estimates, the cardinality of Ax(p, é) does not exceed exp{kH(p)

+dv'(6)}, where 4'(6) > 0 may be chosen so that 4'(§) — 0, as § — 0, uniformly in p. It
now follows that

E[#uy] < exp{k(u(p) + H(p)) + kB(8)},
where 5(6) = v6 + 4'(6), and hence

gin(l) B(8) = 0 uniformly in p.

Consequently, by the Markov inequality and the Borel-Cantelli lemma,

P(#Us 2 exp{k(u(p) + H(p)) + kB(8)}, i.0.)=0,

and hence, for any d > d2(p) + 26(8)/logm and d > 0,
(5.16) P (Z m e (H#U) < oo) =1
k=1

Fix p > 0, and let k(p) be such that m=*(®) < p < m~*P)=1  Since each U} is a
covering of Fi(p,6) and since (z,y) € F(p, ) implies that y € A(p, 6) (so fr(y) € Bs(p)
infinitely often), Ug>k(p)Uk is a covering of F(p,6) for each p > 0. Furthermore, each
U consists of finitely many rectangles, each of maximum sidelength m~* and hence of
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diameter < v2m~*. Thus each element of Ug>k(,)Us has diameter < v2p and by (5.16)
we have that, with probability one,

o0

Hy(F(p,6)) < lim Y m ™) =0
=0 k=k(p)

for every d > da(p) + 28(6)/logm and d > 0. Since B(8) — 0, as § — 0, uniformly in p,
this proves that for sufficiently small 6 > 0,

§a(F*(p,9)) < 6u(F(p,6)) < max{0,dz2(p)} +¢ a-s.

For the other inequality implicit in (5.15) we need to restrict ourselves to the y’s in
A*(p, 6). The proof is similar, but requires a less obvious covering, this by the approximate
squares that were used in secton 4. As in section 4, for [=1,2,..., let k = k; = [llog,, n],
and define

Aj(p,6) = {s € Ax(p,9): p(fi(s)) < sup u(q) +6},
geBs(P)

Fl*(p76) = {(.’I), y) € Kk: Nyz2... Yk € A}"(p,(?)}

Once again, for every L =1,2,...,

F (p,(s) C lgLFl (p76)

Let V; be the set of all I** generation approximate squares whose interiors intersect
F}(p, §); then clearly V) is a covering of F}(p,6) by rectangles of height m~* and width
n—' ~ m~%. An I** generation approximate square is included in Vy iff (1) it contained a
rectangle of K, and (2) it is contains in a “row” {0, 1] xI,, for some s € Aj(p,6). Now
an [** generation approximate square contained in a “row” [0,1] x I,, for some s € J k
can only contain a rectangle of Ky if it is contained in one of the rectangles of K; and
so the number of “nonempty” [** generation approximate squares contained in the “row”
[0,1] x I, is at most Ni(s). Consequently,

#i= ). Nis)

s€A} (p,%)

As earlier,

ENy(s) = exp{lp(fi(s))} < exp {l sup p(q) + 16} < exp{lu(p) + (v +1)8}
geB;(P) ,

and since #A%(p,6) < #Aw(p,§) we obtain the estimate
E[#V]] < exp{kH(p) + lu(p) + ke(9)}
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where again ¢(6) — 0, as § — 0, uniformly in p.

Now consider the coverings Ui> Vi, L = 1,2,... of F*(p,6) to conclude as in the
preceding case, that for § > 0 sufficiently small

Su(F*(p,6)) < max{di(p),0} +¢ a.s. |

An upper bound for é§5(K) is now easily obtained. Choose § > 0 sufficiently small
that the estimate (5.15) of Lemma 5.6 is valid. Recall that K is the union of finitely many
F*(p,6),p € P, from which it follows that (K is bounded above by maxyp 6 (F*(p, §)).
Therefore, by (5.15),

du(K) < sup max(0, min(d; (p), d2(p))) + ¢,
peP

and since € > 0 is arbitrary, we may in fact set € = 0. It remains only to establish

Lemma 5.7
IS)lelg min(d; (p), d2(p)) = ¢¥(a)/logm > 0.

Proof: Both di(p) and dy(p) are linear combinations of H(p) and p(p) with positive
coefficients. Consider first u(p) = Z;cypilog EN(i): as p varies over the simplex P, u(p)
varies continuously over the interval [a,b], where a = min;c 7 log EN(?) and b = max;cs
log EN(i). Consider p?, defined by

p! = e HNENG)) i€ T,

As 0 varies over R, u(p?) varies over (a,b) (unless a = b, in which case u(p) = a V p); in
particular, for each ¢ € (a,b) there exists § € R such that u(p®) = c. Now consider the
maximization of H(p) over all p satisfying u(p) = c. Lagrange multipliers shows that for
each ¢ € (a,b) the maximum must occur at some p?,0 € R. (Note: If a = b then for c=a
the max occurs at the uniform distribution on J, which coincides with p°.) This proves
that

sup min(d; (p), da(p)) = sup min(ds (p°), d2(p°)).
peP 6€ER
Next, consider the functions D(6) = di(p%) and D, (8) = d»(p?). Evidently,

Dy = PO =800 | ¥(0)

logm logn

P(6) — 6¢'(6) +¥'(6)

logm

D (6) =

)
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so the minimum D(6) of D;(8), D,(0) is given by
P(6) + (1 - 6)y'(6)

1 , 0t
D(9) = e
B -0 0) , ¥O .,
logm logn

It is now a routine exercise in calculus to verify that the maximum of D(6) occurs at 8 = a,
and that D(a) = ¢(a)/logm. (Note: This uses the assumption ¥'(1) > 0, which implies
that 0 <t < 1.)

Finally, observe that if & = ¢t then D(a) = v¥(t)/logm which, by Proposition 3.4, is
positive; and if a = log,, m > t then D(a) > D(t) = ¥(t)/logm > 0. ||

6. When is 6H = 63?

Proposition 6.1

dg=6p a.s. ifft=10r EN(i) = EN(j) for alli,j € J. (Recall J consists of those
indices i for which EN(z) > 0.)

Proof: If t = 1 then éy = 6p follows by directly comparing (2.1) and (2.2) and observing
that ¢ = 1 also implies a = 1.

Ift <land EN(:) = ffor alli € J and some § € (0, +o0) then ¥ is linear with slope
log 3. By linearity, t < 1 implies that ¢ = 0 must be the case. Thus 9(t) = ¥(0) = log(#J)
and a = log, m. Hence, a.s. on {K # 0}.

6u(K) = log,, {E ploen ’"} = log,,(#J) + log,, B = 6B(K).

i€eJ
It follows that 6 = dp a.s. (since on {K = 0},6p(K) = u(K) = 0).

Conversely, suppose that ép(K) = éu(K) a.s. and that ¢ < 1. First we show that we
must have ¢ < log,, m. Indeed, a.s. on {K # ¢},

logn

(6.1) 5B(K) = 5H(K) +

if ¢ > log,, m. Now 1 is either strictly convex or linear with all EN(z) having a common
value > 1 for i € J (recall we are assuming t < 1). In the latter case 1 has positive
slope, so ¢t must be 0. If 4 is strictly convex then it is strictly increasing on [¢t,1], so
¥(1) — ¥(t) = log EMy — 9(t) > 0 and 6B(K) > 6u(K), a.s. on {K # 0}, by (6.1), which
contradicts the fact ég(K) = §ug(K) a.s. Thus, t < log, m.

Now 6(K) = ém(K) a.s. implies that

P(t) (@) _ p(log,m)
(6.2) log,, EM + logm B logn  logm
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Assume that the EN(z), for ¢ € J, are not all the same. Then v is strictly convex and so

BTy g BT )

P(log, m) < T

or equivalently
(6.3) tp(1) + (1 — t)y(log, m) < %(1 — log, m) + % logm.

But % is strictly convex and ¢ < log,, m < 1. This implies that (1) > v¥(log, m) or

(6.4) tp(1) + (1 — t)y(log, m) 2 ¢(log, m)

As (6.3) and (6.4) together contradict (6.2) (recall EM; = (1)) we must have that all

the EN(z),i € J, are equal. ||
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RandCarp.ma

Figure 1: This shows 3 generations in the construction of a statistically self-affine set.
In each generation, every surviving rectangle is divided into 6 congruent rectangles,
arranged in 2 rows and 3 columns. Each of these new rectangles is then discarded with
probability .3 .



