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Abstract

Lions and Sznitman (1984) studied diffusions reflected at the boundary of a
domain in RY. Saisho (1987) extended their results by weakening the conditions
on the boundary of the domain. Menaldi and Robin (1985) published results
on stochastic differential equations driven by a Lévy process with reflection at
the boundary of a domain. The main condition Menaldi and Robin imposed
on the Lévy process is that the jumps of the process have to put the solution
process inside the domain.

We study a different model for stochastic differential equations driven by
general semimartingales with reflection. This model introduced by Marcus
(1978, 1981), later called Stratonovich type stochastic differential equation,
imposes weaker conditions for existence and uniqueness than those in Menaldi
and Robin (1985) when reflection is considered.

We also study stability results and the time reversal of the solutions of
Stratonovich type stochastic differential equations with reflection.



1 Introduction

We are interested in addressing the following problem:

Given a bounded domain D in R?, we want to find a “generalized” diffusion with
given drift and diffusion coefficients driven by a general semimartingale (possibly with
jumps) instead of the classical Brownian motion and Lebesgue measure. We also want

the diffusion to live in D. Every time this generalized diffusion reaches the boundary
it is contained by the boundary or it bounces back into the domain by the effect of
any of the two coefficients.

First, start with the simpler Skorohod problem (originally formulated in 1961 for
D = R,); for a given continuous non-random w(t), a domain D in R, find (z(2), ¢(1))
such that:

z(t) = w(t) - (1), z(t) € D, (1)
60 = [ 0161, Ol € O 10 =1, dlglac, (2

[ 1s € R*/a(s) € DY 6 | () =0. ©

The equation (2) refers to the fact that the “reflection” function ¢(t) has its differential
in the direction 8(s). ©(z) is a set of directions at the point = € dD.

The condition (3) establishes the fact that ¢() is only going to change (or “act”)
when z(t) € 8D. This also assures that ¢(t) cannot kick the function z(t) to the
interior of the domain, but can only keep z(t) within the closure of the domain.

The solution to this problem is a pair (z(t), (t)), where ¢(t) is sometimes called
the reflection function or the regulator function in queueing theory contexts (see
Williams and Harrison (1990)). If ©(z) is a set of normal vectors, then the reflection

is called normal. If not, then the reflection is called oblique.
For example, when d = 1 and D = Ry, it is known that

$(t) = supsi((—w(s)) V 0),
where ©(0) = —1 (see Karatzas and Shreve (1988)).

The normal reflection problem has been solved under certain set of conditions by
Lions and Sznitman (1984). Their results were subsequently refined by Saisho (1987).
Costantini (1991) worked with cadlag functions and oblique reflection, while the

previous two works deal exclusively with the continous case. Uniqueness has been
proved in the continuous case with normal reflection but it is still open for the cadlag

case and for the oblique reflection case, as pointed out by Costantini (1991). One of

the main problems related to the uniqueness is the non-uniqueness of the projection
to the boundary mapping, which does hold for most non-convex domains .

Each of these studies approach the stochastic problem by first solving the deter-
ministic problem, which is then applied to solve a stochastic ifferential equation with
reflection of the following type:

dX(t) = o(X(t))dB(t) + b(X (t))dt — d®(t), X(0) € D,
where B(t) is a Brownian motion, X () stays in D, ®(t) only changes when X(t) € 8D

and its differential has the normal direction n(X;) . Here o and b are Lipschitz and
bounded. In the stochastic case ®(t) is called the reflection process.



For example, in the case D = Ry,0 = 1, b= 0, it is known that X(¢) =| B(¢) |
and by Lévy’s Theorem we have:

LY = ®(t) = max((—B(s)) vV 0).

s<t

Here LY stands for the local time for Brownian motion at 0, and the above equality
is in law.
Recently, Kurtz, Pardoux and Protter (1991) have reexamined the formulation of

the Stratonovich differential equation driven by a general semimartingale with jumps.
They proposed the following stochastic differential equation:

X(t) = Xot [ f(X(s))dZ,+3 [ §'F(X(s))dI2,2];
F Y G(AZf,X()) — X(5)-— AZf(X(s)): @

0<s<t

Here, ©(g,z) = y(1) where y is the solution of the following ODE:

y(t) =2+ [ 9lu(s)ds.

Note that:
AX(t) = p(AZf, X(t)-) — X(1)-.

Here, f is a C?-matrix function, whose ¢j element is denoted by f]2 . The formula (4)

expresses the intuition of its formulation. The idea is to open an interval of size 1
every time there is a jump and let the system be driven by AZ;f for one unit of
surreal time, then shrink this interval to zero and thereby obtain the jump. This
could also be seen as a modelization of the fact that any process with jumps should
be a continuous process that at certain times undergoes sudden and sharp changes

(e.g. when we turn on a light the amount of current suddenly “jumps” up). Through
a “time change” everything could be understood as a sort of continuous process. This
idea was first used by S. Marcus (1978, 1981), his main interest being the stability
of the solutions of stochastic differential equation driven by processes with jumps.
Other types of Wong-Zakai results were obtained by Kushner (1979).

In order to justify this definition through a mathematical viewpoint, we have the
following theorem:

Theorem 1 (Kurtz, Pardouz and Protter) Let Z be a semimartingale (possibly with
jumps) and f € C}. Define Z" by

1 t
Zh == Z.ds.
t h i—h S (5)

Let X" be a solution of the following stochastic differential equation.:
dX; = f(X)dZ}, X5 = Xo. (6)

Then there exists a sequence of random time changes Ty(t) which converge uniformly
on bounded intervals to t, such that Xjfih(t) converges weakly to a process X; which is
the unique solution of the stochastic differential equation
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X() = Xot [ FX(s))iZ+ [ 5700112, 2
+ Y @(AZS,X(5)) = X(8)-= AZ(X(5)), ("

0<s<t

Here, (g, ) = y(1) where y is the solution of the following ODE:

vty =2+ [ oly(s)ds.

Moreover, [ f'f(X(s)-)d[Z, Z]° is understood as (note that this is not a matriz no-
tation)

¢ aj} l 7 m
S [ 2 f(X(9)- )2, 2

Jlm

An extension of this theorem will be proved in Section 3.1. Our goal is to study
stochastic differential equations (SDE’s) with reflection driven by semimartingales
with jumps. We will also show that this new type of SDE have desirable properties
that are not known for the classical models. We will study the SDE for 0 < ¢ < 1,
although 1 could obviously be replaced by any other constant ¢ < oo. Consider the
following equation:

X(t) = Xot [ SX()IdZ+ 3 [ FHX())d2, 2]~ 2()
+ 3 @(AZf,X(s)-) — X(s)-— AZ,f(X(s)-)- (8)

0<s<t

X(t) e D,0 <t <1, ®(t) is continuous and ©(g,z) = y(1), where y is the solution
of the following deterministic differential equation with normal reflection:

o(t) = o+ [ 9w()ds = x(t), y(t) € D, )
ft) = [ 0N |l 0u(s)) € Oy(), 10(u(e)] =1, dislac., (10
o(t) = /Otl(y(s)eaD)dn(s). (11)

The interpretation of the last two equations is the same as in (1). ¢(g,z) can be
interpreted as the fact that every jump is to be the effect of the field AZ, f reflected
on the boundary of D, which is so sudden that it can not be appropriately seen unless
we do a time change and rescale everything to an interval of meta-time size equal to

1 ( the size of the interval does not matter as long as the rescaling is appropiate). As
usual, we assume the following two conditions on ®:

a(1) = [ 0(X()d2| () (12)
o) = /otl(X(s)eaD)dcb(s). (13)
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This stochastic differential equation will henceforth be called the Stratonovich type
stochastic differential equation (SDE) with reflection driven by Z. We adopt this
name because in the case that Z is continuous we obtain the classical Stratonovich in-
tegral on the right side of (8). In the following sections we will sometimes fail to recall
some or all of these five conditions ( (9)- (13)), assuming that they are understood.

In Section 3.1 we consider general semimartingales in smooth domains. We prove
existence and uniqueness of so%utions of 8 as well as adaptedness and Markov prop-
erties of the solution process. The existence theorem will justify our approach to the
jumps as sudden discontinuities.

gsing the idea that this new SDE potentially has an infinite number of continuous
parts, we will show in Section 4 how to obtain inequalities that give (in the normal
reflection case) existence and uniqueness of solutions for general driving semimartin-
gales with summable jumps on domains that are not smooth but hold some weaker
conditions.

Our original interest was to prove some stability results with respect to the so-
lutions of stochastic differential equations with reflection. In Section 5, we divided
this study in two cases. First, when some sort of uniformity condition holds for the
approximating sequence; and second, when the Wong-Zakai effect takes place. The
study of the stability problem could lead to some results on the computer simulation
of the solution processes.

In Section 6 we study the time reversal of solutions. The proofs turn to be very
simple because the jumps are generated by the solution of an ordinary differential
equation. These results also follow in the oblique reflection case, with conditions
similar to the ones achieved by Lions and Sznitman.

We start with a simple case; where Z is continuous and the reflection is normal.
We use the notation and definitions for semimartingale theory as found in, e.g., Prot-
ter’s “Stochastic Integration and Differential Equations: A new approach.” (1990).
For stochastic processes we will use X; or X(¢) interchangeably. D[0,1] denotes the
space of cadlag functions on [0, 1] with the Skorohod topology. The arrow = denotes
weak convergence on D[0,1]. Although it might seem that we are only discussing the
generalized diffusion case, it is not difficult to obtain extensions in which the coeffi-

cients fz-j depend on (t,w, z) instead of only = as we are doing here. The techniques

to obtain such results are discussed in Doléans-Dade and Meyer (1977) as well as in

Protter’s book.
In what follows C([0,T], D) denotes the space of continuous paths from [0, T]

into D, a subscript b stands for bounded and a numerical superscript stands for the
number of times a function is continuously differentiable. Sometimes we write C'(D)

for C(D; R*) when the situation is clear. Define C(D) := {w € C(Ry; D)/w(0) € D}.
Also we denote by BV(0,T) the set of paths of bounded variation in R¢. All vectors
are considered as row vectors and AT denotes the transpose of A.

2 Preliminaries

2.1 Reflected SDE’s driven by a continuous semimartingale

In this section we recall some results when the driving semimartingale is continu-
ous, for proofs we refer the reader to Kohatsu-Higa (1992). Consider the following
stochastic differential equation:

X() = Xo [ fX(NdZ+ [ SrFX()AZ,2) - 0(0), (14



where X(t) € D and
o(t) = [ n(X(s)d| @] (s), (15)
o) = [ “1(X(s) € OD)dd(s). (16)

Z is a continuous semimartingale on R¥, and D is a domain holding the following
conditions:
Define the set N, of inward normal unit vectors at z € 0D by

N, = M., (17)
r>0
N,, = {n€R*:|nl|=1, Bz —rn,r)N D = 0}, (18)

where B(z,r)={y € R*:|y —z|<r},z€ R* r>0.
Condition (A)(uniform exterior sphere condition) There exists a constant ro > 0

such that
N, = N, ,, # 0 for any z € 0D.

Condition (B). There exist constants § > 0 and 8 € [1,00) with the following
property: For any = € 0D there exists a unit vector [, such that

< lznn >2 %3' for any n € UyGB(z,&)ﬁaD Ny-

For example, when the boundary of D is of class C?, it is known that Condition
(A) holds (see Gilbarg and Trudinger (1977)) and Condition (B) is a consequence
of the continuity of the normal to the boundary function. Cases in which these two

conditions hold but they are not C? abound. For example, any domain which is C?
except a finite number of obtuse corners hold these conditions. We denote the finite

variation part of the semimartingale Z by F'V(Z) and
k . .
112, 2] = X_[2", 2')s.
=1

From now on we will assume that f]2 € C{D;R) ,i=1,..,dand j =1,...,k.

Theorem 2 Let the domain D satisfy Condition (A) and (B). Then the system (14)
has a unique solution.

Corollary 3 Let the domain D have a smooth boundary, then the system (14) has a
unique solution.

A weaker version of this result was mentioned by Lions and Sznitman (1984) but not
proven.



2.2 Weak convergence of stochastic integrals

In the next sections we will extensively use results of weak convergence and tightness

of stochastic integrals due to Kurtz and Protter (1991), we state them for complete-
ness.

They studied the following problem:

Let Z, = M, + A,, where M, is a local martingale and A, is a process of bounded

variation paths (i.e. {Z,} is a sequence of semimartingales). Given (X, Z,) con-
verging weakly to (X, Z) in the Skorohod topology with Z, semimartingales, under
which conditions does [ X,dZ, converge weakly to [ XdZ?

The following condition (some sort of uniform integrability condition) is the key
condition on Z,. Here, T;(A,) denotes the total variation of A, up to time t.

(*)Goodness condition.

A sequence of semimartingales {Z,} is said to hold the goodness condition if for
each a > 0, there exist stopping times {72} with P{r2 < a} < % such that for each
t>0,

supn E[[Mp, My]rant + Tinra(An))] < 0o,

We have preferred to use a stronger condition than the goodness condition of
Kurtz and Protter, because it is easier to understand and will suffice for our needs.

Theorem 4 Suppose (*) holds and that X,, is bounded in probability (under the sup
norm). If {Z,} s tight , then there exists a sequence of continuous, increasing stop-
ping times an(t) such that (Z,(an), Jo" XndZn,an) is tight.

If (Zn(an), Xn(an), [§" XndZn, ay,) is tight then (Zn, Xy, [ XndZ,) is tight .

Also, if (Xn, Z,) = (X, Z) in the Skorohod topology, then Z is a semimartingale
with respect to a filtration to which X and Z are adapted and (Xy, Zy, [ XndZ,) =
(X,Z, [ XdZ).

The above result holds if weak convergence is replaced by convergence in probability.

Although the tightness results might not seem to be satisfactory, there is an example
in Kurtz and Protter (1991) that shows that better results fail without some extra
conditions (see Remark 4.2(d) in Kurtz and Protter (1991)).

We will need the tightness of (Z,, f X,dZ,) in a situation in which Theorem 4
only gives the tightness of (Z,(ax), Jy* XndZ,). In such a situation we refer to the
proof of Proposition 4.3 in Kurtz and Protter where it can be seen that the key of
the proof is to prove that on any interval on which a, is constant (Z, A) is constant
except for at most one jump ((Z, A) is any weak limit of (Zn(an), g XndZ,).

Kurtz and Protter have also obtained a Wong-Zakai type theorem, i.e., they char-
acterized the weak limit for solutions of stochastic differential equations in which the

integrator does not satisfy (*), but some other property close to (*) can be obtained.

Theorem 5 Suppose Z, = Y, + W,,, where Y, and W, are also semimartingales
adapted to the same filtration to which Z, is adapted (these could change with n).
Also, let X, be the unique solution to the following stochastic differential equation

t
X = Xa(0) + | F(Xa(s=))dZn(s),
0
where F' € C¥. Define H, and K, by

() = [ WE(s-)aw(s),
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and

KD(t) = [v), W]l
Suppose that {Y,} and {H,} satisfy (*) and that

(X, (0), Yo, Wo, Ho, K,,) = (X(0),Y,0, H, K),

Then(X,(0), Yo, Wy, H,, K,,) is relatively compact, and any limit point
(X(0),Y,0, H, K) satisfies

X(0)= X O FX(s= DAY (&)+3 [ 0uFp(X(5-)) For(X(s=)d(H™ (6)=K"(s))

a,Byy

where 0, denotes the partial derivative with respect to the ath variable and Fp de-

notes the Bth column of F. This result holds true if weak convergence is replaced by
convergence in probability.

For proofs and exact statements, we refer the reader to Kurtz and Protter (1991).

2.3 Tightness results on the Skorohod problem

Costantini (1991) studied the relative compactness properties of solutions of the Sko-
rohod problem. Here, we state weaker versions of these results which will be used
later. In the next theorem we assume that D holds Condition (A) and (B).

Theorem 6 Letw € C(D), then there exist positive constants K (w) and K'(w) such
that, for any solution (z, ) to the Skorohod problem (1):

sup | z(t1) —z(ts) | < K(w) sup |w(t1) —w(ta)|,V0<s<t <1, (19)
s<t1 <t2<1 s<t1 <2 <t
| ¢1 @)= 1¢1(s) < K'(w) sup [w(t) —w(tz) |, VO<s <t <1 (20)

s<t1 <t2<t
If W C C’(D) is relatively compact in the uniform topology, then:

sup K(w) = K < 0o, sup K'(w) = K' < 0. (21)
weW weW

Th?o 1next theorem states the continuity property of the solution of the Skorohod
problem.

Theorem 7 Let (z™, ¢™) be the solution to the Skorohod problem for w™ € C. Ifw"
converges to a function w in the uniform topology, then the limit of {(z", ")} exists
and this limit is the solution of the Skorohod problem for w.

For the proofs of the above two theorems see Costantini (1991), Theorems 2.4 and
3.2. It is not difficult to obtain the stochastic process version of the above two theo-
rems . Just replace every ocurrence of a function with the corresponding continuous
stochastic process.



3 Stratonovich type SDE’s with reflection on a
smooth domain

3.1 Existence of solutions

In this section, we will prove existence and uniqueness of Stratonovich type equations
with reflection on smooth domains. The method will use ideas from Kurtz, Pardoux

and Protter (1992). This entails the use of an approximating sequence for Z and a

sequence of “random time changes” under which the a%proximating semimartingale
does not jump. The results of the previous section can be applied to the approxima-
tions. The theorems will follow through the use of appropriate limits theorems from

Kurtz and Protter (1991).

We will prove not only existence and uniqueness, but also give a scheme to approx-
imate the solution for the general Stratonovich type stochastic differential equation
with reflection. This argument also proves Theorem 1 in the Introduction.

Let Z be a semimartingale (possibly with jumps) that belongs to H?, i.e., there
exi;ts a local martingale M and a bounded variation process A such that Z = M+ A
an

1 1
1M, M? + /0 1A, ||| 2 < oo

This is not restrictive as we will note at the end of the section (see Remark 29).
We are looking for solutions of the following Stratonovich type stochastic differ-
ential equation with reflection when f € CZ(D):

X = Xoo [ f(X)dz,+5 [ £7(X,)d2,2) - 8(0)
+ 3 A{Q(AZS, Xo) = Xoo — [(Xom)AZ,Y, (22)

0<s<t

8(t) = [ n(X.)d| @ (s), Xi € D,

and (g,) = y(1), where y(t) is the solution of

y(0) ==+ [ oly(s))ds (1), y(t) € D,

¢
£(t)= [ n(y(£)d] x| (5)
One of the conditions for X to be a solution for (22) is that the sum:

Z {(P(AZsfa Xs—) - Xs- - f(Xs_)AZs} < OO a.s.

0<s<t

We start by defining the random time change that will let us consider approxi-
mating continous semimartingales to Z. It is known that

Id= 3 |AZ” < o0 as.

0<s<t

(d stands for discontinuous). The random time change that we want to introduce is
1 gt
wt) =7 [ (T4 s)ds. (23)
h Ji—n
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4 is continuous, adapted, strictly increasing and of trivially bounded variation on
bounded intervals. We also have that 4, — o pointwise, where yo(¢) = T'¢ + ¢. The
approximating semimartingale is:

1 rt

Zh = = Z.ds. 24
¢ h Ji—n S ( )

From the above definition it is easy to see that Z" is continuous, adapted, and of

bounded variation (therefore, a semimartingale). Define X} as the unique continuous
solution of the following stochastic differential equation with reflection:

{
XF = Xo + /0 FXM)dzZP — ok, (25)

This solution exists and is unique because Z” is a continuous semimartingale. To be
able to achieve the convergence in D[0, 1}, we need further to change the time frame.
Accordingly, we define:

‘/th — Zh—

'th(t)-

Then V}* is continuous, adapted to the filtration .7:7;1(75), and it is of bounded variation

(26)

because -y, is continuous and strictly increasing. Also note that v;'(t) is an increasing
sequence of stopping times.

Lemma 8 Let Y} be the unique solution of:
t
Yi=Xo+ [ F(YH)AVE -, (27)
0

Then Y = X*_, . and Ut = &*_

T ! (®) Th ! ()’

Proof.
Téle proof is standard and uses a change of variables formula for integrals with
respect to bounded variation functions (see Dellacherie and Meyer p.153). O
Although 7o is not an onto function in general, it is possible to define a weaker

inverse by

Yo (t) = inf{s: v0(s) > t}.
This inverse is a stopping time, nondecreasing in t, and constant every time 7o jumps.
Lemma 9 v;'(t) — 75 (t) uniformly on bounded intervals.

For the proof see Kurtz, Pardoux and Protter (1992).
Remark 10. Actually, as v(t) < 70(t), we have that v;'(¢) > 75 (¢) for all ¢.

To characterize the limit process of the sequence V", define:
m(t) = sup{s : 75" (s) < 15 ()},
na(t) = influ: v (u) > % (1)},
Z')’g_l(t) if nl(t) = nZ(t);

VP = _— i)t
2 0@ —m@ T A 0w =m0 #mb).



Therefore, 71(t) < 79(t) and 45" (s) is constant for [n;(2),n2(¢)]. V° is essentially Z
time changed according to 75", but we open a fictitious time interval [n:(¢), 72(¢)]
every time Z jumps. In this interval the value before the jump is joined linearly with
the value after the jump, making V° continuous. V? is adapted to Fort@y and is
not necessarily a semimartingale because the interpolated pieces may add to infinity.
In the rest of the discussion we will use the Skorohod topology for cadlag functions
extensively. Theorems, results and notations can be found in Jacod and Shiryaev
(1987). The proof of the following Lemma can be found in Kurtz, Pardoux and
Protter (1992).

Lemma 11 V* — V° uniformly on bounded intervals.

We are interested in applying limit theorems to obtain the limit of (27) . For
this we will use results from Kurtz and Protter (1991). Define U} = V, — Z.,=1)-

0
Therefore, U* = U :=V° — Z'vo_l(-)' The following sequence of lemmas show that the
conditions of Theorem 5 hold in this case, and therefore we can take limits in (27).
We also have to be careful with the manipulation of V° because as mentioned ear-
lier V© is not necesarily a semimartingale and therefore an integral with respect to it

might not exist.
Remark 12.

In the following lemmas we will use the following two facts extensively.

1. Using (26) and (24) we have:

h _
d‘/th _ dZ’Y,:I(t) _ —];(Z . _ 7 )d’)/hl(t)
dt dt AT ) T @RS gy

-1
2. d—'ybﬂﬂ can be obtained by an implicit differentiation of the following equation that
can be obtained from (23),

1 % ®
t= —/vh (T% + 5)ds.

h Jyi(6)-h
One then obtains:
dyp'(t) h
= T4 —1d :
dt Fqgl(t) F'y;l(t)—h +h

Lemma 13 The sequence [y f(Y)dV} is tight.
To prove Lemma 13, we use the following result:

Lemma 14 (Lions and Sznitman) Let (z, k) be the unique solution to the Skorohod
problem associated with w € C*(D). Then:

Ky = /Ot 1(z(s) € dD)n(z(s)) < n(z(s)),w(s) > ds. (28)

10



Proof of Lemma 13.
As:

[ smave = [ 58z, ag + [ rachav,

it is enough to prove that f§ f(Y*)dU?! is tight. To make things easier, we will suppose

that {f; URdU?} is good (Condition (*) in subsection 2) in the sense of Kurtz and
Protter (we will prove this later). Using the integration by parts formula we have:

[ #vhavt = svyut - [[Ukpenav - rv U (29)
Here, )
R, UN = [ £ Fhdv, UM, =o. (30)

Also (using equation (28)),
Jutrhavt =[Ok fEz )+ [ U SGUE +
- [[ulpviyaet
= /Ot Us"f'f(Ysh)dZ“vJ] s) + /Ot U:f,f(Y;.h)dU‘f +
~ [CUR SN € ADIR(YRY (YD), FOVEAUE)
— [0 5 (Y € OD)(Y ) (Y, (VI )- (31)

By looking at the effect of the calculations in (30) and (31) upon (29), it is not difficult
to see (using Proposition 4.3 in Kurtz and Protter (1991) or Theorem (4)) that the

tightness depends upon the goodness of [ U?dU". We will prove the goodness in the
next lemma. The tightness of

FOYMUE = FOVE = VE) + F(YU,

can be obtained as follows. Take § € R, and choose a partition {t;} so that ¢;1;—¢; > §
and
max w(Z, [ti, ti1]) < €.

Here w denotes the modulus of continuity . This implies that all jumps of size bigger
than € are at some of the points ¢;, and that any jump within [¢;,¢;41[ has to be less
than e.

Obviously, f(Y,*)(V}* — V,9) is tight because it converges to zero. If ¢,s are such
that 0 < s —t < 4, then:

| YU — F(Y)U, |

na(t) — ¢
< |f(Y;h)AZ'yo_1(t)ml[m(t)mz(ﬂ[(t)

R 2(t) — s
—f(Y; )Aqul(t)ml[m(f)mz(t)[('s)l[m(t)mz(t)[(t) | (32)

11



n2(t)
+ | f(Y;h)AZ'yo_l(t)—'(_51[771(t)mz(t)[(t)1[711(75),712(75)[( s)

(t)—n
—f(Y})AZ -1(3),727(753—)§—) [ (s)ma()((8) | - (33)

Now, (32) is less than:

|AZ 1, FYD)
772(t) _ 771(t) 1[771(75),772(t)[(t)|772(t) —t— (772(1;) - 3)1[771(t),772(t)[(3) |’ (34)

which if analyzed by cases (if s is in [71(¢), 72(t)] or not) can be proved to be smaller
than Ce. For (33), assume first that s € [n1(t), n2(¢)], then (33) is smaller than (see
the Remark 11):

|AZ, -1<t)| / 2o~ Sa-n)
na2(t) — Tll(t) Pd,jl(t) Pioagp TR
f(Y;h)(Z O Zq,jl(s)—h)

d d
Pt~ Dpron Th

Uk (Y} DY) ((Y}), )dsl, (35)

which clearly can be made smaller that e. In the second case where 71(s) # n1(t), we
have that (33) is equal to:

Aqul(s)f(Ysh)(U?(S) —3)
n2(s) — m(s)
this can be small if AZ -1, is small as m(t) # m(s) and [t — s| < 6. Using the

sequence {t;} obtained from Z, the above inequalities show that it is possible to
obtain a partition {s;} for which

| Lns (5)ma ()1 () (36)

max w( f(Y;)UP, s, 8i41]) < Ce+ 60r£1a<xl |IAZ].

Therefore the tightness of f(¥;*)U} follows. O
Remark 15.
The tightness of f§ f(Y;h)dZ,yo-l (s) follows as in the Proof of Proposition 4.3 in

Kurtz and Protter (1991), noting that the above integral jumps every time Z does
and stays constant if Z stays constant (see comments after Theorem 4). For details
we refer the reader to Kurtz and Protter (1991).

Lemma 16 The sequence [¢(UMTdU?, is good (Condition (*) in subsection 2) in the
sense of Kurtz and Protter (1991). Also,

[whyravt + ([ wryravty®

converges a.s. to (V,? — Z%-l(t))T(V;O ~Z,=1y) — 2, Z],-1(4)) in the Skorohod topology
(AT denotes the transpose of the matriz A).
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For the proof see Kurtz, Pardoux and Protter (1992).

Let’s review what we have done so far. We want to find a solution to (22) by
finding a limit of Y which is a continuous process that solves (27). We know that
V* — V°, and that f§ f(Y;*)dV/ is tight.

Now, we only need to use a tightness result (Theorem 3.1) in Costantini (1991)
or Theorem 6, to obtain the following lemma.

Lemma 17 ‘
(P, [ F(vR)avE, ) s tigh.
0
Also, U" is a good sequence.

Proof.
The only thing left to prove is the goodness of U", By Theorem 6 , we have:

| O [,< K (w) sup | Xo+ [ FOYP)AVE],
0<s<t 0

where the constant K (w) is bounded when | Xo + f5 f(¥})dV," | is in a compact set
of D[0, Ty]. Using this fact together with the tightness of Xo+ fg f (Y,})dVE, it follows
that | U* |; is stochastically bounded. Therefore, by Remark 2.3 in Kurtz and Protter
(1991), it follows that ¥* is good. ]

As a consequence of Lemma 17, we know that there exists a limit point for a
subsequence of (Y, f; f(Y}')dV}, ¥*). Denote the subsequence with the same super-
script h and its limit point by (Y, S, ¥.). It is also known that this limit should solve
the Skorohod problem for S. Now, we give the characterization for S.

Theorem 18

(Yth,/. F(YMAVE ¥ — (Y, S, a.s. in the Skorohod topology,
0
where

o = /otf(Ys)dZwo‘l(s)+f(Yt)Ut*/OtUsf’f(Ys)dZ%_l(s)

t 2 Z’Z’Y_l s t ,
_ /0 f'f(Ys)d(%—[——%u)Jr/O U, f'(Y:)dU,. (37)

Also, Y;, S; and U, are continuous processes.

Proof.
In order to characterize S, we need to look at the proof of Lemma 13.

As:
[ sanave = [ 1094z, + [ Fe0a0L,

it is enough to find the weak limit of f5 f(¥,*)dU?. Although we can not apply a limit
theorem for this integral, we have by integration by parts (as in Lemma 13):

[ FOUE = SR [ R 002 = [ U FOUN [ U ()2,
(39)

13



As U and [ U"dU" are good, it is enough to take limits in (38) as in Theorem 4.
By performing this operation one obtains (37).

Here, notice that although U might not be a semimartingale, its square is a pro-
cess of bounded variation (therefore a semimartingale). The continuity property of
(Y, S, ¥) follows because the sequence is tight and each element of the sequence is
continuous (for details, see Proposition 3.26 in Jacod and Shiryaev (1987)). O
Remark 19.

1. Heuristically the limit of (27) is a limit process Y, the unique solution to the
following Stratonovich type stochastic differential equation with reflection:

Vo= Xot [ FGVE+ 3 [ 500V, VOL - W (39)

But in this case as V° and Y are not necesarily semimartingales we have to use
another way to write this expression. This is provided by the integration by parts
formula used in (38).

2. In the vector case [; f’f(Ys)d(M) stands for

2

t  Of.
> Uja—i‘]’: wdUL.

Skl

As a consequence of the above theorem, we have

Corollary 20 There is at least one solution to the Stratonovich type stochastic dif-
ferential equation with reflection (22).
Progf.

; can be simplified as follows:

S = /Of(y;)dzw;l(s)Jrf(Yi)Ut—/o U.f'f(Y2)dZ,-1 .

t 2 Z,Z ~1(g t
- [ raas - BBy [y pvas,
= [ IOz + SO~ [ PR

1 11 t
5 [ FRGAZ, 20 ) + [ vy, (40)

Here, we have used some facts about Uy:

1. U, is continuous everywhere except at n1(t) when n:(t) # 72(¢), and its jump
at that point has size —AZ%-l(t).

2. U, is zero everywhere except in the intervals of the form [n1(t),n2(¢)[ when
m(t) # n2(2).

Now, we study the behaviour of Y; when ¢ € [n1(¢),n2(¢)[ for n1(t) # n2(t). For
this we will need the following formula:

t) —t

7a(
Ue==AZyoro iy — ) m@moilt)-

(41)

14



In such a case we have:

o(t) —t
i = Yo - f(Y;)AZ 1(t)77 7(7 )( ) m(t )1[n1(t) nz(t)[( )+ f( ﬂl(t))AZ'y_l(t)
- Y)(AZ o 2B s
g TN AL 50 s =
772(t) ! _ _
* /(m(t),t] AZW"_I(t) na(t) — nl(t)f (Fo)ds = (B = o) ()

We also know that Y;* — Yn’z @ — Yi — ¥, (1), in the uniform topology. Therefore:

t
Y- Yy = / FYRYAVE — (Uh — T )

K 1(75)
- Z'ygl(s)—h)
+h

_ (Z’yh (s)
= ¥ 7
m{) Bt =15 -

Applying convergence theorems to the above integral we get:

Y=Y+ [ f(Y)Mds—(\Il—\I’ ) (44)
N A O 10) LT Em@n

when ¢ € [71(t), n2(¢)[. Therefore by equating (44) with (42), and applying that result
to (40) gives:

t L, :
Vi = Xo+ [ G+ 5 [ FIYAZ 20,
n2(o(u)) f(Y)AZ,

" ds — (Yo (ro(u))) AZ0
0<u<(»§1:(n2(t))) mo@) 12(0(%)) — 71(vo(w)) (Yo (ro()) ) A Zu))
/772(15) f(Y) AZ ) p . (45)

_ A O

g n2(t) — n1(t) t

This representation is possible because , it is not difficult to show that each term in
the sum above is of order (AZ,)%. That is, by Taylor’s theorem we have:

() (Y,
_/ J)Az . 9 ds — f(¥n, (t))AZ’yo_l(t)

m (o) ﬂz(t)—’h(t)
= (ro B AZopm®-mE) € mn)
A /gy

o Ay 4T
= 7100 (100 - )

= O((AZ»,()-l (t))z)'

AZ, =1y (m2(t) — m(t))
(t=8)

The last equality follows because (see equation (28))

av, _ , AZ,q
o = (% € 0DIn(¥)) < n(¥), f(¥) s > (46)
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Now, define X; =Y,

o(¢), then using (45) one obtains:

Y0(2) 1 [o@ .
Yoy = Xo+ [ fV)dZg+3 [ FIYAZ 2,

mo@)  f(V,)AZ,
+ 2 / . ds = f (Yo (o)) AZu))
ocu< (e "0 M2(0(w)) = (0(w))

_\IJ'YO (t)' (47)

Applying change of variables formulas we have that X, solves (22). O

Remark 21.
1. This proof also shows that the nature of the summability of

Z {SO(AZsfa Xs—) - Xs— - f(Xs—)AZs}

0<s<t

1s twofold. First,
AZ, /0 ' Fy(u))du — F(Xo_)AZ, = O((AZ)?);
and secondly Yoc,<; £27¢(1) = (U (70(t)))?.

Theorem 22 There exists a version of the solution to (22) which is adapted to the
filtration to which Z is adapted.

Proof.

Since Y* = Y and Y is a continuous process adapted to .7",70—1 (&)> W€ have that the
convergence is in the uniform topology. If we look carefully at the previous proofs,
is not difficult to see that the convergence of Y”* to Y is a.s. and in the uniform
topology.

Since YJS t) = Yy(t) @.s. uniformly in ¢, we obtain the measurability of X, by

proving the “approximate” measurability of Kf; (t)- That is,

h  _ yh
Yo t — Xv,jl(%(t))’
therefore by using a classical argument by simple processes we obtain the measura-
bility of Y;’; () With respect to Fyion, and using that the filtration is right continuous
we get the adaptedness of X. o

3.2 TUniqueness

The following inequality will serve to prove uniqueness of solutions. Here, we will use
strongly the smoothness of the boundary of D, which will ?ermit the use of Lipschitz
properties of the reflection process on half space. This localization argument has

been previously used by Anderson and Orey (1976) and it can also be found in Ikeda
and Watanabe (1981). The idea is to think of D as a C? manifold with coordinate
neighborhoods {(U;, ¢:);7 = 1,...,n} for some finite n. Let Y and Y* be two solutions
of (45) for two initial points zo and z3. Under these conditions we will prove the
following result:

16



Lemma 23 Define: _
n=wmnf{t>0:Y; & U},
T =1inf{t>0:Y" ¢ U}.
Then,
T1N\T:

E sup |Yi—Y"|’)<C|z0—z|? +CoF “sup |V, —Y*[2dA,), (48
i 0 s

0<t<(T1AT2) 0 0<s<t

where A is an increasing stochastic process of bounded variation. Also, if zo = x§
then 1 = 7.

Remark 24.

As we have noted before (see Remark 18), the main problem here is to be able to

obtain results withouth integrating with respect to VV° or Y which are not necesarily
semimartingales.

Proof of Lemma 23.
The 1dea of the groof is to map Y and Y™ to the half plane, obtain the equivalent
inequality there and transform back to U;; by using the metric equivalence property.

For this, if U; N 0D # 0 let g; : U; — Rff_ be twice continuously differentiable, such

that:
1. There exists a constant m such that:

= gi(e) ~ (3 I<| 2~y 1< m | g(a) — gi(9) | (49)
2. g}(z)=0ifz € OD.

If U;N 0D = 0 then g; : U; — R* with property 1 above.
The method used in the previous subsection can be used to obtain a version of

1t6’s Lemma for g(Y;). That is, apply [té’s Lemma and limit theorems to g(¥;*) to
obtain:

t
9(¥) = glea)+ [ (V)22 +9 FTU:
¢ ! ! ¢ / ! st2
=[O (V)20 = [ (69 X))
+ [ Ug 1Y faw, — [ g (vi)au
0 S g S S 0 g S S
1 ¢ I pIN! c
+5 [ @1 F X, 2y (50)
Which by a similar argument as in the proof of Corollary 20 gives:
¢ 7 ]‘ g ! !
9(¥) = gleo) + [ (VA2 + 5 [ (0 F)FVNAIZ, 2L,

72(v0(v)) g f(Ys)AZ,
N ds — ¢' F (Yo (o (w)) ) A Z)
o<us(wo;(n2(t))> mw@) M2(70(w)) — 11(70(u)) (mtntan) )

m(t) AZ'yo_l(t) t,
—/t gf(Ys)mdS —/0 g'(¥s)dV,. (51)
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We have obtained a stochastic differential equation with oblique reflection in the half
space Ri. In this case it is known that the reflection process is Lipschitz (see Dupuis
and Ishii (1991)). Using (51) we obtain:

| 9(%) — (%) 122 [ g(eo) — 9(s3) | +2 | [ (4'7(%:) = g SV )

5 [ RSO = (¢ P FOENAIZ, D,

E ( n2{v0(u)) (g f(Ys) _g,f(Ys*))AZuds
o<ugry t (ma(e))) * ™) n2(Y0(w)) — m(yo(u))

_(g,f(Ym('yo(S))) Jf(, 1(70(3))))AZU))

B /nz(t)(g,f(Y) _ g/f(Y*))_é_%l‘:.(_t)_ds | (52)
¢ ) PUm(t) -m@)

+

This gives (48) , if we use (49).
To show that 74 = 7, when z¢ = z§ is enough to follow the same ideas as in the
proof of Theorem 2. o
Let X be the solution we obtained in the previous subsection, and let X’ be
another solution of (22). The idea of the proof of the uniqueness is to generate
another solution of (45). This raises a contradiction because of the local uniqueness

provided by Lemma 23.
Let X™ be a solution for

X; = Xot [ X0z, + 3 [ FAXLAZ, 2 - 8)

+ Y {e(AZf,X7) — X — f(X2)AZ,}. (53)
o<s<t
Define,
X;(J‘l(t) if 71(2) = naft);
Y = t
t . Zyzi() o) —t ifm(t) <t Sn()
R +/ AR nz(t) e (e nm) i S

(54)

Then, by using a similar argument as in the proof of the Corollary 20, we have
that Y™ solves the stochastic equation (45). By uniqueness of solutions we have that
Y* =Y a.e., and therefore Y ) = Y,(s). From there, we get that X7 = X, a.e.

To make the argument more explicit, we give the following Lemma.

Lemma 25

yr = X0-|-/ F(¥7)dz, 1(s)+2/ £ FYVdIZ, 2]
n2 (o (w)) Y*)AZ,
o<u<(ng (ma(e))) ~ M) 12(70(%)) — m(vo(u))

_/"2(t) f(y*)iLds _ (55)
t *ma(t) —m(?) b

ds — f(Yo (vo(s))) A Z5))
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Here,

=00t @)+ (3 s 0) - () - “AZt(ﬁ))'

Now by uniqueness of solutions for Stratonovich type stochastic differential equations
g(rivenxl_oy continuous semimartingales, we know that Y* = Y a.e. and therefore,
*=X a.e.

In order to prove that this solution X is a Markov process when the drivin
semimartingale % is a Lévy process, we will need the continuity of the flows define
by solutions of Stratonovich type stochastic differential equations with reflection.
T>}]1is continuity is with respect to the initial point. Using Lemma 23 is not difficult
to prove this assertion.

Theorem 26 If the driving semimartingale Z is a Lévy process then any solution of
the Stratonovich SDE with reflection is a strong Markov process.

Proof.

F{rst, we note that the flow defined by any solution is continuous with respect
to the initial point. To prove this it is enough to use Kolmogorov’s lemma locally
in Lemma 23. Therefore we obtain the continuity of Y* with respect to the initial
condition Y3 = a.

From here, is not difficult to follow the same steps as in Theorem 32 of Chapter
V in Protter (1990). Let [Z, Z]; = at for some constant . Let T be a stopping time
and gT = 0{Z14u — Z7 : w > 0}. Then GT is independent of Fr.

Let X (z,t,s) be the unique solution to the Stratonovich type stochastic differential
equation with reflection driven by the semimartingale Z, — Z;, that is: :

X(z,t,8) = z+ /ts f(X(z,t,u—))dZ, + %/Ot f f(X(z,t,u=))adu — ®(z,t,s)
+> {o(AZ f, X (z,t,s—) —X(z,t,s—) — f(X(z,t,s—))AZ}. (56)

0<s<t

As in the proof of Theorem 22 we obtain that X(z,¢,s) € G'. Also, as mentioned
before, one uses the continuity of the flows to show that

X7pe = X(X(2,0,T),T,T + s) a.s.
for a stopping time T. Let & be a bounded measurable function from R to R, then

E[h(X3,,) | Frl = EX(X5,T,T+s)) | il
— j(x3)
where j(y) = E[h(X(y,T,T +s))] (57)

As we have proved strong uniqueness and Z is a Lévy process it is easy to see that

1(y) = E[R(XJ)].
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3.3 Oblique reflection case

Lions and Sznitman obtained the weakest known conditions to obtain uniqueness for
the solution of the oblique Skorohod problem for diffusions. These are:

1.D is a bounded smooth open set in R%.
2. v >0, Vz € D, (0(z),n(z)) > v, where © € Cy(D). (58)

We consider the general case here, because we have already assumed that D is a
smooth domain. The procedures to obtain the lemmas in this subsection are similar
to those previously proved, therefore we will only note the significant changes that
one has to introduce, leaving the details to the reader.

_ We start with the continuous case as before. The equation that we will focus on
is:

X() = Xot [ [XO)Z+ [ 3P XO)IZ 2L~ (), (59)

where X (t) € D and

o) = [ 0X()d|@](s), (60)
o(t) = /OtI(X(s)EOD)d@(s). (61)

Since Z is a continuous semimartingale on Rk,_we also assume the three conditions
above with the extra condition that ® € CZ(D). The following Lemma extends a
result obtained by Lions and Sznitman (1984). The proof is similar as theirs.

Lemma 27 Let
FOO)@) = Xo+ [ FX@)Z+ [ 57 FXO)IZ, 2. -0(0),  (62)

where ®(t) is the reflection process for the oblique reflection problem, so that

F(X)(t) € D forallt <1. Then for X, X' such that

E sup | X(t) |*< 00, and E sup | X'(¢) [*< o0
0<t<1 0<t<1

we have:

Blsup | F(X)() - FOO)®) [ K[| sup | X(v) = X'(0) [*dA], (63

0<t<u
where A; =|| [Z,Z] ||s +FV(Z)s, and K is a non-random constant.

From here onwards, the procedure followed on the previous subsection can be applied
similarly.
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Theorem 28 Let f € CY(D) and O(z) be a field of directions for x € 0D satisfying
conditions (58). Then there exists a unique solution to the following Stratonovich
type SDE with oblique reflection:

t=Xo+/ _)dZ, + = /ff _)d[Z, Z) — (%)
+ 2;{30 (AZf,Xoo) — Xoo — f(Xeo)AZ,}, (64)
a(t)= [ 0(X,)d| @] (s), X, € D,

and ¢(g,z) = y(1), where y(t) is the solution of

= -|-/ s))ds — &(t), y(t) € D ,

n<t>=/0 O(y(s))d | & | (5).
Also if Z is a Lévy process then the solution X is a strong Markov process.

Remark 29. The restriction that Z € H? is not an additional condition to impose,
as this can be obtained from any semimartingale through an appropriate change of

measures. For details, see Lenglart (1980).

The procedure is as follows, let X be a solution process on (2, F;, @) where @ is a
new probability measure under which Z € H2. On the space (2, F;, Q) it is possible
to find a solution X to the Stratonovich type stochastic differential equation with
reflection (65). This solution has fourth bounded moments. By carrying this solution
X to the space (Q, F:, P) we have the existence of solutions because all integrals are
uniquely defined for equivalent measures. Therefore the existence follows.

For uniqueness, consider first the case in which D is bounded. Let X, X’ be 2
solutions on (Q, F;, P) then obviously

E(sup |X,|*) < 0o and E(sup |X!|*) < oo,
0<s<t 0<s<t

therefore X = X'. If D is unbounded, is enough to consider X, where
=wnf{t: X, € 0DUOB(0,r)}

then Xiarr = X{z;r. As 77 — 00 as r — 00, we conclude that X; = X].
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4 Stratonovich type SDE’s with reflection driven
by semimartingales with summable jumps

In Section 2.1 we dealt with smooth domains and general semimartingales. Here we
will weaken conditions on the domain, but in exchange we will have to limit the class
of semimartingales driving these reflected SDE’s.

These conditions on the domain are the same as the ones used by Saisho (1987)
to obtain the existence and uniqueness of Brownian diffussions.

Theorem 30 (Saisho, normal reflection case) Suppose that a domain D in R* sat-

isfies conditions (A) and (B). Then for any w € C(D) there exists a unique solution
&(t,w) of the equation (1.1) and ¢(t,w) is continuous in (t,w).

The case of continuous functions and oblique reflection is treated by Lions and
Sznitman.

4.1 Existence of solutions

Now we state the problem we are going to solve. We will prove existence and unique-
ness of solutions for the following system:

X = Xot [ f(X)dzZ,+ 5 [ £7(X )12, 21 - 8(0)
+ > {p(AZf,X,0) — X,o — f(X,0)AZ,) (65)

o(t) = [ n(X)d| @1 (s), Xe€ D,

a(t)= [ “1(X, € 8D)dd(s),

and ¢(g,z) = y(1), where y(t) is the solution of

v =+ [ olu(s)ds - w(t), y(t) € D,
o(0) = [ n(y(s)d] 5 | (5),
o) = [ “1(y(s) € DD)dr(s).

In order to prove the existence of solutions for the system (65), we consider only the
jumps of Z that are bigger than € > 0 in absolute value, and then prove that this
sequence of solutions X¢ is tight in D[0, 1] under the Skorohod topology. In order for
this argument to work we need to assume that the sum of the jumps of Z converges
absolutely, i.e.,

Y |AZ|< o0 as.

0<s<t

Moreover we assume that f € CL(D).
We define:
Z:(t) = Z; + > WIAZ(s) [> AZ(s),

0<s<t
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where Z° is the continous part of the semimartingale Z (see Protter (1990)), i.e.,

Z(t) = Zi— 3 1(| AZ(s) |> 0)AZ(s).

0<s<t

Lemma 31 For the driving semimartingale Z¢ the system (65) has a unique solution
Xe.

Proof.
We know that the number of jumps of Z¢ are finite, and therefore the problem

can be solved sequentially. More explicitly, let Tf = inf{t > Tf ,/ | AZ |> 0},
where 7§ = 0. As Zf is a cadlag function with jump sizes bounded below, we know
that there exists ¢ such that 7F = co.

To define the solution X*¢, we proceed by induction. Suppose X; is defined for
t < T¥. Define a new semimartingale Z; = Z7, 4+ under a new family of o-fields

'
Fi= ij+t

Then, there exists a unique solution for the system
t . 1t R
Y= Xi + | f(V)az+ g [ praz, 20 - e, (66)

because Z’ is a continuous semimartingale. Therefore, the existence and uniqueness
are consequences of Theorem 4. We follow this solution up to time Tj4r — T; and

obtain the unique solution y(t) of
¢
v(t) = Yo, + 825 [ fly(u))du — w(t)

where (t) = /Ot n(y(s))d | & | (s).

Now define .
X = Y1, (1j<t<typn) + y(l)l(t=Tj+1)’ (67)

for T; <t < Tj41. X* holds equation (65) for ¢ < Tjy,, where
B — (I)ij + @%I_TJ. if T; <t <Tjyq;
t ¢ ift = Tjys.

Tj41-

Note that @; is still continuous, of bounded variation, changes only when X¢ is
at the boundary and d®; has the normal direction. As this procedure need be done
only a finite number of times, we can construct a solution X¢ for (65) driven by Z¢.

O

Theorem 32 The sequence X¢ is tight in D[0,1] under the Skorohod topology. Any
- limit point is a solution of the system driven by the semimartingale Z.

Proof. We know by the previous lemma that
¢ 1 st ¢
Xi=Xo+ [ FO6)AZ; 45 [ FAXE)AIZ, 21— 04(0) + [ b, o)dUs,  (68)
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where US = Y o<ucs |AZ;], and

O(AZf, Xo) — Xoe — AZ,f(X,-)

h(w,s) = A7)

I(AZ, #0).

The next step is to use some type of tightness result. But, as we stated before in
Theorem 7, this result is not true in general for cadlag functions.
The process

13 1 t t
Xo+ [ JOG)aZ:+ 5 [ FAXE)AZ Z+ [ b Uz, (69)
has a finite number of jumps, and by Theorem 6 we have:

sup | X, — X5, |

s<ty <t2<t
to 1 rt2 t2
<Kwpup | [ FX5)dZ; + 5[ FHX)AZZEH (o, $)ldUs, - (70)
s<t1<t2<t 1 2/ t1
0| (t-)— 12°] (5)
to 1 i2 12
<K'(wpowp | [TOX)aZE s [ FHXAZ, 2+ [ Th(w,s)laus, (7)

s<t <<t i
VTIf <s <t <Tgy,

Here, T are stopping times at which Z°¢ jumps. From these inequalities it is possible
to obtain the tightness of (X¢,¥¢) if the tightness of the sum of the three integrals
in (68) is proved. To show this last assertion, we apply Theorem 4. As f is supposed
to be Lipschitz and bounded, we need to prove only that A is stochastically bounded
and that condition (*) holds. The goodness condition for Z¢ and U*¢ holds because

(z¢,29, = [2,2),— >, 1(|AZ,| < €)(AZ,)?,

0<u<s

FV(Z9, = FV(2).— Y. 1(AZ] < e)AZ,
0<u<ls

FV(U9) = U-

To conclude the proof of the tightness is enough to show that & is bounded, we note
that by using an estimate of Lions and Sznitman (1984), we can obtain:

R(1) 11 A2 1 ([ fo()du)t,

(This inequality can also be obtained through Theorem 4.2 in Saisho (1987)). As h
can be written as:

h(w,s) = AZ; [, (f(y(u))l;i(|Xs_))(lu — k(1) .

(AZ, #0),

then the the tightness of J§ h(w, s)dU¢ follows because f is bounded.
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We have just proved that
¢ 1 st ¢
(2,0 Xo + [ F(Xe)az5+ 5 [ 7 FXE)AIZ, 2, [ h(w,s)dU;)
is tight, therefore we obtain the tightness of
t 1t ¢
(25,0, Xo+ [ FX)dZ; + 5 [ £ 5B, 2L, [ hw,s)dUs, X4, 05| @ ).
0 0

Now, we only need to take any limit point of this sequence. This limit point will
satisfy (65), and as @ is C-tight (see Theorem 3.26 in Jacod and Shiryaev (1989) )
we also obtain that ®(¢) is continous. Furthermore, the bounded variation property
and the normal direction property of the differential of ® can be obtained by an
argument similar to Theorem 3.1 in Costantini(1992). |

4.2 Uniqueness

In this section, we will use extensively one of Saisho’s conditions that give most of
the inequalities that follow. The following statement is equivalent to Condition (A)
in Section 2.1 (see Remark 1.1 in Saisho),

4Co > 0, Yz € 8D Vz' € D Vk € n(z),

(z—2" k) +Co|z—2a"|*>0. (72)

First, we give some lemmas that are variations of Lemma 3.1 of Lions and Sznit-
man.

Lemma 33 Ify is the unique solution of (continuous stochastic differential equation
with reflection) :

o(t) = Xoo + A% [ F(u(s))ds — n(t), (73)

and §j is the unique solution of:

i(0) =Yoo + A2, [ f(3(s))ds - &)
then,
|9()) = 90 < B Xow =Yoo [P eanl(C | AZ(5) | ), (74)

for some non-random constants B and C.

Proof.
'Ij;e following condition used by Lions and Sznitman holds locally according to
Lemma 5.3 of Saisho.

d¢ € CE(R*) (bounded in their two derivatives), such that
Ja>0Vz € 0D V( € n(z), V¢(z){ < —aly. (75)
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To simplify our ar ment we will assume this condition holds for the whole boundary.
An argument s1rn ar to Saisho’s will give the result in the general case . Using the
chain rule we have,

exp(=2(Bu(t)) + SEON) | v(t) ~ () P

"eap(=2(9(y(s)) + S35 v(5) ~ 9(5))
F(G(8))AZ,ds — dr(s) + d&(s)}
- 2 / e =2 009) + 86 1 10) -5

{Vé(y(s){f(y(s)AZuds —dr(s) HV ¢(§(s)){f((s)) AZuds —di(s)}}. (76)

where Fy = exp(_:Q(qS(Xu_) +d(Yu)) | Xue —Yur |*.
As:

~(V(y()n(y(s)) | y(s) = §(s) I* () = 5(s)In(y(s)) S0 d | 5] (5) a

Analogously for &(s), we obtain a similar inequality. Combining these two inequalities
in (76) results in

L) | y(6)~3(0) PS LO) | Xo Yoo P+C | AZ0] [ 1) [9(s)=i(s) P ds, (77

where L(t) = exp(Z2(¢(y(t)) + #(5(?)))), and C is a constant. Then, by Gronwall’s
lemma,

| (y(t) = §()L(2) [’< L(0) | X — Vi |” exp(C | AZ, | 1)
The proof can be completed since ¢(t) is bounded. O

As (AZ,f, Xu-) = y(1) and p(AZ,f,Y,-) = §(1), we also have the following
result:

Corollary 34
| @(AZuf, Xu) — 0(AZ,f, Y ) 'S B | Xouo =Yoo [P exp(C | AZ, ).

Theorem 35 If X and X' are any two solutions for the same Stratonovich SDE with
reflection (65), we have:

E[sup | Xs — X; |4] <CE sup I Xy — ‘X’(Il. |4 dAs, (78)
s<t

[0,t) u<s
where As =|| [Z, Z]s || +FV(Z)s (FV stands for the finite variation part).
Proof.
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As in the proof of the previous lemma;
cap(2(#(X0) + S KX
= 2 / exp(—($(Xe-) + $(X1 ) (KXo = X {(F(Xem) = F(X7))dZ;
(P o) = FAKLAZ, 7 — 4005 4 48
2 [ ean( 20X ) XL | Ko = XL P
(VXK )ZE 4 5 F(X )7, Z); ~ db(s))
PV (XL)AZS + 5 f(XL)(2, 2 ~ d'(s)})
n / t ewp(‘—2<¢< ) SN (Xen) = FXLL)) L2, 2

b5 [ emp(C(B(Xe0) + X)) | X = XL [

{w )f( >+v¢(X' (X, )Yz, 2);

—= / exp(—((X-) + $(X. ) (Ko — X {(F(Xam) = F(X,))
X, ) f(Xo- >+v¢(X' )F(X,2))

+{D2¢( OFH(Xs) + D2o(X, ) fA(X,0)}
+2V¢( V(X ) (X ) (X2 )}l Z, 2]

-2 / eap(2($(Xom) + BXL)) (Ko — XL)
X.) = V(X)) (Ko (XL )dIZ, 21
+ Z (eap(ZH($(X.) + $(X) | X, ~ X, P

0<s<t

—eap(H($(Xon) + HXLN) | X = XL P) (19)

This equation can be analyzed in pieces:
(1) Consider first the terms that contain ® and @'

2 [ eap(ZH($(Xe) + HOC(Ke — Xi){—d0(s) + 0 (5))

2 [ e 29X + XL | Ko~ XL T
(~VH(X,)dB(s) — V(X ) (s)}

The above expression can be rewritten as:
i _2 ’ ! 4 a
2 [ eop( (80X, ) + (X)) (Ko — XL0)
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{—n(Xe_)d | @ | (s) + n(X;)d| @ | (s)}

— 2 [ean(C260X0) + HXL) [ Xom = X T
{-Vé(X)n(X.-)d | @ | (s) = V(X )n(X;)d | @ [ ()} (80)
Using (75) and (72) we can build the following inequality:

L(Vé(a)n(@)) |~ ' | ~(o — ,n(z)) £ 0 (81)

which proves together with the fact AX; = 0if d | @ |;5 0 (recall that the jump
times conform a set of measure zero), that (80) is negative.

(2) Next, consider the last term in (79) that contains all the jumps. This last -
term is bounded by (see (77)):

> 1Az [ 1w |y -y du (52)

0<s<t

This equation can also be analyzed in pieces:
By the previous Lemma

S ClAZ | Xo- = X, P (83)

0<s<t

which is

/Ot (X —X_Pd S CIAZ.

0<u<ls

(3) Finally consider the remaining terms not covered in (1) and (2) above.

These terms are the ones that are obtained in the usual uniqueness proof for
stochastic differential equations. If we take expectation of the supremum of the

square of (79) using standard inequalities we obtain the result . O
From here, the classical argument of slicing 7 proves the uniqueness of solutions

(see Protter (1990)).
Theorem 36 The solution of the Stratonovich SDE with reflection (65) is unique.

Proof.

By Theorem 5, Chapter V in Protter (1990), we know that ZT~ is o — sliceable
for any small « for a large stopping time T. Since we are studying the SDE with
reflection in a bounded domain in time (say, [0,1]), we can assume that 7' > 1. We

also let  be small compared to C in (78) (e.g. a < £).

Let’s suppose that the o — slice for Z is given by the increasing sequence of
stopping times 0 = Ty < 7T < ... < T}, such that

1(Z — ZT) 1= ||pee <@, 0< i <k —1

by using (78) and the above inequality it is not difficult to obtain that X, = X for
s < Ty. As we know that the jumps of X or X' are the same as the jumps for Z, we
also have that Xz, = X7 if T} is a continuity point for Z. If Ty is a discontinuity

point, we still have that X7, = X7, given that Xz, = X7, _. Using induction, one
obtains uniqueness in (65). 0
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5 Stability results

In this section we analyze the weak convergence of solutions of reflected Stratonovich
SDE’s when coefficients I(}L and integrators Z" are used instead of f and Z. Let
Z" = M™ + A", where M" is a local martingale and A™ is a process of bounded
variation on compact intervals.

5.1 Continuous case

Let X™ be the unique solution for the following Stratonovich type stochastic differ-
ential equation with reflection driven by the continuous semimartingale Z™:

Xp = X5+ [ fux)az 4 [ Rz 2 - e (5)

#"(5) = [ n(X7)d| " | (s), X7 € D,

We further assume that f,,, f € C}(D) and that the domain D satisfies Conditions (A)
and (B) in Section 2.1.

Lemma 37 If Z™ = Z and {Z"} is good then
12", 2" = (2, 2].
Proof.

The proof is just an application of Theorem 4 (or Theorem 2.2 in Kurtz and
Protter (1991)).

As

S

14
272" = (27) -2 | Zrdzy,
0
and Z" is good, we have that the right side converges weakly to Z7? — 2 $Z,_dz,.
This equals [Z, Z];. O

Theorem 38 Let {(XF,Z")} be a good sequence of semimartingales converging weakly
to (Xo, Z) in the Skorohod topology, then (X™,®") converge weakly. If we denote the
limit point by (X, ®), the pair solves the following Stratonovich type stochastic differ-
ential equation with reflection:

X = Xo+ [ CF(X,)dZ, + % / P X2, 2], — B(). (85)

Proof.

’I(Ile proof is a direct application of Theorem 4 as well as Lemma 37. To prove the
tightness of (X", ®", X7) it is enough to use the Costantini’s results on tightness of
solutions of the Skorohod problem (see Theorem 7). 0
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5.2 Non-summable jumps case

The idea in this case is to construct a sequence Y™ corresponding to X™ through the
formula (54) and take limits for Y™. Once the limit ¥ is obtained we will prove that

the process X obtained from Y is the limit for the sequence X™.
et X™ be a solution for:

1 7t
X = X5+ [ RX)az 5 [ R (edzn, 27— o)
T AT X X RXAZ), (36)

o<s<t

where Z" is a good sequence, D is a smooth domain in R* (C? will suffice), f. € C’b (D)
and ( frs 1) = (f, f) uniformly in D. A consequence of these assumptions is that
{f»} is uniformly bounded. We have assumed the necessary conditions for existence
of solutions for (86), exposed in Section 3.

Now, let Y™ be defined through (54). Then Y™ is a solution of:

Yp o= Xg+8 -
n n t n n L / n noZmMe
Vo= Xk [+ [ S OZ P

Bon@)  fo(YP)AZE
+ T e I s — oY) AZE))
otz JEOn) 15 () = 1 (m(w)) 7 (1 (4)

T2 (t) Z’Y l(t)
— ——"—d.s — U, 87
/ 772 t) - ( ) ' ( )

Here 7,(t), n7(¢), n3(¢) and V,(t) are defined as in Section 3.

Lemma 39 (Y™, S",¥") is a tight sequence.

Proof.
Recall that S™ can be written as:

/ FalYPYAZs ) + Fu(VUF — / U fi YV A2

n Un [Zﬂ Z ] 1 s n £ n n
/ffn(Y a(GE Ty o aer. (s9)
Here, U] = — V*. The goodness of (U™)? is a consequence of Lemma 37 and
w (t)

the goodness of Z™. That is,
LUMH<c 3 1AZP,

0<5<y, 1 (t)

therefore it is obvious that )
sup E[T((U)] < oo
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The tightness of f,(Y;*)U} can be proved as in Lemma 13. This also proves the
tightness of U™. There is only one term left:

t ¢
[ursmaw: = [ Urfmm(nr € 0D) < n(v), J(¢2)dUr >
0 0
¢
+[ U2 LYY OD) <n(Y)), S(Y)dZ > -(89)
Therefore the tightness of this term follows the same pattern shown in Lemma 13.0
Also by Lemma 37 we have that v, = v in the Skorohod topology. Let (Y, S*, ¥)

be a limit point of a subsequence. As before,

t — -

— 1 n t).
'Ynl(t) ng(t) . nil(t) [771 (t)mz (t)[( ) (90)

Lemma 40 S*= 5. That is,
. t 1 t , .
S = Xot | J(V)Zp0+5 [ FI0GZ, 210,

72(0 () f(Y5)AZ,
+ E: d‘s_f(Y1 o(w )AZU))
0<us(ve (na(t))) * MR n2(v0(w)) — 71 (70(w)) el

[ ) (o1
: V@) —m@®)

Proof.
Because of the goodness of Z™ and (U™)?, it is enough to prove that ¥" is good
also. This is clear if we recall Lemma 17. 91 is obtained by taking limits for S7:

¢ t
St = [ BB+ FOF = [ U2,
t Um™)? Zn,Zn ~10, t

[ B ey e, @)

O

Theorem 41 Let X' be the solution to the Stratonovich type stochastic differential

equation with reflection (86). Assume that 0D is smooth, Z" is a good sequence,

(X&,Z™) = (Xo,2Z) and (fn, fh) — (f,f") uniformly in CZ(D). Then X, = X
where X solves (86) for (Xo, Z, f)

The proof is an argument like the one used in equation (47), if we transform Y through
Xt - Y:YO (‘t)'

In the oblique reflection case similar stability theorems as in the normal reflection
case (Theorem 41) can be proved.

Theorem 42 Let D be a bounded smooth open set, and let O(z) be an C? oblique
field such that
dv >0, Vz € D, (6(z),n(z)) > v.

Also let (XT,Z™) = (Xo, Z) in the Skorohod topology, and suppose that the sequence
{Z™} is good. Let X™ be the unique solution to the Stratonovich type stochastic

differential eguation with oblz'%ye reflection driven by the semimartingale Z™. Also,
let X be analoguosly defined. Then X™ = X in the Skorohod topology.
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5.3 Summable jump case

In this case we stucflfy the following sequence X™ of solutions of the following Stratonovich
type stochastic differential equations with reflection:

Xp o= Xp+ [ pxmazs+ 5 [ padzn, 27 - e )
T3 {P(AZR X — XD — fu(X2)AZTY, (93)

0<s<t

@"(t)= [ n(X2)d| " | (s), X € D,

and ¢(g,z) = y(1), where y(¢) is the solution of

y(®) =2+ [ o(u(s))ds — w(t), y(t) € D,

w(t) = [ nly(s)d| 5] (5)

The question we will answer in the next theorems is the weak convergence, as well as
the t§htness of the sequence X" under certain conditions on f, and Z"; assuming
that Z™ has summable jumps. As before, this subsection is based on results by Kurtz

and Protter (1991). We assume that each f, € C}(D) and D holds Conditions (A)
and (B).

Here, we will need to extend some results obtained previously in Lemma 37. Define
A? as the discontinuous part process of the bounded variated process A as:

A;l = Y AA,.

0<s<t

The sum on the right side of the above inequality is absolutely convergent because A
has bounded variation.

Lemma 43 [Z", Z")¢ = [Z, Z]°.

Proof.
As
(27,2 = > (AZD)?,
0<s<t
we have:
| 20 (AZ2)= 3 (AZ)IS| Y ((AZ3 () —(AZ)")H Y- (AZD) =Y (AZ,) .
0<s<t 0<s<t J An(J)e Je

(94)
I—{lere, An are strictly increasing, continuous functions converging uniformly to t, such
that,

sup |ZY ;) — Z:| — 0.
0<t<1

J 1s a finite set of indices so that

> (AZ)? <,

Je¢
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therefore the first term on the right side of (94) goes to zero. J has to be chosen so
that the second sum is arbitrarily small. For that it is enough to notice that

L | Y, @e(AZ7) |< maxeern)e | AZS || Eanye I(AZ7) |,

2.The above sum is uniformly bounded in probability, because Z™ is good. Also
maX,eye | AZ? | is uniformly small, for n big enough. In the vector case, (AZ;)?
stands for AZSAZST (T denotes the transpose). a

Theorem 44 If (*) holds, (X§,Z™) = (Xo, Z) in the Skorohod topology, and (f,, f.)
converges to (f, f') uniformly, then X™ converges weakly to X.

The proof is preceded by six lemmas.

As {Z™} is good we know that Z is a semimartingale, and by results of the previous
lemma we have that [Z%, Z"]¢ = [Z, Z]°.

The proof of Theorem 44 consists of transforming each equation into a continuous
type equation and use stability results for the continuous case (i.e. Theorem 38).

Define:

Fn(t) = Z |AZs|’

n(t) = Z AZ7I+t,
O = supls 276 <170)
B = influ:vt(w) > 37 0). (95)
"y if 77 (8) = n3(0);
= { Z:El(t) ngt(t_) i?(:)(t) :771@)—775:5)@_) —”t(t) i 3 () # ni(t) o)

V™ is a semimartingale because it is the sum of the semimartingale Z™ =1 (8) with the
process of bounded variation U",
nz(t) — t
Ul =-AZ" ——1 n(p)(t)- 97
l(t)nn( t) — p7(t) (7 (f)mz(t)[( ) (97)

We also have the following result:
Lemma 45 [V*, V"], = [Z", Zn]f,—l(t)

Proof.

It is enough to realize that there are only a countable number of intervals [n](t), n7 (¢)]
that contain more than one point. In any of those intervals the quadratic variation of
V™ is zero because V" is a continuous bounded variation function in each such interval.
The rest are intervals where Z™ is continuous and therefore the result follows.

O
It is not difficult to obtain that if ¥;* is defined as:
X;I;l(t) if ﬂ?(t) = 7)3 (t);
Y= t n(t) —
n n Zyprwy o (M)t ) if 07 (¢) s s
Korige t [T D (T tm) i F)
(98)
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then Y™ is the unique solution to the following Stratonovich type stochastic differ-
ential equation with reflection driven by the continuous semimartingale V™ (as in

Lemma 25):
t 1 rt
Y= X5+ [0V 45 [z 2 — 0 (99)

U” is defined as in Lemma 25.
Lemma 46 The sequence V™ is good.

Proof.
If Z* = M™ 4+ A™ where M™ is a local martingale and A™ is a process of bounded

variation, then V™ = M™+(A"+U"). Here, A"+U™ is a process of bounded variation,
and
UMy <Cc > |AZ].

0<s<vn t (¢)
As Z™ is good, it is clear that

sup, E[[M", M"]sans + Tinos(A™ + U™))] < 00,
for some sequence of stopping times ¢2. Therefore V™ is good. O
Lemma 47 The sequence {V"} is C-tight.

Proof.
Take § € R, and choose a partition {¢;} so that ¢;;1 —¢; > § and

max w(Z", [t tiva]) < €.

Define 8’ = min; |¢t;41 — t;|, with these definitions is clear that

w(V", ) =supw(V", [t,t + ) < 2¢ + 5'0r£1a<xl IAZ,].
t <s<

From here, one could easily obtain the tightness of V. O

Lemma 48

v () — v ()| < It —sl.

Proof.
Define t, = v,(t), sn = 7,;%(s) and suppose that s < t. Then, there exists
Oy, B € [0,1] such that

t = anyn(tn) + (1 = an)ym(tn)-,

S = IBn'Vn(Sn) + (1 - ﬁn)'yn(sn)—'
Using the definition of «,, we have:

t—s = ou|AZD|+( X2 IAZ]] - BlAZ)

splu<ltn

+(tn — Sn) (100)

The positivity of all the bracketed terms above ensures that t — s > ¢, — s, > 0
which is enough to conclude the proof.
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Lemma 49
7;1 = 70_1, in the uniform topology. (101)

Proof.
First, the following inequality (proved in the previous Lemma):

|7 () =7 (s) <[t = s],

proves that 4, is C-tight. For u € R, let s = 45" (u). Let u, = v;*(u), we intend to
prove that u, — 75" (u). We already proved that u, has at least one accumulation
point, we only need to prove that 75" (s) is the only one. By definition of u,, there
exists o, € [0, 1] such that u = o yn(Un)+ (1 —an)yn(us)~. Denote by the same index
n a subsequence of u, converging to some real value w such that a, — o € [0,1].
Then (see Ethier and Kurtz (1986)) v, (us) and v,(u,)- should converge to either
one of yo(w), Yo(w)-.

Therefore, u € [yo(w)—, yo(w)] or 7' (v) = w. 0

Lemma 50
V" =V, in the uniform topology.

Proof.

AJ; proved in Lemma 47, the tightness of V™ has already been obtained , there-
fore the only part left to prove is the characterization of the limit. First, take any
converging subsequence and denote it with the same superscript. Let A,(¢) converge
uniformly to ¢ strictly increasing and continuous, such that Z% .t — Zt, uniformly.

As noted in Jacod and Shiryaev (1989) for each ¢ such that AZ; # 0, there exists
a sequence t, := A,(t) such that AZ? — AZ,. If the sequence v, (t) converges to a
continuity point of Z, there is nothing to prove. Therefore, we only analyze the case of
covergence to V; for ¢t € [n1(t),n2(t)] and 71(t) # n2(t). Let t = ayo(u) + (1 — a)yo(u),
define u,, := ay,(tn) + (1 — @)yn(tn)-. Therefore u, — t, and as:

13(t) = (ta) = n2(t)
() = Yultan)- — m(t)

is not difficult to prove that V) — V;. From these facts is not difficult to obtain that
any subsequence will have to converge to V. ]

Proof of Theorem 44.

The limit theorems are obtained by using Theorem 38. Take limits in (99) fol-
lowing closely the ideas used in Section 3. After the limit process Y has been ob-
tained, define X; = Y, (; and as in Section 3 obtain that (X™,®") = (X, ®) where
@t = \II’YO(t)' |
Remark 51.

A. This technique would work for the existence and uniqueness for the summable
case , but it is not just a particular case of Section 4 because in the proof of Lemma 17

the smoothness of 9D was strongly used.
B. Here, as well as in the next sections we need to prove tightness first, and

then identify the limit. In order to prove the tightness of [y f,(Y7*)dZ? we use The-
orem 4, which gives the tightness of [ »(t) fa(Y)dZ?. This proves the tightness of
(Y2 (5)» Ya.(s))> Which proves the tightness of (Y;*, U%) by using Theorem 4.

a
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5.4 'Wong-Zakai corrections

In this subsection we study stability problems for sequences Z™ which are not good,
but nearly good in a sense that will be explained later. Wong and Zakai (1965) showed
that in a very natural range of approximating sequences we have that this sequence
is not good therefore generating an extra term in the limit (for examples, see Kurtz
and Protter (1991)). Let D be a smooth domain.

Theorem 52 Suppose Z" =Y, + W,, where Y,, and W, are also semimartingales
adapted to the same filtration to which Z, is adapted (these could change with n).

Let X,, be the unique solution to the following Stratonovich type stochastic differential
equation with reﬂ%ction:

¢ ]' ¢ ! n n nic n
XP = X§+ [ FuX)AZ + 5 [ fufa(X)d(Z", 27 - 87(0)

+ > {p(AZ o, X ) — X7 — fu(X2)AZEY, (102)
0<s<t

where f, € CZ. Define H, and K, by
T
HY(2) = [ WE(s=)awy(s),
0

and
EP(t) =Y, Wl
Suppose that {Y,} and {H,} satisfy (*) and that
(Xn(0)7 YTH Wn) Hna I{TL) = (X(O)’ K Oa H) I()a
and that (fn, f) — (f, f) uniformly. Then(X,(0),Y,, Wy, Hy, K., ®") is relatively

compact, and any limit point

(X(0),Y,0,H, K, ®) satisfies

Xe = Xot [ SO0Vt 3 [ 0ufp(Xoo) far (Ko YA (5) — K(5)

a8,y
b5 [ £ ALY, Y - o)
+ Z {SO(AY;‘fa Xs—) - Xs— - f(Xs—)A}/s}, (103)

0<s<t

where O, denotes the partial derivative with respect to the ath variable and fs denotes

the Bth column of f.

The following remarks are clearly explained in Kurtz and Protter (1991).
Remark 53. 1. The boundedness assumptions on f, and its derivatives can be weak-
ened by using a localization argument.

2. H and K must be continuous.

3. [2,Z )7 and KP" are good.

4. [Z",Z™PY = I := —(HPY + H"P).
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Proof of Theorem 52. We will do the proof in the one dimensional case, the
extension to the multidimensional case is straightforward.
First, we use the Skorohod representation theorem assuming that

(Xn(0), Yo, Wi, Hy, Ky) — (X(0),Y,0, H, K) a.s

We will prove that the assertion of the theorem holds a.s.
Step 1. Tightness of (Y, ¥"). As in Section 5.2 we obtain a new continuous pro-

cess Y™ from each X" which holds the following stochastic equation with reflection

process U™
= s5p -y, (104)

/ Fa(Y2)AZRs o + FulYVUT / UL fo fa(Vi)AZ

- [ anemaGE TRy [y vmae. o)

The tightness of

[ sisavmazi g, - [ rnonaBly + [onomar. o)

is easily obtained because each of the above terms is the sum of terms of the order

o((AZ,)?). As [Z™, Z™] is a good sequence the tightness of

/Ot Fafa(Y)Z™, 27 2

follows. The proof of the tightness of fo(Y*)U? is similar to the proof of Lemma 13.
The remain of this step is devoted to prove the tightness of f3 f,(Y*)dZ" =1 (s)"

[ 50z = [ RGO + [ S0 6). (107)

The first term above is tight because Y, is good. The second term becomes:

[ 5 awa7) = Wl N ~ [ Wl () (r7)
—[Wn( ( )) fa (Y] (108)
The first term goes to zero and the third term can be rewritten as:
ACTONA A N WA AT AT BB
= [ RRdWG ) Z
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This last equality shows that this term is also tight. Now decompose the integral
term in (108), by using an extension of It&’s formula used in equation (51):

/ Wi(y21(8))dfe (Y) / W12 (8)) Fafo(Y7) 201
4‘4 Wa (1 () (Fafa Fa (YD) + Fa ful¥) A2 27
b (RO Wb D (AZE

o<uston () @) 15 (On(w)) = 0E(m(w))
Wl () fafa (Yo a ) AZ2))

- W AV e
T np(t) — np(t)

- / W FLYm)dun,

All the above terms are clearly tight with the exception of the last term. In short we
have proven the following inequality:

sup  |S; — S| <€+ sup I/
ult; <2<t u<ty <ta<t £

Fo(Y)avg, (109)

for [t —u| and € small enough. As W, — 0, we can assume that supgc,<; [Wa(s)| < ¢,
therefore inequality (109) becomes

sup |Sp — S| < e+ Ce(|U™; — |9"].)- (110)

u<t; <2<t
Using inequality (20) we have:
sup |SE — Sp| <€+ CeK(w) sup (|SE — SLI)- (111)

u<t; <t2 <t u<t; <2<t

Therefore

/

€
S-S < —————
ustsilt)zgtl f t2| T 1-CK(w)e

is small because € can be made as small as desired.

This ends the proof of the tightness of S} therefore proving the tightness of
yn,5m, o).
( Step 2. }dentiﬁcation of the limit.

In order to identify the limit of ST, one has to follow the decomposition that we
used in Step 1. The only term that will bring the Wong-Zakai correction term is
1§ fa(Y)dW, (772 (s)), whose limit is

= [ PR, + K, + 1)

Using Remark 53.4, we obtain the desired expression for the limit of Y. As in Section
5.2 we obtain the theorem by transformlng into X by X; = Y, (9. O

The same methodology used in Section 5.3 can be adapted to give an analogous
result (Theorem 52) for semimartingales Z, with summable jumps for each n.
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6 Time reversal of solutions.

In this section we study the time reversal of solutions of Stratonovich type stochas-
tic differential equations with reflection driven by Levy processes. In tﬁe classical
framework, Cattiaux (1988) has proven the reversibility of solutions of SDE’s with
reflection driven by Lebesgue measure and Brownian motion. Withouth reflection,
Sundar (1989) has proven the reversibility of solutions for SDE’s driven by Lévy

processes.
We will use theorems concerning the reversibility of stochastic integrals obtained

by Jacod and Protter (1988). To be able to use them we will require to prove the
injectivity of the flows of the solution process.

6.1 Injectivity of the flows.

Let X be the solution of the Stratonovich type stochastic differential equation with
reflection:

Xo = Xo+ [ (X )dZ 5 [ FROG)Z, 7] - ()
+ 3 {e(AZ.f, Xo) = Xoo — f(X,0)AZ,Y, (112)

0<s<t

0 :/Otn(Xs)d 1| (s), X; € D,

and ¢(g,z) = y(1), where y(t) is the solution of

y(t) =2+ [ gly(s))ds = n(t), yt) €D,

o) = [ n(s)d| 5] (3)

Here, we assume that the boundary of D is smooth. X%(t,w) denotes the above
solution for Xy = z a.s., when X is considered as a function of z, X*(¢,w) is called

the flow of the stochastic differential equation with reflection.
We will now prove that the flow has the following property:

Ve #y P{w:3t: X*(t,w) = X¥(¢,w)}) = 0. (113)

When the above property holds the flow is called weakly injective (sometimes this
property is called the non-confluence of paths property). Our final goal is to prove
that the flow is strongly injective, which is defined as: '

P({w:z — X*(t,w) is injective}) = 1. (114)

Lemma 54 The flow defined by the equation (112) is weakly injective while the paths
are in the domain of a system of coordinates.

Proof.
If the paths of X7 and X} are in the domain of the system of coordinates defined

by g (see Section 3.2), we define W7 = ¢g(V®), W} = g(¥) (Y and Y;¥ were defined
in equation (54)).
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Applying It6’s formula (as in Section 3.2) to ||g(Y;®) — g(¥¢¥)||* we have
i
W = W2 = g — bl +2 [ (9(¥7) = gD F(YE) = o (Y22,
¢
+ [P0 = SN2, 2 (0 FYF) = o FED))

+ [ (o) - (Yy))(g’f)'f( Y9) — (¢ £) F(Y2)IZ, D,

mn(@) (g(YS) — g(Y))(g' F(V2) — g'F(Y¥)AZ,
0<u<('§1:(17 ) /”1(70(”)) n2(70(w)) — m(70(w)) %

- (g(Y;n('yo(u))) g(}/;l('yo(u))))( ( ’yo(u))) ( nl(’yo(u)))AZu))

n2(t AZ t
— 2 ["00) - NG ) — g SO = s

+ 2

D) - m(@)
~ 2 / %) )¢ (Y2)dU? + 2 / (YZ) — g(Y¥))g'(Y¥)dDY115)
Then,
W2 — W2 = [lug — | Pexn(S2), (116)
[ ) — sV - ),
5= 2 l0(¥=) — s ()P s
) g PO + 607) 0PN I07) =T S0ED g g
+, [o(¥7) — 90D A2k
men(a) (g(YV5) — g(V2)(o FYZ) — o F(Y2)AZ,
2 2 (e (a(7@) = m0(u)) ) — g

0<uL(vg " (m2(1)))

0% o)) ~ IV o)) F (Vo o) —

lg(Yr) — g(¥s")|I?

B 2/n2(t)( 9(Ys) —g(Y, ))(g’f(Ys”)—g’f(YSy))AZ%-l(t)dS
(772( )—771(75))( (YF) — 9(¥¥))?

) , J(V?)
2 [ 602 - S0 S

)

(

)
9 f(Yy, (w(u»))AZu))

ayv?

+ 2 [ () - al¥; ))HQ(W)(W

S; is continuous and is bounded if

T (117)

R ¢
o 60D = O oy =

is bounded. The rest of the proof is done in the half-space Ri, for the processes W
and WY.

o g'(Y5) e [ d|¥7],
/(g(Y) IO T 7w — g e S/o (SN (W — W2
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But it is known that (see Sundar (1989))

1 1< 1

Ef su

. __ 119
Bl W WE)E ()

|z — y|?’

by Theorem 6 we know that

T t T 1 ¢ ! T [
Wl < sup fot [N + 5 [ S FYAZ, Dl
712 (70 () f(Y®AZz,
+ S
2 oy T —m (@)

0<ug (v (n2(2)))

ds — f(Yy (o)) AZu))

772(t) AZ —l(t)

- FYE)——2="—ds|. 120
A (o Ok 120

Using (120) and (119) it is not difficult to obtain:

¥ g'(Ys) Ct

E Y?) —g(YY 5 d¥?] < ——, 121
[ ) = sV oy = ¥l S (121)
this proves that S; is bounded and therefore (W7 — W¢) is never zero a.s. O

Lemma 55 The flow defined by equation (112) is strongly injective while the paths
are in the domain of a system of coordinates.

Proof.
The proof follows the same procedure as in the proof of Theorem 44 in Protter’s
book toguether with the idea used for the proof of the previous Lemma. O

To obtain the reversibility of X; we apply Theorem 3.3 of Jacod and Protter
(1988). Here, we have:

0.2 = [ FRX)diZ, 2+
+ 3 ({P(AZf, Xoo) = Xom — f(Xom)AZ}f(X,2)AZ,)

0<s<t

3 ({F(X) — f(Xon) = FI(Xm)AXIAZ). (122)

0<s<t
Now, define:
) 0 if t = 0;
Zt = Z(l—t)— - Yi_ fo<t< 1,,
Zo — 2y ift=1
analogously define o, [f(X), Z]f and also X, = Xa—t)--
Theorem 56 X is a reversible semimartingale and holds the following SDE:

%= X+ [ FR)AZ - [0, 2+ 5 [ FIR)AZ, 2L - ()
+ 3 {e(AZf, Xon) = Koo — f(X2)AZLY, (123)

0<s<t
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b(t)= [ n(¥)d |81 (s), X €D,

and p(g,z) = y(1), where y(t) is the solution of

—-a:—l—/ s))ds — &(t), y(t)€ D ,

K(t) = /0 n(y()d| | (s).

Proof.
The proof is a direct application of Theorem 3.3 in Jacod and Protter (1988) and

the reversibility property of ODE’s.
Acknowledgments. The author wishes to thank Philip Protter for his guldance

and support.
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