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Abstract. Let Z ~ N(0,1). We consider distributions on IR which arise as
convolutions with Z. The intersection of this class of convolutions with the
family of normal scale mixtures is completely characterized and the implica-
tions are discussed. We also study the tail properties of the convolutions. A
domain of attraction theorem is proved. Finally, we give a characterization
of all random variables Y such that the convolution Z 4 Y is unimodal and
relate the number of modes of Y to that of the convolution. One particularly
surprising example is given of a harshly oscillating density which becomes
unimodal when convolved with Z.

1 Introduction

Let Z have a N(0,1) distribution on the real line and let Y be another random
variable independent of Z. The sum X = Z + Y is the convolution of Z and Y. If
the standard normal CDF is denoted by @ and the CDF of Y is denoted by G, then
sometimes we will also call the CDF of X, say, F = & * G as the convolution of Z
and Y. This article attempts to clarify some basic but as yet unresolved issues about
the family of all such convolutions F'. We will call this family the class of Gaussian
convolutions. The questions we raise pertain to some basic issues, such as which of
the standard distributions on the line are Gaussian convolutions, how rich is the
convolution class, what can be said about their tail properties, when are Gaussian
convolutions unimodal, etc. The probabilistic aspects are more emphasized in this
article; the statistical aspects are addressed in more detail in the companion paper
DasGupta (1992). We will like to remind the reader that there are well known con-
nections of the Gaussian convolution problem to the theory of analytic continuation
in function theory; (see Pollard (1943, 1953)). These are elegant but do not address
the concerns of direct relevance to a statistician.

2 Outline and an Illustrative Example

Generally speaking, it is believed and indeed it is true that the convolution F has
heavier tails than the standard normal CDF. For instance, if Y is any symmetric
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random variable, then for all t > 0, P(|X]| < t) < P(|Z| < t). In other words, there
is more mass in the tail of the distribution of |X| than there is in the distribution of
|Z|. Perhaps the most common model for a distribution heavier tailed than normals
is the t-distribution. The following illustrative example asks if the ¢-distribution with
one degree of freedom (i.e., the Cauchy distribution) is a Gaussian convolution. The
result for general degrees of freedom will be subsumed in a more general result given
in Sect. 3.

Ezample 1. Actually, the answer is no. Let us consider the standard Cauchy distri-
bution; the same proof sails through for the most general case. Suppose the standard
Cauchy random variable X is in fact a Gaussian convolution. Then, there exists Y,
independent of Z, such that

Z+YLix
= e—t3/2 . l/)(t) = B_M,

where 1(t) is the characteristic function of Y. Thus, ¥(t) = e‘zi‘m, resulting in
the obvious contradiction ll'im ¥(t) = oo. The same argument also shows that no
t|—o00

symmetric stable law (in particular the Cauchy) can be a Gaussian convolution.
This can also be proved by making an appeal to Theorem 2 in Sect. 3. The fact that
the Cauchy distribution (in fact, any ¢-distribution) is not a Gaussian convolution
seems a little puzzling. These questions are probed more deeply in the companion
paper DasGupta (1992). For instance, we demonstrate there that although it is
not a Gaussian convolution, there exist elements of the convolution class which
are tantalizingly close to it. In particular, there is a Gaussian convolution F with
the associated probability measure P such that |P(A4) — Q(A)| < 0.0739 for all
measurable sets A, where () denotes the probability measure associated with the
standard Cauchy distribution.

In Sect. 3, we characterize all normal scale mixtures which are Gaussian convo-
lutions (i.e., normal location mixtures). Some examples are given for illustration. A
tail property is also proved in Sect. 3. The question of unimodality of a Gaussian
convolution is addressed in Sect. 4. We give a characterization result using character-
istic functions. The case of a lattice valued Y is considered as one of the illustrations.
We also give an example in which the density of Y is severely oscillating, but the
convolution is unimodal. We then also relate the number of modes of X to that of
Y. Finally, it is proved that if U ~ u[-1,1], V is independent of U and is infinitely
divisible, then the symmetric unimodal random variable X = U - V cannot be a
Gaussian convolution. The result is again illustrated by examples.

3 Intersection with Scale Mixtures

Consider an absolutely continuous distribution on the real line with density

1) = [ e Frdute?) (3.1)
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f is called a normal scale mixture. We have a complete characterization of normal
scale mixtures which are Gaussian convolutions. We will first prove two theorems
and then give a few examples. The following notations will be used:

F.={F:F = &G for some G, where * denotes convolution}
F; = {F:F is absolutely continuous with density f
of the form (3.1) for some u} .

Theorem1. Let F = &+G € F.. Then F € F, iff G € F, with the associated mizing
measure p (say). Furthermore, in this case, if the scale mizture representation of the
density of F is given as
2
f(z) = / \/21_1we"'z%5'du(t72),

then for any measurable set E C [0,00), V(E) = p(E—1), where E—1={z-1:z €

Proof. Let G € F, and denote its characteristic function by (t). Thus,
¥(t) = / e S du(o?) . (3.2)
Therefore, if ¢(t) denotes the characteristic function of F, then,
s =% [ Fae)
= / e+ d(o?)
- / e 5 du(ir?),
where v denotes the distribution of 1+ o2 induced by p. This already proves every-

thing except the assertion that G € ¥, if F € F,. However, if F € F,, then using
earlier notation,

40 = [ Fane)
=5 y(t)
12 _13g2 9
S>yYPt)=e7 . [ e" 3 dv(o?)
= /e' ‘;(”z'l)du(az) (3.3)
The RHS of (3.3) converges to +00 as |t| — oo if ¥[0,1) > 0; this being impossible
since 9 is a genuine characteristic function, one has »[0,1) = 0. If we now define a

new measure g on [0,00) by the formula y(E) = v(E + 1), then (3.3) gives by the
change of variable theorem that

h(t) = / e du(n?), (3.4)

which shows that G € F, and proves the theorem.
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Theorem 2. Let F € F, with the associated mizing measure v. Then F € F,. iff
v[0,1) = 0. Furthermore, in this case, if F has the representation F = & * G, then
necessarily G € F, with the associated mizing measure p satisfying y(E) = v(E+1)
for all measurable sets E C [0, 00).

This theorem has been implicitly already proved in course of proving Theo-
rem 1. We will therefore avoid the unnecessary duplication. The following corollary,
although it brings home disappointing news, is interesting.

Corollary 1. No t, Bessel, Double Ezponential, Logistic distribution or no normal
distribution with a veriance less than one can be a Gaussian convolution.

Proof. The proof follows from the fact that each of these distributions is in fact a
normal scale mixture and the associated mixing measure p gives positive mass to
the interval [0, 1). Indeed, the mixing distributions are all well known; they are the
inverse gamma, gamma, exponential, Polya, and a degenerate distribution respec-
tively.

Ezample 2. The Hyperbolic cosine distribution with density
2

:m, —o<r<oo

f(=)

is also a normal scale mixture by virtue of complete monotonicity of f(/z). Theo-
rem 2 can be used to show that this distribution cannot be a Gaussian convolution
by solving an appropriate Laplace transform inversion problem to find the measure
u; see Widder (1951). A simpler proof comes out of the fact that its characteristic
function is sech (). Since this is O(e~5!), the argument of Example 1 can be
repeated.

Ezample 3. We now know that the standard Double Exponential distribution with
density %e‘l"’ | is not a Gaussian convolution. Interestingly, we will see that the con-
volution of the N(0,1) and the standard Double Exponential has exactly Double
Exponential tails. Thus the Double Exponential distribution itself cannot be ob-
tained as a Gaussian convolution, but its tails can be.

By direct calculations, this convolution has density

f(z)= ﬁ [e7® - @(z — 1) + ¢ - &(~z ~ 1)],

where & denotes the standard normal CDF. Clearly, f(x)el®! = O(1).

This example motivates the following general result which says that in some sense
the tail of the convolution Z + Y is the same as that of Y.

Theorem 3. Suppose Y is in the domain of attraction of a stable law of ezponent
o, 0<a<2 Then sois X.
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Proof. Denote the characteristic function of Y by () and define

o) = e~ 12 . p(2) . (3.5)

Notice ¢(t) is the characteristic function of the convolution X = Z + Y. We will
prove the theorem for the case of a symmetric stable law. The general case entertains
the same argument. By hypothesis, there exist constants a, > 0, b,, and a slowly
varying function L such that

¢&)

4]

) @)

and a,, = n'/ . L(n).

—elt"if0<a<? (by taking a subsequence, if necessary). The assertion of the
theorem is immediate if & = 2. This therefore proves the theorem.

4 Unimodality of Gaussian Convolutions

Shape properties of a density function are always of natural interest. By virtue of
the strong unimodality of a N(0,1) distribution, it is completely obvious that the
convolution X = Z +Y is unimodal if Y is unimodal (not necessarily symmetric).
However, since convolution is a smoothing operation, it is to be expected that X can
sometimes be unimodal even if Y is not. We will first give an upper bound on the
number of (local) modes of X in terms of the number of (local) modes of Y when
Y is absolutely continuous.

Definition 1. Let Y be absolutely continuous with a differentiable density g(y).
The real number yq is called a local mode of Y if ¢'(yo) = 0 and there exist intervals
I = (yo — €1, y0) and I» = (yo, Yo +€2) such that ¢’(y) >0 for yin I; and ¢'(y) < 0
for y in Ip.

Remark. In other words, we are defining a local mode as a point where ¢’ changes
sign from positive to negative. Notice that according to our definition, a ‘shoulder’
will not count as a local mode.

Theorem4. LetY be absolutely continuous with a differentiable density g and sup-
pose Y has at most k local modes. Then the convolution X = Z+Y has at most
k 4+ 1 local modes.
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Proof. If the density of X is called f, then

fl(z)= \/% /_m (y — z)e~ 4= g(y)dy

1 d _iy-
= o (d_ye o z)a) 9(y)dy
N 71_27 e~ 30=g/ (y)dy, (4.1)

where (4.1) is obtained on integration by parts, since e~ $y-=)* g(y) — 0 for any =z
as |y| — oo for the kind of g we have.

At this stage, use the fact that ¢’ can have at most (k + 1) sign changes because
of the assumption made on g. Due to the Polya nature of the normal distributions,
it now follows that therefore f' can have at most (k¥ + 1) sign changes and hence f
can have at most (k + 1) local modes, as claimed.

We will now give a characterization of all random variables Y such that the
convolution Z + Y is actually unimodal. A discussion of the applicability of this
characterization will be given following the result.

Theorem 5. LetY have the characteristic function ¥(t). Then the convolution Z +
Y is unimodal iff

i. P(t) is continuously differentiable for allt # 0 and 11:in(1) ty'(t) = 0.
ti. The function ¢ defined as

6(t) = (1 — 12)e~ P 129p(t) + te= 129/ () ,t £ 0
()=(1 Je (t) (),ti0 (4.2)

s a characteristic function.
Proof. The convolution Z +7Y is unimodal iff
Z+YEU.V, (4.3)

where U ~ U[0,1] and V is independent of U. Equation (4.3) is equivalent to the
fact

e 12 y(t) = /01 P(tu)du, (4.4)

where ¢ is the characteristic function of V.
Since ¢ is continuous, it follows from (4.4) that for all ¢ # 0,

60)= 7([ i)

= S y(t)
= (1= 2)e~ " 12(t) + te~ " 129/ (t) . (4.5)
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On the other hand, if there exists a characteristic function ¢ satisfying (4.5) for
the given function 1, then integrating both sides of (4.5), one returns to (4.4) and
therefore Z + Y is necessarily unimodal. We have therefore proved all assertions
made in the theorem.

Discussion. Notice that the theorem does not say that 1 should be differentiable at
0. Indeed, it need not be. If Y is a Cauchy random variable, the convolution Z 4+ Y
is unimodal without ¢ being differentiable at 0. The applicability of the theorem
depends on checking that the formula (4.2) produces a characteristic function. In
general, Bochner’s theorem is the only way for checking this and it is also the case
that in general verification of the Bochner criterion is a hard proposition. In some
cases, however, due to the presence of the term e=t*/2 in (4.2), the function ¢ is
likely to be in L(IR). In such a case, one can formally invert ¢ and if the resulting
function turns out to be a nonnegative L' function, Bochner’s criterion is automat-
ically verified. In some other cases, it may be easier to directly verify unimodality
by differentiating the convolution density. We will see some examples, one rather
intriguing. But first, we will see another theorem covering random variables which
are symmetric and unimodal about 0. We would like to remind the reader that such

a random variable X has the representation xtv . V, where U ~ U[-1,1] and
V > 0 is independent of U (Khintchine (1938)).

Theorem 6. Consider the symmetric unimodal random variable X = U -V, where
U ~U[-1,1], and V (independent of U) is infinitely divisible. Then X cannot be a
Gaussian convolution.

Proof. 1t follows from (4.4) above that if indeed X was a Gaussian convolution, then
fort > 0,

t
|/ d(u)du| = |te " 12p(t)| < te 12 S0 ast — oo . (4.6)
0

However, since V is infinitely divisible and symmetric, it follows that ¢(u) > 0V u,
rendering tlim fot é(u)du = 0 impossible. Hence, X cannot be a Gaussian convolu-
—00

tion.

Finally, we will now give three illustrative examples on unimodality of Gaussian
convolutions.

Ezample 4. Suppose Y is a discrete random variable assuming values na, n = 0, +1
for some a > 0 with probabilities 1 — 2p, p and p respectively. Clearly, the density
of the convolution X = Z + Y equals

1 2 —_ T~a 3 -_ rt1+a 2
@)= == [(1—2p)e-%z + pe~3(E=a)" 4 pe—d(t )] (4.7)

Unimodality of X is equivalent to

fl(z)<0 Vz>0
& (1-2p)z + p(z — a)e®=%12 4 p(z + a)e= 912> 0Y 2> 0 (4.8)
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If p=0, (4.8) holds for all @ > 0, as it should. If p = %, (4.8) is equivalent to

(z—a)® +(z+a)>0Vz>0

(4.9)

Obviously (4.9) holds if # > a. Hence it is enough to verify it for z < a. It is possible
to prove that (4.9) holds for 0 < z < a if and only if a <1 as follows:

1.
1i.
1ii.
iv.
v.

define h(z) = (z — a)e?*® + (z + a); so h(0) =0,
check A'(0) > 0if 0 <a < 1;

check h is convex on [0,a] if 0 < @ < 1; hence, h'(z) >0for0 <z <aifa<];

thus h(z) > h(0)=0for0<z<aifa<l;

verify that for a > 1, (4.8) cannot hold for all z in [0, a].

An analytic characterization of all pairs (p, a) such that (4.8) holds seems prac-

tically impossible. The following table gives the maximum possible value of a for
some values of p. A plot is given in Fig. 1.

a

6

5

4 -

3F

2 3

1t

0.1 0z 03 0.4 05
Fig. 1. Region of Unimodality
Table 1.

? .001 .01 .05 .1 .15 2 .25 3 % 4 45 5
a 4.6767 4.085 3.562 3.269 3.049 2.844 2.627 2.354 2.062 1.240 1.096 1
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Ezample 5. The preceding example demonstrates that Y need not be unimodal for
the convolution Z +Y to be unimodal. Theorem 5 was not used, however. We now
give an example where Theorem 5 is actually useful. Consider a random variable Y
with the “inverse triangular” distribution having density

1 — cos(ay)

ray?
This has a characteristic function (see Chow and Teicher (1988))
p()=1-U Jf|<a
=0 Wt > a .
Since 4 is not differentiable at + = *a # 0, it follows that the convolution of a

N(0,1) and an inverse triangular random variable can never be unimodal, however
large « is.

9(y) = ,—oo L y<oo .

Example 6. We close with an example that demonstrates that convolution with a
N(0,1) distribution can inject amazing smoothness in the density of a severely
nonunimodal random variable. Towards this end, consider a random variable Y with

density , .
g(y) = e 37(1+ cos(wy)) 4.10
W= i e (4.10)
g is severely oscillating if the frequency w is large. We will now show that the
convolution Z + Y is unimodal for all w if 02 < 2.3!

On direct calculation, the density of the convolution X = Z +Y equals

2 2,2 2
f(z) = 1 3 (1 + cos (w i 21:) e z(1+05)) e SateT)
V2r(1 + 02)(1 4 e~ *57) l+o
(4.11)
If we let 0 < r < 1 denote %:;, then (4.11) is unimodal if and only if
F(z)<0 V220
1-r wir 2 -
& [eﬂ +cosa:]+w sinz>0 Vz2>0 (4.12)
We claim (4.12) holds for all w > 0 if 2 < 2.3. For this, we require to show
inf inf {1 —T [e’é'ﬁ + cos z] +w2sm z} >0
w20z20 r T
« inf inf {1 T [e'"';z + cos z] + w2l z} >0 (4.13)
r>0w>0 r T

For any # > 0, the quantity in flower brackets is positive for w = 0; furthermore,
the derivative with respect to w equals

w [1 : re,,;; + 2s1n z]

> w [1 = T _ 0.435466] (. w,r> 0 and s“; Z > -0.217233)
>0 if 1-r > .435466 < o2 < 2.3 (approximately) .
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Therefore, for any z > 0, the inside infimum is nonnegative and hence (4.13) holds
as well. This establishes the claim.

The relation that & and w must satisfy in general for the convolution to be
unimodal can be found by numerical methods from (4.12).
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