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1. INTRODUCTION

This paper is concerned with a problem in multiple decision theory, where one is
interested in selecting the “best” population, using partially classified observations. For a
general approach to ranking and selection methodology, a reference can be made to Gupta
and Panchapakesan (1979). For a broader decision theoretic formulation and Bayesian
analysis, Berger (1985) is a useful reference.

Let £ = (z1,...,%,) be a sample of n independent observations, each one of which is
known to be a realization of either one (and only one) of k real-valued random variables
(r.v.’s) associated with k populations 7y, ..., 7, having cumulative distribution functions
(c.df’s) Fj(u), j =1,...,k, respectively.

We denote by Fj(u) = 1 — F;(u) the survival function or reliability at time w.

When there is no confusion, we will use the symbol 7; both for the j-th population
and the associated r.v.

We assume that the exact parent population of each z;, i = 1,...,n, may not be pre-
cisely known, that is, in general, it may not be exactly known which one of the k populations
T1,..., T generated a given z;; however, for each z; € z, aset PP; = {ji,...,jir; }, PP; C
{1,...,k}, is known which lists the subscripts of k; populations 7;,,,... »Mj, Such that
P[jeLIgP.- (z; is a realization of ;) ] = 1; such populations are referred to as the “possible”
parent populations of z;.

We denote our data by d = {(z;, PF;); ¢ = 1,...,n}. Let us denote by |PP;| the
cardinality of the set PP;. We refer to the observations with |PF;| = 1 as “(fully) classi-
fied” observations. The remaining observations will be referred to aé “partially classified”
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observations.

It should be pointed out that, in the literature, the kind of data used here is sometimes
called “masked” data. Furthermore, the model discussed in this paper can be looked upon
as a slight generalization of the so-called “competing risk model.” A few recent references
on the selection procedures with fully classified data are: Gupta, Liang and Rau (1992),
Gupta and Liang (1989, 1991), Gupta (1990), Fong and Berger (1992), and Barlow and
Gupta (1969) for the problem of selecting the large quantiles. It should be noted that,
while there exists a great deal of literature on selection procedures for the “best” of “good”

populations, these procedures are based on data whose origin is completely known.

Examples. The above set-up formalizes the situation in which we have observations

whose exact origin may not be precisely known, and generalizes the usual model in which

k

j=1Tj = n, drawn from k populations 7;, j =1,...,k, are given.

k samples, of sizesnj, >
Such a situation is commonly encountered, for instance, in life-testing on multimodule, or
multicomponent, serial systems with time-censored search for the cause of failure. As an
example, consider a life-test conducted on n equal independent multimodule systems, each
consisting of k¥ modules in series (that means that the failure of any one of the modules in
a system causes the failure of the entire system itsélf ), and the object of the experiment be
an analysis of the reliabilities of the modules. When any system fails, the failure time z; is
recorded and an investigation about the possible cause of failure is carried out which leads
to the identification of a subset of modules, one of which certainly is the cause of failure
(the cause of failure is here assumed to be unique). Such a subset of modules, which in

particular could have cardinality 1, is, in general, thought of as constituted by an arbitrary
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number k; € {1,...,k} of elements, in order to take into consideration even the case in
which the search for the failed module is curtailed (censored), due to constraints of time
or convenience.

Another example of an applied situation in which partially classified observations may
arise is a clinical experiment k diseases are being studied on n patients, some of which may
present a quantitative symptom that can be imputable to two or more of the diseases, and
we are interested in processing even those the observations z; whose origin is not precisely

established but narrowed to a certain subset {Tjiys- > Tjux, } of possibilities.

2. FORMULATION

Let £ be a number chosen in the intersection of the supports of the r.v.’s associated with
the populations 7y,..., 7. Given ¢ and a (high) threshold 1 -+, referred to as “survival”
or “reliability level,” v¢ € (0,1), we define as “good” those populations i, ] =1,...,k,
such that F;(£) > 1 — v¢; the remaining populations will be called “non-good.”

The population(s) such that its (their) reliability at ¢ is higher than or equal to that
of any other population is (are) referred to as the “best.”

The following propositions may serve to clarify the preceding concepts.

The number of good populations depends on ¢ and Y¢, and can be any number of the
set {0,...,k}.

If the set of the good populations is not empty, a best population is necessarily an
element of such a set. Consequently, if there exists a unique good population, it is also the
best population.

A best population exists, and is not necessarily good.

3



For (conceptual) consistency, we assume that the threshold 1 — ve, which is to be
fixed by the user of the procedure, whenever viewed as a function of £, be monotone
decreasing; the virtual population 7 with c.d.f. Fy(u) such that Fy(¢) = 1 — 7 may be
called “transition” or “control population.” Intuitively, for any ¢, the good populations

allocate more probability mass to the right of £, than the non-good populations do.

For example, if 7;, j = 1,...,k, are lifelengths of comparable products of different
brands, we may be interested in selecting the best one, whose survival (or reliability) at
§ = 1 year is the greatest and, anyway, we may consider the selected product as good only

if its reliability at 1 year is greater than a certain level 1 — 7.

The selection problem. A selection rule will be denoted by s(d) = (s1(d),. . .,si(d)),
where s;(d) : R¥ — [0,1] (in general, the domain of the application could be thought of as
an arbitrary space) is the probability that «; is selected as the best population after that
the data d is observed. A selection rule s(d) is called nonrandomized if all its components
sj(d) can be only 0 or 1, otherwise it is a randomized rule. In this work, we restrict our

attention to nonrandomized selections.

For fixed £ and v, we define “A-good” a selection which, given d, ensures a confidence
level at least equal to 1 — A, A € (0,1), that the chosen population m; is good, i.e.,
P[Fj+(u) > 1~ > 1~ A. In general, the existence of A-good selections depends on
the chosen levels 7¢ and A; in fact, it is clear that (especially if the Vah;es A and g are
chosen too small) there may be no populations which are good with probability not less
than 1 — A. When no A-good selections exist at level 1 — A\, we may decide that all the
-considered populations are not good, or we may want to “redefine” our concept of goodness
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by lowering the value 1 — X or 1 — ¢, or both.
The goal of our selection problem is to derive a minimax type selection rule for choosing
a best population, given the data d. We shall also provide a sufficient condition for our

selection to be A-good.

For each given value z; € g, let II; be the random population which generated the
observed value z; and let p;(j) = P[II; = =] be a given prior positive evaluation of the
probability of the given value z; being a realization of 7;, j € PP;.

Given the data d, we denote by P the space of all possible choices of the distributions
p=[pi(f) i=1,...,n, F=Gia,...,dikt

P={p=[p0)]: p(G)>0, Y p()=1i=1,...,n; j=ju,...,5a}. (2.1)

JEPP;

For each choice of a distribution p in P, a classification of our set of observations can be
generated by randomly choosing, for each z;, one parent population from the set {mj; 7=
Jity« -, Jik; } from a multinomial distribution with probabilities p;(ji1),.. ., pi(jir, ).

For each i € {1,...,n}, we denote by PP} = {j;} the set of cardinality 1 containing
the subscript of that particular population 7;;, j; € PP;, which our random classification
attributes to the observation z;, and call a “classification” any set (PPf,...,PPY).

The space of all possible classifications which can be generated in the manner described

above, is denoted by Z:
Z={(PP{,...,PP;): PP ={j;}, ji€ PP, for any i€ {1,...,n}}. (2.2)

The reliability at ¢ of each population 7; can be estimated through the respective
empirical c.d.f.. However, in our problem, together with the sampling error component,
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which makes, for each j € {1,...,k}, the empirical c.d.f., say Fj(u), differ from the un-
derlying c.d.f. Fj(u), there is another source of uncertainty, due to the fact that the true
parent population of some of the observed values z; is not precisely known, and the em-
pirical c.d.f. computed after the classification (PP},..., PP}), say ﬁ'}"(u), may randomly
differ from the empirical c.d.f. F;(u), which is not known (since some observations are only
partially classified).

We adopt a conservative point of view, according to which we want to protect ourselves
against the selection of a population with high unreliability at time ¢. This is reflected in
the following minimax type criterion, referred to as a-minimax.

In determining a selection rule s(d) which is a-minimax with respect to a loss function
L, the quantity to be minimized for selecting the best population is ﬁg( j) defined as
Ug(]) =sup{y : y € Iy o} and Iy , is the shortest interval which contains the loss

y d a
function £ with probability (1 — a),a € (0,1). Note that the loss function is chosen in an
appropriate way in order to penalize the choice of “unreliable” populations. In particular,

we define the loss function as:
£ = L(s(d), Fi(E),.., Fu(®)) = 1 - Fir () (2.3)

where j* is such that s;+(d) = 1, i.e., our loss is given by the unreliability at time ¢ of the

selected population. Briefly, we can state our a-minimax criterion as follows:

min sup{y: y € Iy }. (2.4)

T1yeeeyTk y

where the set I d.o, 15 such that

P[L e Id,a] =1-a. (2.5)



3. MAIN RESULTS : LARGE SAMPLE APPROXIMATION

We are not able to construct an interval which contains the loss function with proba-
bility exactly equal to (1 — ), however we can provide an asymptotic approximation. For
each j € {1,...,k}, let v; represent the number of observations which certainly have been

drawn from =;

vi =Y Lmez: PR={j}) (3.1)

i=1
where 1(4) is the indicator function of the event A, and let F;(u) be the corresponding

empirical c.d.f.:

2 2 . 1 «
Fj(u) = Fj(u; zi €z: PPi={j})= ;Zl(zigu A PP={j})- (3.2)
J =1
Denote
li(u) = Zl(z.-e:g: z;<u A jJEPP:; A |PP;|>1) (3.3)
i=1
and
ri(u) = Zl(z;ezg: z;>u A JEPP; A |PP;|>1)- (3.4)
i=1

Let F;(u) be the (unknown) empirical c.d.f. of the r.v. ;.
Finally, denote by FJ’-"(u) the empirical c.d.f. of the r.v. 7; computed using the obser-
vations z;, 7 = 1,...n, such that PP* = {j}, which, according to our classification are

considered realizations of =;:

1 n
Z Lzi<u A PPr={;})- (3.5)

Fiuw) = Fi(u; o €3: PP} ={j})= =
! ! Yic1 Lppr=i)

The following lemma holds.



Lemma 1. For any j € {1,...,k} and any u, we have

fj(u) = inf £} (u) = ﬁmﬁj(u) (3.6)
Si(u) = sgpﬁ’;(u) = ;j:;mﬁj(u) + le_’k(—z)(u) (3.7)

and, hence, as to the unknown empirical c.d.f. Fj(u), which, for some classification

(PPf,...,PP}), must necessarily be equal to ﬁ‘;-"(u), we have
0 < fj(u) < Fj(u) < Sj(u) <1 (3.8)

We also have, for any u

Jim Ii(u) = Fj(u) = Jim 5;(u) (3.9)
if, as v; — 0o, u(u)+l(u) 0.
vj

Thus, for v; large and a relatively small number of partially classified observations,
any point in the interval [I;(u), Sj(u)] can be considered an approximate value of the

empirical c.d.f. 1:"_,(u) We will, hence, consider this approximate value

Fi(w) = 3 [1(w) + 5,0)] ~ Fy(w). (3.10)

Now, observing that v; < n; < vj+1(u) + rj(u), and hence asymptotically, as
vj — oo and -’:’ﬁ)f-—l’ﬂ — 0, n; = vj, a 100(1—a) percent approximate confidence interval
J

for our loss function £ = Fj«(£) is obtainable from the following normal approximation:

j2 [if(j*) <L< lfl'f(j*)] ~l-a (3.11)
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where

Li(5*) = max {0, L¢(5*)}, Ue(j*) = min {1, U (%)} (3.12)

and 1
Lf(j*) — j:-j‘ (u) _ Z(a/2) l:]:j* (u)(];j; fjt (U))] (313)
Ue(5*) = Fje(u) + Z(a/2) [fj' (u)(ly; Fir (u))] (3.14)

and Z(q/2) is the value cutting off the area «/2 in the upper tail of the standard normal
distribution.
Alternate limits of the interval, taking into account a correction for continuity, ob-

tained by replacing (3.13) and (3.14) with the two following expressions:

(2vj« Fje (u) + Z¢ 0y~ D+ Zapr) [Z(2a/2) -2+ ﬁ:) +4Fjx (u)(vir (1 = Fj (w) + 1)] ’

LI ]* —
¢(”) (e + 20 szy)
(3.15)
o e Fe () 4 By +1) = Dy By + (2 7 + 4 () (1 — Fe ) — 1))
UE(J )= Ny + Z2 '
(VJ‘ + (a/2))
(3.16)
As a consequence of (3.11), an a-minimax selection is s*(d) = (si{(d),...,si(d))

such that s}.(d) = 1, si(d) = 0 for any other j # j*, and j* is such that U¢(j*) =

In the event there are more than one population with the same value [75( 7*), we might
choose, among these populations, the one (or one of those) for which f}f (5*) is minimum. In

9



fact, once we know, for instance, that with two given selections we have the same (probable)
maximum loss, in absence of any type of information about the underlying distributions,
we may want to further subselect a population for which the (probable) minimum loss is

smaller.

Finally, it may be noticed that a sufficient condition SC for an a-minimax selection

s*(d) to be A-good is SC = {(Ue(5*) <7¢) A (1 =A< 1-a)}.

Proof of Lemma 1. Denote, for any classification (PPy,..., PP}), by the symbol
I%(u) (the symbol r¥(u)) the number of the partially classified observations, less than or
equal to (greater than) u, which the classification (PPY,..., PPy) attributes to ;, j =
1,...,k:

Hu)=#(zi €z: 3 <u A PPF={j} A |PP|>1), (3.17)
ri(u)=#(zi €z: 7 >u A PP} ={j} A |PP}|>1). (3.18)

By (3.3), (3.4), (3.17), and (3.18), we have
1j(u) = max I3(u), and r;(u) = maxr}(u) (3.19)

(i.e., the value I;(u) (the value r;(u)) represents the maximum number of partially classified
observations less or equal (greater) than u which could be classified as realizations of
mj, varying in all the possible ways the prior distribution p, and, hence, the consequent
classification).

Thus, for any j € {1,...,k}, 7 € {1,...,v;} and u, we have

(i) = G())(wj —75) + (75 + Li(w)rj(w) 2 0 (3.20)
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N 7ili(w) + I (w)v; < 7505(u) + 75 (u) + Li(w)vj + Li(u)r;(u)

N 7ivj + 75li(w) + 5wy + G(u)li(w)

< mjvj + 1l (u) + v (v) + G(w)vs + Li(w)lG(u) + 1 (w)ri(u)

& (75 + Gu)(vj + 1i(w)) < (75 4 Li(w))(v; + 1(u) + 75 (w))
7j +13(w) 7j + ()
& < . 3.21
@) 17 v+ ) 320
Since for some 7;, dependent on u, we must have I%(u) = %, we can write
R L . 2 . '
7t () Vi fu) + —0) (3.22)

vi+ 5 (u) +ri(w) T v+ 1i(u) vj+1i(u)

from which, statement (3.7) follows, for, by definition (cf., formulae (3.17), (3.18), and
(3.5)), the left hand side of the inequality is the empirical c.d.f. I?;*(u) of 7; at u under
the classification (PPy,...,PP;). (In particular, the value 7; such that ﬁ‘](u) = % is
75 = Yica Laigu A PR=(3))-

The proof of statement (3.6) is analogous. For any j € {1,...,k}, 7; € {1,...,v;}

and u, we have

(v — )l (w) + (rj(u) —rj(w))m; + Gu)ri(u) 2 0 (3.23)
N iri(w) + G (w)vs + G(w)ri(u) — 7505 (u) — 7ri(u) 20
& Tivj + 1iri(u) + 5 (u)y; + (u)ri(u) = 7y + 7505 (u) 4+ 757 (u)
© (75 + G())(wj +ri(u)) 2 7i(v + 1 (u) + 75 (u))
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i + l;‘(u) > Tj

=
vi +1j(u) +r5(u) = v +ri(u)
(3.24)
and, hence, we must have
> i(u).
vi + 5 (w) +ri(w) ~ vi+ri(u) (u) (3.25)

4. A NUMERICAL EXAMPLE

In this section, we present an example to show how the above procedure works.

A simulation was carried out in order to reproduce the conditions of a life-test involving
(n =)1000 systems s;, of the same type, made of (k =)3 components C;, 7 =1,2,3,in
series. In particular, in order to generate the data, for each system s;, three lifelengths
ti, tiz, tis have been drawn from three different independent c.d.f. F(u), Fy(u), F3(u),
(which does not matter to specify here) and, then, the failure time z; of the system has
been computed as z; = min{t;;, t;2, t;3}. Finally, a masking has been appropriately
carried out on the causes of failure, in order to simulate a time-censored search for the
failed component on a small proportion of systems.

In Table 1, a portion of the data is listed (the complete data is available from the
authors).

To the purposes of our example, the data generated as described above may be thought
of as the outcome of a life-testing experiment conducted on 1000 3-component devices s;
in which, when a device s; fails (because one of its component fails), the failure time z; is
recorded together with a set PP; = {7i1,...,Jir; } such that P[ the subscript of the failed
component is in PP;] = 1. The set PP; might be, for instance, the result of a time-censored
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search for the cause of failure.

The distributions of the lifelengths of the components are assumed to be totally un-

known and no hypothesis is made about them, except that one of independence. (In

presence of some distributional information, it is obvious that selection rules “better” than

the one developed here can be found.)

We want to select the “best” component in the a-minimax sense.

We put 1 — a = 0.95 and show in Table 2 the outcome of the procedure when applied

for several different values of £.

Table 1

Simulated Data

T; PP; T; PP; T; PP; z; PP; i PP
0.4918 (2) 3.6590 (2) 50039 (2) 61849 (32)  7.4050 (3)
0.6219 (2) 3.6639 (321) 50059 (2) 61870  (2) 74124 (21)
0.6466 (2) 3.6893  (2)  5.0084 (2) 61889  (3)  7.4160 (3)
0.6651 (3) 3.6931  (3)  5.0096 (3) 61912 (1) 74161 (12)
0.0001 (1) 3.6940 (23) 50127 (1) 61953 (231) 7.4199 (2)
0.9128 (2) 3.6951 (1) 5.0172 (1) 6.2049 (13) 7.4388 (3)
here 192 rows have been omitted
3.6424 (2) 4.9835 (3) 6.1613 (1) 7.4010 (2) 9.6431 (3)
3.6567 (3) 49852  (2)  6.1688 (2) 74029 (1)  9.7265  (2)

Table 2 shows the selected populations, in correspondence to some values of £. In

particular, with reference to our notation, the structure of Table 2 is as follows:
Ue(3)
Le(3)

Ue(1)
Le(1)

U (2)
L¢ (2)

(subscript of selected 7r,-j

repeated for various &, where the ﬁe’s and f)e’s are computed according to formulae (3.12),

(3.13), and (3.14).
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Table 2
¢ Ue(l) & Le(1) Ue(2) & Le(2) Ue(3) & Le(3)  Selected population

2.0 0.03775 0.09040 0.04420 (1)
0.00161 0.04451 0.00330

3.0 0.10543 0.18571 0.14962 (1)
0.03825 0.11988 0.06627

4.0 0.22858 0.33866 0.31965 (1)
0.12889 0.25507 0.20173

5.0 0.41320 0.47143 0.46945 (1)
0.28902 0.38095 0.33767

6.0 0.56181 0.65182 0.63783 (1)
0.43172 0.56246 0.50491

7.0 0.77018 0.78926 0.79663 (1)
0.65227 0.70999 0.67845

7.9 0.90118 0.89822 0.91976 (2)
0.80968 0.83613 0.83106

8.0 0.91102 0.90542 0.93037 (2)
0.82261 0.84494 0.84567

8.8 0.97785 0.97834 0.98901 (1)
0.92079 0.94271 0.93897

8.9 0.97785 0.97990 0.99176 (1)
0.92079 0.94515 0.94463

9.0 0.98063 0.97990 0.99441 (2)
0.92565 0.94515 0.95041

9.5 1.00000 1.00000 1.00000 (3)
1.00000 0.99020 0.98709

9.6 1.00000 1.00000 1.00000 (3)
1.00000 0.99020 0.98709

9.7 1.00000 1.00000 1.00000 (2)
1.00000 0.99390 1.00000
9.8 1.00000 1.00000 1.00000
1.00000 1.00000 1.00000

In Table 3, the values of I;(u) and §;j(u), in correspondence to different values of
u, are reported. According to formula (3.8), for any u, the set [[;(u), S;(u)] certainly

contains the unknown empirical c.d.f. Fj(u). The structure of Table 3 is the following:
u S’l(u) gg(u) .§'3(u)
Lhw) Iw) Is(uw)
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repeated for several u.

Table 3
v Si(uw) & [i(w)  Sa(w) & L(u)  Sa(u) & Is(w)

0.4 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000
0.5 0.00000 0.00218 0.00000
0.00000 0.00184 0.00000
1.0 0.00441 0.01089 0.00469
0.00327 0.00919 0.00373
3.5 0.14103 0.25214 0.21818
0.08696 0.20374 0.15709
4.0 0.21849 0.32770 0.30045
0.13898 0.26604 0.22093
5.0 0.41600 0.46584 0.45652
0.28622 0.38654 0.35060
6.0 0.57090 0.64940 0.62810
0.42264 0.56487 0.51464
7.0 0.77305 0.78378 0.78039
0.64940 0.71546 0.69469
8.0 0.90169 0.89474 0.90566
0.83193 0.85563 0.87037
9.0 0.96689 0.97032 0.97753
0.93939 0.95474 0.96729
9.7 1.00000 0.99816 1.00000
1.00000 0.99782 1.00000
9.8 1.00000 1.00000 1.00000
1.00000 1.00000 1.00000
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