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Abstract. In the usual linear regression model we investigate the geometric structure of a
class of minimax optimality criteria containing Elfving’s minimax and Kiefer’s ¢,-criterion
as special cases. It is shown that the optimal designs with respect to these criteria are
also optimal for A’'8 where A is any inball vector (in an appropriate norm) of a generalized
Elfving set. The results explain the particular role of the A- and E-optimality criterion
and are applied determining the optimal design with respect to Eflving’s minimax criterion

for polynomial regression up to degree 9.

1. Introduction. For a compact metric space X which contains at least k different
points we consider the usual linear regression model y = f(z)'0, z € X. Foreach z € X

2 > 0 can be observed where

a random variable Y(z) with mean f(z)'6 and variance o
different observations are assumed to be uncorrelated. The vector of continuous, real
valued and linearly independent regression functions f(z) = (fi(z),..., fr(z))' is known
while # € IR* is an unknown parameter vector. A design £ is a probability measure on a
sigma field on X’ which contains all one point sets. The performance of a given design is

evaluated by its information matrix

M(€) = /X F(2)f(a) de(z) € R***.
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If ¢ is an exact design concentrating masses 2 at the points z; (i = 1,... ,8) the infor-
mation matrix M(£) is proportional to the inverse of the covariance matrix of the least
squares estimator calculated from n observations, n; at each z; (: = 1,...,3).

Almost all optimality criteria which can be used to discriminate between competing designs
depend on the information matrix M(£) or its inverse (see e.g. Silvey (1980) or Pukelsheim
(1993)). In this paper we will consider the geometric structure of two generalizations of
the E-optimality criterion which minimizes the maximum eigenvalue of the inverse of the
information matrix. The first extension of this criterion is due to Kiefer (1974), eq. (4.18),
(see also Kiefer (1975), p. 337) who defines a design &, to be ¢,-optimal if {, minimizes
(L.1) Sp(M(6)) = {ff,f (M(©T))P i M(E) i positive defsite

Here 1 < p < oo and the case p = oo gives the E-optimality criterion. Note that we have
omitted the factor 1/k in our definition and that Kiefer’s ¢,-criteria can be also considered
for the case —1 < p < 1 (see Pukelsheim (1980)), but throughout this paper we will assume
that p > 1. A generalization of the E-optimality criterion in a different direction results

from the Courant Fischer characterization of the maximum eigenvalue of M~ (¢)
Amax(M(€)) = max{c'M 7 ()c| c € BF, || =1}

(here | - |2 denotes the euclidean norm on IRF). Replacing the euclidean norm | - |; by an
arbitrary norm |- | on IR* we will call a design ¢ minimax optimal with respect to the

| - |-norm if ¢ minimizes
(1.2) #1(M(&)) = max{c M~ (§)e | c € B, |e| =1}.

We will omit the dependency on the norm in this definition whenever it is clear from the
context which norm is used in the minimax optimality criterion (1.2).

In Section 2 we introduce a general minimax criterion which contains (1.1) and (1.2) as
special cases. It is shown that the minimax optimal design with respect to this criterion
is also optimal for A'6 where A € IRFX¥* is an inball vector of a k3- dimensional Elfving
set (in an appropriate norm). The criteria (1.1) and (1.2) are discussed as special cases
in Section 3. Finally, the results are applied in Section 4 for the determination of the
optimal design with respect to Elfving’s minimax criterion (Elfving (1959)) in polynomial

regression models up to degree 9.

2. Optimal Minimax Designs. Let [ € IV and let |- | denote an arbitrary matrix norm

on IR**! with dual or conjugate morm |- |, i.e.
(2.1) ID|s := max{tr(D'C) | C € R¥, |C|=1}
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(see e.g. von Neumann (1937), Rockafellar (1970) or Zietak (1988)). The unit spheres of
|| and | - |« are denoted by C and D, respectively, and we define a minimax criterion ¢¢

and an information function jp, by
(2.2) $c(M(€)) = max{tr(C'M7I(E)C) | CeC}, M(£) >0
jp.(M(§)) = min{tr(D'M(£)D) | D € Dy}, M(£)20.

A design is called minimax optimal (with respect to the norm |-|) if it minimizes ¢¢(M(§)).
In the following we will need an equivalence theorem for minimax optimal designs which
can easily be obtained from general equivalence theorems for optimal designs (see e.g.

Gaffke (1985, 1987), Pukelsheim (1993) or Hoang and Seeger (1991)).

Proposition 2.1. A design £y is minimax optimal with respect to the |- |-norm if and

only if there exist an integer 1 < k¢ < k, matrices Dy,...,Dg, € D, and positive numbers
ai,...,ak with 3% a; = 1 such that tr(D!M(éx)D;) = jp,(M(Em)) (G = 1,...,ko)

and

ko
(2.3) Zaitr(D; f@)f(z)' D) < jp.(M(Enm)) for all z € X.

Lemma 2.2 Let M > 0, then ¢c(M) = [jp.(M)]~'. Moreover C; € C maximizes
tr(C'M~1C) over C if and only if Dy = jp,(M)M ' Cj is an element of D, and minimizes
tr(D' MD).

Proof: The relation ¢c(M) = [jp,(M)]™! follows from Cauchy’s inequality. If Cp € C
maximizes tr(C'M~1C) we have for all C € C

tr2(C'Dy) < (o, (M) tr(C'M1C)r(CoM™Co) < 1

(with equality for C = Cy) which shows that Dy € Dy. Conversely, if Dy € D, minimizes
tr(D'M D) and C, € C satisfies tr(CyDo) = |Dolx = 1, then

1 = tr’(CyDo) < tr(CoMT'Coltr(DyMDo) < jp,(M)pe(M) = 1
which shows that Cyp maximizes tr(C'M~1C) and Cy = [jp,(M)]"* M D, n

Remark 2.3. Note that for all positive definite matrices M, all positive numbers a; with
Y-;a; =1 and all matrices D; € D, with tr(D;MD;) = jp,(M) the matrix

E = —¢c(M))_ a;D;D;
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is a subgradient of log(¢¢) at M (see Gaffke (1985), Lemma 3).

Throughout this paper we will use the following matrix norm on R*!™ (m € IN) induced

by a given vector norm |- | on IR¥*!. For a given matrix A= (41,...,A,) € RF™
(A; € RF*") define
m 1/2
i = (Sa)
=1
then it is easy to see that the dual norm of || - || is given by

m 1/2
(24) 11}, = (Z IDili>

where | - |« is the dual of the given matrix norm |- | on R**! (D = (Ds,...,Dy)). We

consider a generalized Eflving set

i=1

(2.5) RY) = co ({(f(w)s'l,---,f(w)dn) |zeX, ¢ e R, ilsjlg = 1}) C R

where co(A) denotes the convex hull of the set A C R¥*Im_ Note that RS,I,) is convex,
compact, symmetric with respect to the origin and that for / = m =1 this definition gives
the set introduced by Elfving (1952) while for [ = 1 or m = 1 the definition (2.5) yields
the generalized Elfving set considered in Studden (1971). A more general version of this
set and some examples illustrating its geometric structure are discussed in the context of
model robust designs by Dette (1993). The minimum distance of all boundary points of
RY to the origin
r) = min{||4]| | 4 € 9RY}

is called inball radius of R$Y and every matrix A with |A|| = r is called inball vector of
R . The following Theorem shows that inball radii and vectors of the Elfving set in (2.5)

are intimitately related to the minimax optimal design problem.

Theorem 2.4 Let m > kg and ay,...,ak,, D1,..., Dk, € Di denote the quantities of
Proposition 2.1.

a) Let D = (jp,(M(Em))Y? (y/ai,D1,. .., /aks Dio,0,...,0) € R*'™ and define
A = M(£x)D, then A is a || - ||-inball vector of RY with supporting hyperplane D. The
|| - ||-inball radius is given by rd = (be(M(En))) /2.
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b) The minimax optimal design s (with respect to the |- |-norm) is optimal for A'8 where
A € R¥™¥™ is any || - ||-inball vector of RY. ¥DeR*™isa supporting hyperplane to
R at the || - ||-inball vector A, we have | D' f(z;)|z = 1 for all support points z; of &u.

Proof. Let N = (Ny,...,Np) € RFX™ (N; # 0), then we have for all k¥ x k matrices
B>0

[} ! .
ip.(B) = min{tr—(l]jv—ﬁi)|N€RkXI\{O}} < %N—) G=1,...,m)

which implies (using (2.4))

i tr(NiN!B) tr(NN'B)
jo.(B) jp.(B)

Because jp, is an information function (see Pukelsheim (1980)) it thus follows for the polar

M2 < &

function of jp,

tr(NN'B)

e |B¢o} > ||F2.

(2.6) i5.(NN') = inf{
From the definiton of D and A we have tr(D'A) = 1 and Proposition 2.1 implies that
A € aRY with supporting hyperplane D. From Lemma 2.2, (2.6) and Pukelsheim’s
"Mutual Boundness” Theorem 3 (see Pukelsheim (1980)) that

1 1
< —
i».(NN') ||V113

@7) R < AP = [Be(ME) ™ = jo.(M(énm)) <

for all covering halfspaces NV of RS (that is [N f(z)[3 = ™, f(z)' N:N!f(z) < 1Vz € X)

Using the representation

(2.8) 0 = min{ | F e B W f(@)k < 1, Vxex}

1
V1]

the assertion a) follows. Part b) is proved by exactly the same arguments as in Dette and
Studden (1993) and therefore omitted. .

Remark 2.5. If D = (Dy,...,Dy,) € R**™ is a covering halfspace to RY achieving the
minimum in (2.8), then the matrix A = (|D1|+41,- .-, |Dm|«4m)/||D||? defines a ||-||-inball
vector of the Elfving set ’R,S,?, where A; € R**! is any matrix satisfying

|4;l=1, tr(DjA;)=1Djl« (G =1,...,m)
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(the matrix A; is called dual of D; with respect to the |- |-norm see Zietak (1988)). Even
if the optimal covering halfspace cannot be determined the covering halfspaces of RY

provide lower bounds for the minimax efficiency

pe(M(En))
Eff, =
«©) = g (e)
of a given design £ when the optimal minimax design £»s with respect to the | - |-norm is

unknown.

Corollary 2.6. Let m > 1 and D denote a supporting hyperplane to ’RS,I,), then the

minimax efficiency (with respect to the | - |-norm) of a given design ¢ is bounded by
i5.(0D) _ |ID]?
¢e(M(£)) — de(M(£))

If D is an optimal supporting hyperplane (i.e. D minimizes (2.8)) then the equality
j%,(ﬁb') = ||D||Z holds.

Effc(£) >

Proof. This is an immediate consequence of (2.7) and (2.8). ]

Remark 2.7. The results of Theorem 2.4 can easily be generalized to minimax optimal
design problems for parameter subsystems. For a given k x s matrix K of rank s a minimax
optimal design for K'6 allows the estimability of K'8 (i.e. range (K) C range (M (£))) and
minimizes ¢¢((K'M(¢)~K)™!). According to Theorem 1 of Gaffke (1987) there exists a
left inverse Lj € R*** of K such that the minimax optimal design for K'6 is minimax
optimal for the full parameter vector in the “new” regression setup y = &' f(:::) where
f(z) = L{f(z). Thus we obtain from Theorem 2.4 that the minimax optimal design for
K'6 is optimal for A'§ for any || - ||-inball vector A € R*** of the Elfving set R where

S,l,) is defined as

RY = co ({ Lof(z)(er,- . ) |z € X e € R, D ejlf =1 }) C R*™*™,

j=1
(m =1,...,s). The applications of this result are limited (except in the case s = k where
Lj = K1) because in general Ly is unknown and a || - ||-inball vector of R cannot be
found.

3. Elfving’s minimax and Kiefer’s ¢,-criterion. In this section we will return to
the criteria defined in (1.1) and (1.2) which now emerge as special cases from the general

theory of Section 2 where the Elfving set (2.5) is the same for both criteria.
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Firstly let { = 1, then the criterion (2.2) reduces to the minimax criterion (1.2). The
geometric structure of the minimax problem is described in Theorem 2.4 (I = 1) where the

generalized Elfving set in (2.5) reduces to the set
(3.1) R = co({f(2)e | 3 € X,e € B™,Jelz = 1))

which was firstly introduced by Studden (1971) characterizing the optimal designs for A’d
(here A € IR¥*™ is a given matrix). Theorem 2.4 now generalizes the results of Dette and
Studden (1993) (]-| = |- |2) to arbitrary criteria of the form (1.2). The following important
examples are mentioned as special cases.

1) Considering the l5- norm we obtain the E-optimality criterion while the I;- norm yields
to Elfving’s minimax criterion (Elfving (1959)), that is

(52)  p(M©) = max{dM Qe leh =1} = mhe{M (O} -
2) If the regression norm (see Pukelsheim (1981))
lc|® = inf{a > 0| c € R4}

on IR* is used in definition (1.2) then it is straightforward to see that the optimality

criterion (1.2) gives the well known G-optimality criterion, i.e.
By (M(E) = max{¢ M (©)c] e € IRy} = max f() M~ (€)/(2)

(note that | - |F characterizes the Elfving set R; as the unit ball). The dual norm of |- |B
is given by |d|E = max,cx |d'f(z)| (see e.g. Householder (1965)).

Secondly let I = k and define a norm on IR*** by
141l = lo(A)lpr = (tr(A4)T)? (1< p' < 00)

where 01(A) < ... < ok(A) denote the singular values of a given matrx A € IRF*k,
o(A) = (61(A),...,0k(4)) and |- |, is the - norm on IR*. Putting p’ = 2p/(p — 1) we
obtain for the optimality criterion (2.2).

$e(M(€)) = max{tr(C'M™(€)C)| C € R, ||C||y =1}
= max{tr(B'M(£)) | B 2 0,||Bl|ly/(p-1) = 1}
= [|M7YOll, = ¢p(M(£))
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where the last line follows from Theorem 5.10 in Gaffke and Krafft (1982). Using Lemma
3 in Pukelsheim (1980) we obtain that for 1 < p < oo the quantities in Proposition 2.1 are
given by

(3.3) k=1 and D;= (tr(M(Ep)—P))—(P+l)/2pM(£p)_(p+1)/2Q

where @ denotes an arbitrary orthogonal k x k matrix and £, the ¢,- optimal design. If

p = oo a possible choice for Dy is the matrix

(3.4) Dy = (VBiz1y- 3/ Br, 2k,,0,...0)Q € IRF*k

where by <k, 3; >0, Z;”:l Bj =1 and #,...2;, are normalized eigenvectors of M(£)
corresponding to its minimum eigenvalue which satisfy the inequality (2.3) in Proposition
2.1 for the E-optimality criterion (see also Corollary 8.1 in Pukelsheim (1980)). By an

application of Theorem 2.4 we thus obtain the following result.

Corollary 3.1. For 1 < p < oo let €, denote the ¢,-optimal design and let D, be defined by
(3.3) if 1 < p < 0o and by (3.4) if p = co. The matrix A = ¢,(M(£,))*/2M(€,)D1 defines
a || - ||24-inball vector of the Elfving set Ry with supporting hyperplane ¢,(M(£,))/2D;
(1/p+41/g =1). The || - ||24-inball radius of Ry is given by (¢,(M(£,)))~1/2.

b) If 1 < p < oo and A is any || ||24-inball vector of the Elfving set Ry, then the ¢,-optimal
design £, is also optimal for A'.

Remark 3.2. Let 5 = 2p/(p + 1) and let D € IRF** denote an “optimal” covering
halfspace, i.e. || D||; = 1/r; with singular value decomposition D = U diag(c(D)) V' (here
diag(zi,. .., ) means a diagonal matrix with diagonal elements z1,...,z¢), then a ||-||24
inball vector can be obtained as follows. Consider a dual vector o*(D) of o(D) € RF
with respect to the £24-norm (i.e. *(D) o(D) = |o(D)|5, |6*(D)|2q = 1) and define A = U
diag(o*(D))V'/||Dll5. Thus we obtain te(D'4) = o(D)|5/||Dl|s = 1 and ||4llzg = 1/]|Dl|3
which shows that A defines an inball vector of Ri. For 1 < p < oo the strict convexity of
the £34-norm implies that A is the unique || - ||24-inball vector corresponding to D (Zietak
(1988), Theorem 3.1, Corollary 4.2).

Remark 3.3. Recalling the discussion in Remark 2.7 we see that Theorem 3.1 gives new
insight into the particular role of the ¢;-optimality criterion. Here (¢ = o0) any s X s
orthogonal matrix @) (appropriately scaled) defines a || - ||oo-vector of 'ﬁ,gs) (this follows
from Theorem 3.1 a)).



It should also be mentioned that the results of this section can easily be generalized for
unitarily invariant norms on IR**¥_ These norms are obtained by replacing the £,-norm
in (3.1) by a so called symmetric gauge function ¥(-) on IR* which satisfies in addition to

the norm properties the symmetry assumption

Q:b((é:l Aiyy -+ s EECG )I) = w((ala s aak)’)

for all permutations a;,, ..., a;, of ai,...,ax and for all £; = F1 (see von Neumann (1937),

Mudholkar (1966) or Zietak (1988) for more details).

4. Elfving’s minimax criterion for polynomial regression. Let I =1, X = [-1,1],
f(z) = (1,z,...,2%), and 1 < p < oo, thus we are faced with the minimax criterion
(1.2) with respect to the £;-norm defined in (3.2). In contrary to an example for spring
balance weighing designs (p = 2) discussed in Dette and Studden (1993) the situation here
is more complicated because we are not able to find the || - ||,-inball radius of the Elfving
set Rqy1 defined in (3.1). However, if the (unknown) number ko in Proposition 2.1 is 1,
Theorem 2.4b) shows that the minimax design {|.| is already optimal for any || - ||,-inball
vector ¢ of the first Elfving set R;. This fact was used by Pukelsheim and Studden (1993)
to show that the E-optimal design (minimax with respect to the £3-norm) is supported
at the Chebyshev points s; = cos(d—;iw) (j = 0,...,d). Observing these results and
Corollary 2.6 it will therefore be useful to find (at least) the || - ||,-inball vectors of R, and
the corresponding optimal designs. The optimal designs for these inball vectors seem to
be good candidates for minimax optimality. Throughout this example let £ denote the
optimal design minimizing the variance of the least squares estimator for the individual
coefficient 6 in the polynomial regression y = 6y + 61z + ... + 64z% (see Studden (1968))
and define t = (¢o,...,%4)') as the vector of the coefficients of the Chebyshev polynomial
of the first kind, i.e. ¢ f(z) = T4(z) = cos(d arc cosz).

Theorem 4.1. a) If 1 < p < oo, the || - ||p-inball vector ¢ = (co,...,ca)’ of Ry has

coordinates )
~_ sign (¢t} !

o £l

i=0,...,d.

The c-optimal design for this inball vector is given by {. = zj‘l:o |t;17/1t]d - €; and the
|| - ||p-inball radius is 1/|t|,
b) If p = 1, the || - ||1-inball vector has coordinates

_ [sen @) i [l =l
"o if [t < [t]oo



where g; > 0 and £g; = 1. The c-optimal design is given by £ = }. g;{; and the |- |1
inball radius is 1/|t|co.

Proof. Using (2.8) (for m = [ = 1) we have to maximize |a|, subject to the restriction
la'f(z)| <1forall z € [-1,1] (a = (ao,...,ad)' € R**1). Using a result of Cantor (1977)

we obtain for the coefficients of the vector a
d—1
lad—2m| + |@a—-2m-1] < [ta—2m| (m=0,...,|——])

with equality if and only if ¢ = F¢. This implies |al, < |t|; and (2.8) shows that the
|| - ||p-inball radius of R is given by |t|;. By the discussion in Remark 2.5 we have to find
a dual vector of ¢ (with respect to the £,-norm) which can easily be obtained considering
equality in the Holder inequality (see e.g. Zietak p. 60). Thus the assertion about the inball
vectors follows directly from Remark 2.5. Let Ly(z) = £yo + L1z + ...+ £,qz? denote the
v-th Lagrange interpolation polynomial at the points so,...,sq, then it follows from the
results of Studden (1968) that the optimal design {4—2; for estimating 64—2; puts masses
|va—2j|/|ta—2;| at the points s,(v = 0,...,d) and Elfving’s theorem (Elfving (1952)) yields

|lya—2;] ) d—1
L aai= E( e S I Bt
|ta—2;]
Expressing the inball vector c as a linear combination of the unit vectors e;—2; the assertion

now follows directly by a further application of Elfving’s theorem. .

To be more explicit consider the case d = 2, then it is straightforward to show that
the £,-optimal design ¢, puts masses 2972/(1 + 29) at the points —1 and 1 and mass
(1 +2971)/(1 + 29) at the point 0. Using Lagrangian multipliers and Proposition 2.1 it
can be shown by tedious computations that £ is in fact the minimax design with respect
to the £,-norm for all 1 < p < oo.

Recently Pukelsheim and Studden (1993) showed that £. is E-optimal for all d € IN (that
is minimax with respect to the £3-norm). We will conclude with an example demonstrating
that this might not be true for arbitrary p > 1. To this end consider Elfving’s minimax
criterion (that is p = 1, ¢ = 0o). Using a table of the Chebyshev polynomials of the first
kind (see e.g. Davis (1963) p. 369) and Theorem 4.1b) we see that for d = 1, 2,3 the design
¢, = €4 can be considered as a candidate for minimax optimality. For d = 5,6,7,8,9 we get
£4—2 as a minimax candidate while in the case d = 4 (note that Ty(z) = 8z*—8z%+1) every
convex combination afs + (1 —a)és (a € [0,1]) seems to be a good choice. Tedious algebra

and Proposition 2.1 show that for d = 1,2, 3 the design £; is in fact minimax optimal with
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respect to Elfving’s criterion. In the case d = 5,6,7,8,9 the design {z—2 can be shown to
be minimax, while for d = 4 every convex combination of & and {4 fails to be minimax

(with respect to Elfving’s criterion). In this case the number ko in Proposition 2.1 is 2 the
1

'8'-
However we can use Corollary 2.6 to obtain a lower bound for the minimax efficiency, i.e.

B, (6) 2 1% - [mbx(elM ()] -

=

|| - ||1-inball radius of R, can only be determined numerically and is smaller than FIIZ =

The average of the optimal designs for the coefficients 6, and 85 £* = 1(&; + £4) puts
masses 3/32, 1/4, 5/16, 1/4, 3/32 and the points —1, —1/4/2, 0, 1/v/2 and 1 and has at
least minimax efficiency Eff|.|,(£*) > 30/31 =~ 0.9677 which shows that £* is a good choice
with respect to Elfving’s minimax criterion. Numerical calculations yield that for d = 4
the minimax design is not supported at the Chebyshev points and puts masses 0.0958,
0.246, 0.3164, 0.246, 0.0958 at the points —1, —0.7086, 0, 0.7086 and 1. Thus the exact
minimax efficiency of the design ¢* is 0.9997.

The results of the last paragraph suggest that for polynomial regression of degree d on the
interval [—1,1] the minimax optimal design with respect to Elfving’s minimax criterion
is specified by the optimal design for the | - |;- inball vector of the first Elfving set R,
provided that #{j| |t;| = |t|cc} = 1. A partial proof of this conjecture and a more complete
discussion of the problem including minimax optimal designs for parameter subsystems,

different design spaces is given in a recent paper of Dette and Studden (1993).
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