A GEOMETRIC SOLUTION OF THE BAYESIAN
E-OPTIMAL DESIGN PROBLEM
by

H. Dette and W.J. Studden
Universitdt Gottingen Purdue University

Technical Report # 92-27

Department of Statistics
Purdue University

June, 1992



A GEOMETRIC SOLUTION OF THE BAYESIAN
E-OPTIMAL DESIGN PROBLEM

by

H. Dette* and W.J. Studden**
Institut fiir Mathematische Stochastik Department of Statistics
Universitdat Gottingen Purdue University
Lotzestr. 13 1399 Mathematical Sciences Building
3400 Gottingen West Lafayette, IN 47907-1399
GERMANY USA

Abstract

We consider the Bayesian E-optimal design problem in the usual linear model. Using
a Bayesian version of Elfving’s Theorem for quadratic loss, sufficient conditions are given
such that the Bayesian E-optimal design and the classical F-optimal design (without the
assumption of a prior distribution for the parameter vector) are supported at the same set
of points or are identical. If the minimum eigenvalue of the classical E-optimal information
matrix has multiplicity 1 (as in the case of polynomial regression) it is shown that for a
sufficiently large number of observations the classical and the Bayesian E-optimal design
are supported at the same set of points.
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1. Introduction. Consider the linear regression model

(1.1) y=f'(z)0+¢
where f'(z) = (fi(z),..., fx(z)) is the vector of regression functions, z the control variable,
6' = (61,...,6:) the vector of unknown parameters and ¢ is a normally distributed random

variable with mean 0 and variance g2. We assume that X’ is a compact set containing at
least k points with sigma field including all one point sets. The regression functions are k
linearly independent real valued continuous functions on the design space X. Let n(6,0%)
denote a prior distribution on (6, 62) such that the conditional prior distribution of § given
o? is a normal distribution with mean y and covariance matrix 02R~! where R is a given
positive definite k x k “precision” matrix. A design ¢ is a probability measure on X (or

on its sigma field) and the k x k¥ matrix

(1.2) Mp(€) i= M(©) + R = [ (@) (@)d(z) + =R

is called the Bayesian information matrix of the given design ¢ where n denotes the number
of observations taken by the experimenter. If ¢ concentrates masses % at s different points
z;, the experimenter takes n uncorrelated observations, n; at each z;. In this case (under
quadratic loss) the covariance matrix of the posterior conditional distribution of 8, given
the observations at these points and o2, is proportional to the inverse of the Bayesian

information matrix Mz*(¢).

A Bayesian optimal design maxi- or minimizes an appropriate optimality criterion
depending on Mp(§) or its inverse (see Pilz (1991), Chaloner (1984) and El-Krunz and
Studden (1991)) and there are numerous criteria which can be chosen to compare com-
peting designs. In this paper we will investigate the A- and E-optimality criterion from
a geometric point of view. For a given matrix A € R¥*™ a design ¢ is called Bayesian
optimal for A’ if £ minimizes tr(A'Mg'(€)A) and we call a design Bayesian E-optimal
if £ maximizes the minimum eigenvalue Apin(Mp(€)) of the Bayesian information matrix
Mp(€). The designs minimizing, and maximizing the corresponding functionals for the
“classical” information matrix M(¢) = [ f(z)f'(z)dé(x) (that is the information matrix
of { in the model (1.1) without the assumption of a prior distribution on (6, 62)) are called

“classical” optimal for A'6 and “classical” E-optimal.
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It is the purpose of this paper to investigate conditions guaranteeing that the Bayesian
and classical E-optimal design are supported at the same set of points or are identical.
In Section 2 some general results are established investigating the relation between the
Bayesian F-optimal and the Bayesian optimal design for A’6. In Section 3 we use these
results and show that for sufficiently large n the Bayesian and the classical E-optimal
design are supported at the same set of points if the minimum eigenvalue of the information
matrix of the classical F-optimal design has multiplicity 1. If this multiplicity is greater
than 1 this property will generally depend on the precision matrix R and we are able
to state sufficient conditions for it. In the same section we give some conditions such
that the Bayesian and classical F-optimal design coincide. The analysis is based on the
consideration of the geometric properties of certain convex subsets in R¥*™ introduced by
Elfving (1952) (for m = 1) and generalized by Studden (1971) (see also Dette and Studden
(1992) and El-Krunz and Studden (1991)). Finally in Section 4, some applications and
examples are given in the case of polynomial regression where the classical E-optimal

design was recently determined by Pukelsheim and Studden (1992).

2. F-optimal and optimal designs for A'0. In this section we present some general

results concerning Bayesian E-optimality and Bayesian optimality for A’6. Some famil-
iarity with the work of Elfving (1952) and Studden (1971) will be helpful. Proofs are
only given if they involve new arguments not obtainable from the literature. In all other
cases the proofs can either be found in the papers of El-Krunz and Studden (1991) or
Dette (1992) or are obvious modifications of the proofs of the corresponding statements
for the classical problem given by Dette and Studden (1992). We state all results for the
Bayesian optimal design problem, the classical case can be formally obtained by replacing
the precision matrix R by a matrix containing only zeros as elements. Qur first results
are immediate consequences of Theorem 3 of Pukelsheim (1980) and are the basis for all

further investigations (see also Pilz (1991) for a proof of Theorem 2.2).

Theorem 2.1. A design { is Bayesian E-optimal if and only if there exists a matrix
E € co(S) such that
1
f'(2)Bf(2) < Amin(Mp(¢)) — ~tr(RE)

for all z € A. Here S denotes the set of all k¥ x k¥ matrices of the form zz', with
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l|zllz = 1, such that 2 is an eigenvector of M B(£) corresponding to the minimum eigenvalue
Amin(MB(€)) of the Bayesian information matrix Mp(¢ ) and co(A) denotes the convex hull
of A.

Theorem 2.2. A design ¢ is Bayesian optimal for 4’6 if and only if
F(2)Mp" (AA Mg (§)(2) < tr(A' M5 (6)M(E)M3 (£)A)

forallz € X.

In what follows /\1(:131 and Ayin denote the minimum eigenvalue of the Bayesian and
classical E-optimal information matrix while Amin(B) is the minimum eigenvalue of a
symmetric matrix B. For the classical E-optimal design Dette and Studden (1992) used

the so called “Elfving” set (see Elfving (1952) and Studden (1971))
Sm = co({f(z)e'| z € X, e € R™, Jj¢[l2 = 1})

for the characterization of the E-optimal design. In the Bayesian context we will need the
following set (introduced by El-Krunz and Studden (1991) investigating Bayesian optimal
designs for A'6)

K& = {(1 + %tr(D’RD)) 2 (U + %RD) | U €98m, D e C(U)}

where C(U) = {D| D is supporting hyperplane to S,, at U € 0Sm, trD'U =1},

Theorem 2.3. A design ¢ = {;: }s

v=
ists a (unique) number § > 0 and (unique) vectors €1,...,€s € R™ with norm

lesllz =1 (v =1,...,s) such that

is Bayesian optimal for A’ if and only if there ex-
1

§A = (1 + %D’RD) i (ff + %RD) e K
where U' = Y°°_. 5, f(z,)e!, and D ¢ c(in.

Remark 2.4. For m = 1, ¢ = A € R¥*! the optimality criterion for A’8 reduces to

the well known c-optimality criterion (see e.g. Pukelsheim 1981)). Thus putting formally
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R = 0 Theorem 2.3 reduces to the well known Elfving theorem (see Elfving (1952)). Thus

a design £ = {;" }s is classical c-optimal if and only if there exists a positive number
v I)y=1

v>0, &, =F1 (v=1,...,s) such that

(2.1) ve=Y pf(zs)es
v=1
is a boundary point of the set S; = co({f(z)e| z € X, & = F1}).

k
Theorem 2.5. Let £ = { :" } . denote a classical optimal design for A8 supported at
v =

k different points such that F = [f(z1),..., f(zz)] is nonsingular with inverse T' = F~1,

Let R denote a precision matrix such that R* = TRT' = diag(r},...,r}) is diagonal,

n

k
o 1 1
(2.2) p,,=p,,(1+;z;r;">——r,, (v=1,...,k)
=
k
and ng := min{n|p, > 0, v = 1,...,k}. Whenever n > n, the design £ = {;"}
v Jy=1
(which puts masses 5, at the support points z, of ¢) is Bayesian optimal for A’ if and

only if p, =p, (v =1,...,k).

S

Corollary 2.6. For c € R¥ let ¢ = { 2~ denote the classical c-optimal design sup-
xorollary 2.0 &

v Jy=1

ported at k different points with an Elfving representation (2.1) such that f(z;),..., f(zr)

are linearly independent, R* = TRT' = (r;"])f’ j=1 >
1 k
(23) ﬁy = Dv 1 + ;

1 k
* *
8,‘6]'1",-]- - ; E 5,;5]'7'”]' (V= 1,...,k)
t,j=1 =1

1%
puts masses §, at the support points z, of the classical c-optimal design) is Bayesian

and ng = min{n|p, >0, v =1,...,k}. For all n > ngy the design {p = {"’ }a . (which

c-optimal if and only if §, = p, (v =1,...,k).

Note that Corollary 2.6 does not require a diagonal matrix R* in contrast with Theo-
rem 2.5 and that there always exists a c-optimal design supported at at most k points (see
Fellman (1974), Theorem 3.1.4) which is not necessarily the case for the optimal design
for A'6 if m > 1. In what follows define

K = {tK|t €[0,1], K € KM}
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and let

-1
2

(2.4) D* = {(1 + %trace(D’RD)) D| D € C(U) for some U € 6Sm} .

We will need the following two auxiliary results.

Lemma 2.7. For every matrix K, € ng,': ) there exists a matrix D* € D* such that
(1) trace(D¥Ky) =1

(i) trace(D¥*K) <1 for all K € K.

Proof. For

(U

. _
Ko = (1 + ;tr(D{)RDO)) (Uo + %RDO) e k(™

and

-4
D* = (1 + %tT(D(’)RD())) D, € D*

we readily obtain tr(D*Ky) = 1. Let K = (1 + Lir(D'RD))~2 (U + LRD) denote an
arbitrary element of K (U € 8Sm, D € C(U)). From the positive definiteness of the

precision matrix R we have
(2.5) 2tr(Dy RD) < tr(DyRDy) + tr(D' RD).
Using Schwarz’s inequality it follows that

tr?(DyRD) < tr(Dy RDy) - tr(D' RD)

and this implies (observing (2.5))

1
(2.6) (1 + ;tr(D{,RD)) < \/ 1+ %tr(D{,RDO) 1+ ;];-tr(D'RD) :

Because Dy is a supporting hyperplane to the set S,, at the boundary point Uy we have
tr(DyU) < 1 for all U € 8S,, and obtain for all K € X from (2.6)



1+ Ltr(D,RD
tr(D¥K) < * 2 tr(Do RD) <1.
\/1 + %tr(D(’,RDo)\/l + Ltr(D'RD)

Lemma 2.8. The set 165,': ) is convex with boundary IC,(:: ),

Proof. Let K, K; € IC,(::), a€(0,1)and C = aK1+(1—a)K,. It was shown by El-Krunz
and Studden (1991) that the line {AC|A > 0} intersects the set K,, = {U+ LRD|U €
OSm, D € C(U)} at a (unique) point yC, that is

7C=U+%RDEIC,,,

for some v > 0, U € 85y and D € C(U). This implies for § = 4(1 + Ltr(D'RD))~% that

(2.7) K¢g :=6C = (1 + %tr(D'RD)) i 7C € KM

and by Lemma 2.7 there exists a D* € D* such that tr(D¥K) < 1 = tr(D* K¢) for all
K € K. Thus we obtain by a multiplication of (2.7) with D*

1=1tr(D"Kc) = étr(D* (aK; + (1 - a)K3)) < §

which shows that C = %KC € Id,': ) and proves the convexity of Id,’: ) . From Lemma 2.7 we
have that ICS,’: ) - 3/6,(1? ) and for the converse inclusion we consider a K, € 3/65,’: ). Because
K™ is closed it follows that there exists a t € (0,1] and a K; € K such that Ky =tK;.
Let Dy denote the supporting hyperplane to the (convex) set ICS,? ) at the boundary point

Ko, then we obtain

tr(DyK) < 1 = tr(D}yKy)

for all K € ICS,': ), Inserting in this inequality K; € IC,(,;1 ) C ICS,’: ) we have
/ L 1
1> tr(DyK,) = ?tr(DOKo) =7

which shows that ¢ = 1 or equivalently K, = K; € IC,(T? ), [
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Theorem 2.9. Let ¢ denote a Bayesian E-optimal design and E a matrix satisfying the

conditions of Theorem 2.1 with a convex representation

ko
(2.8) E = Z @;z;z!

i=1

(»)

by normalized eigenvectors z; of M B(£) corresponding to the minimum eigenvalue A\ .

Then the design £ is also Bayesian optimal for A'6, where the matrix A is given by A =
(Vaizi,...,/Qr,2k,) € R¥*¥o,

By the convexity of the Elfving set (¥ (see Lemma 2.8) it now makes sense to
investigate the “inball” of £\ which is the largest symmetric ball centered at the origin
and included in €. The radius of this ball

rm = inf{4/tr(K'K)| K € K(M}

is called the “inball radius” of the convex set ™ (note that & = ot by Lemma
2.8). A vector K € K with tr(K'K) = r2, is called an “inball vector” of . The
following Lemma gives an alternative representation of the inball radius Tm using the set
D* defined by (2.4).

Lemma 2.10.

1
2 * *
rm_mf{—tr(D*’D*) | D ED}

Proof. By Lemma 2.7 it is obvious that D* is a subset of the set of all supporting
hyperplanes to Id,': ) and this implies

1 _
rl =inf { m | D is a supporting hyperplane to ICS,':)}

1
<i —_— * * 5.
< mf{tr(D*’D*) | D* €D }
Let K € ICS,’: ) denote an inball vector of Id,': ) (note that 165,’: ) is compact and the infimum

is in fact a minimum), then the supporting hyperplane D* to 165,’: ) at K is unique and by

Lemma 2.7 an element of D*, which proves the assertion. |

S
Theorem 2.11, Let ¢ = { oy } . denote a Bayesian E-optimal design and E the matrix

P

of the equivalence Theorem 2.1 with a representation (2.8). For every m > ko the matrix
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)\l(l:nA \/)\I(:m (Vo121 .oy \[Uig 2k, 0,...,0) € R¥*™ is an inball vector of the set
K™ and the squared inball radius of £ is given by Al

min *

Proof. Consider the Bayesian optimal design problem for A'6. Theorem 2.9 shows that

the Bayesian E-optimal design is also Bayesian optimal for A'@ and thus Theorem 2.3
implies that there exist § > 0, ¢1,...,6, € R™ (||e, ||z = 1) satisfying

_ 1D BT r o1 ()
6A = (1 + =tr(D RD)) (Z Duf(z,)e!, + nRD) e K™,

v=1
By the proof of this theorem (see El-Krunz and Studden (1991) or Dette (1992)) we obtain
D=6Mz (A= (n) —5 A where

mln

)7 = tr (MG OMOMEO4) =1 (44504 - -4M5 ORMG*(©4)

2 2
= ( (1) ) (/\,(:,LA'A— lA’RA) = ( (1 ) [Af;ll - ltr(A’RA)}

min min

and 6*A =37 p,f(z,)el, + LRD € K,,. This implies

5= (1 + %tr(D’RD)) i

1l
2

-4
[A(".) - %tr(A’RA)] Al

min min

1 _
_/\I(:lzl 141 1 ( )tr(ARA)
n A\ %tr(A'RA)

min

and the definition of the inball radius yields

2 <tr(6A'64) = A

min*

The converse inequality follows by an application of Lemma 2.10 and similar arguments

as given in Dette and Studden (1992) is therefore omitted. |

Theorem 2.12. Let ¢ denote a Bayesian E-optimal design and E the matrix of the
equivalence Theorem 2.1 with a representation (2.8). For all m > k¢ the Bayesian E-
optimal design ¢ is also Bayesian optimal for A0 where A, is any inball vector of the
Bayesian Elfving set ICS,? ), Moreover, if D € D* is a supporting hyperplane to IC,(:: ) at the
inball vector A,, we have

|0’ f(a)JfE = 1+ —tr(D'RD)
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for all support points of the Bayesian E-optimal design.

3. Bayesian and classical E-optimal designs. The results of the previous section

1nd1cate that the inball vectors of the classical Elfving set S, and the Bayesian Elfving set
IC play a partlcular role for the E-optimal design problem. The following theorem shows
that the results of Theorem 2.5 can be transferred to the E-optimality criterion provided
that there exist inball vectors of these sets with the same direction. In what follows ko
will always denote the larger of the two numbers in the representation (2.8) corresponding
to the matrix E in the equivalence Theorem 2.1 for a Bayesian and a classical E-optimal

design (in the last case we formally put R = 0 in Theorem 2.1, see also Pukelsheim (1980)).

k
Theorem 3.1. Let ¢ = {;"} . denote a classical E-optimal design supported at k
e — 14 v=
points, F' = [f(z1),..., f(zx)] be non singular and T = F-!. Let R denote a precision
matrix such that R* = TRT' = diag(ri,...,r}) is diagonal,

(3.1) Pu—Pu<1+ Z )——r (v=1,...,n)

and ng := min{nlp, >0 v=1,..., k}. If n > ng, m > ko and there exist inball vectors A
and A™ of S,, and ICS,? ) with the same direction (i.e. AM™ = paA for some p, > 1), then
the design £ = {;: }f=1 (which puts masses p, at the support points z, of the classical
E-optimal design) is a Bayesian E-optimal design.

Proof. Assume that n > ng and that 4 and A™ are inball vectors of the Elfving sets
Sm and IC( n) with the same direction, that is A(®) = prA. Denoting by Amin and /\(n)
the minimum eigenvalues of the classical and Bayesian E-optimal information matrix, it

follows from Theorem 2.11 and Theorem 3.3 of Dette and Studden (1992) that

P,zzf\min = )‘(n)

min*

Because A and A(™ are inball vectors of their correspondmg Elfvmg sets the supporting

hyperplanes at these points are unique and given by +4 oo an d4 TT’ respectively. Observing

Lemma 2.7 we thus obtain

| A 1tr(A'RA)\"% 4
(3.2) /\(n) = (1 + ;*}\2 ) /\min
min min



=

which implies p,, = (1 + %ﬂ%_iél) , oI equivalently

n 1itr(A'RA
(3.3) /\fnﬂ. = (1 + ;%) Amin
min
1
: 1tr(A'RA)\
(n) —a
(3.4) A (1 T ) A

From Theorem 3.4 of Dette and Studden (1992) we see that the classical E-optimal design
£ is also classical optimal for A'6, and the Elfving Theorem of Studden (1971) shows that

there exist (unique) vectors ¢1,...,e; € R™ such that
k
(3.5) A=) "p,f(z,)el, € OSm.
v=1

k
Using Theorem 2.5 it follows that the design g = { :: } i is Bayesian optimal for A'¢
and by (3.4) also Bayesian optimal for A(™'6. Thus observing Theorem 2.12 the design

£B can be considered as a candidate for a Bayesian E-optimal design.

Applying Theorem 2.3 we obtain a (unique) representation

(3.6) A = (1 + %tr(D’RD)) (U + %RD) e K™
where U € 38, D € C(U) satisfy
A

min

k
U= Zﬁ,,f(a:,,)&ﬁ, and D= 3
v=1

This follows from the proof of Theorem 2.5 (see Dette (1992)) and the fact that all sup-
porting hyperplanes at the face

k k
SFLienTh = {Z Oluf(-'lfu)f::ll a, >0, Zau = 1} C OSm
v=1 v=1

spanned by the points {f(z,)el }_, are unique and given by A/Amin (note that by (3.5)
the inball vector A of S,, satisfies A € Sgzbo% ). On the other hand El-Krunz and
Studden (1991) showed that the supporting hyperplane to S, at U in (3.6) is given by

' i
D= (]_ + ltr(A RA)) Mgl(ﬁB)A(n)

2
n ’\min
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which implies (using (3.4))

A _ 1tr(A'RA
(3.7) o= M5 () (1 + ;—(,\2—)) 4.

Observing (3.3) it thus follows that the columns of the matrix A (or A(™) are eigenvectors
(n)

of the Bayesian information matrix Mp(£p) corresponding to Amin and it only remains to

show that /\(n)

min 18 in fact the minimum eigenvalue of Mp(¢p). But from (3.1) we have for

this matrix (note that R* is diagonal by assumption)

k

n k
MB({B) = (1 + %Z"':) Zpuf(zu)f’(xu) - % Zr:f(zu)f,(zv) + %R
=1 v=1 v=1

1 , 1., 1 1,
=(1+;;r,~>M(§)—;FRF+;R=<1+;;ri)M(§)

and an application of (3.3) completes the proof of the theorem. |

The calculation of the inball vectors of the sets Sy and IC;C") is in general very difficult
and some examples can be found in a recent paper of Dette and Studden (1992). How-
ever, the preceding theorem suggests the following procedure for the determination of the
Bayesian E-optimal design when the classical E-optimal design supported at k points is

known, R* = TRT' is diagonal and the assumptions of Theorem 3.1 are hard to verify.

(I) In afirst step the normalized eigenvectors z; corresponding to the minimum eigenvalue

Amin Of the classical F-optimal information matrix M (€) are calculated and a matrix

ko ko
(3.8) E = Zaiz,'z; (a,- >0 Eai = 1)
i=1 =1

satisfying f'(2)Ef(z) < Amin (V z € X) is determined (note that this is the equiva-
lence theorem for the classical E-optimality criterion, that is R = 0 in Theorem 2.1
(see Pukelsheim (1980) for more details)). By Theorem 3.3 of Dette and Studden
(1992) it follows that the matrix A = v Amin (/1215 .., /%o 2k, ) defines an inball

vector of the set Sk,.

(II) In a second step we calculate A(™ = (1 + %ﬂﬁ;}ﬂ) * A. If A™ is an inball vector
of the Bayesian Elfving set Eﬁ:) and n > ng, then Theorem 3.1 shows that the design
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k
€ = {;-'} with masses p, (defined by (3.1)) at the points z, is a Bayesian
viv=l

E-optimal design.

(IIT) If it can not be proved (or disproved) that A(™ is an inball vector of IC;C’:) there still
is the possibility that {p is a Bayesian E-optimal design. In this case we calculate by

!
A= (1+ lw) Auin

2
n Amin

an application of (3.3)

as a candidate for the minimum eigenvalue of the Bayesian E-optimal information
matrix. From the proof of Theorem 3.1 we know that A is the minimum eigenvalue
of Mp({p) and we finally apply the equivalence Theorem 3.1 to examine if {5 is a
Bayesian E-optimal design. [

The situation of Theorem 3.1 becomes more transparent if the minimum eigenvalue
of the classical E-optimal information matrix has multiplicity 1. In this case there always
exist inball radii of §; and /Cﬁ") having the same direction.

k
Theorem 3.2, Let £ = {:: }V=1 denote a classical E-optimal design such that the
minimum eigenvalue of the E-optimal information matrix M(¢) has multiplicity 1. There
exists an ng € N such that for every n > ny we have the following. For every inball vector

cn of ﬁin) there exists an inball vector ¢ of §; with the same direction as c¢,.

Proof. Without loss of generality we assume that the minimum eigenvalue of the classical
E-optimal design is given by 1, and obtain for the inball radius s,, of S, by Theorem 3.3
of Dette and Studden (1992) that s, = 1 whenever m > 1. In the following let

A={C€dS ||c|z=1}

Po
design such that the minimum eigenvalue of its information matrix has multiplicity 1. By

Theorem 3.4 of Dette and Studden (1992) € is classical c-optimal for ¢'d for all ¢ € A and
by the famous Elfving Theorem (see Elfving (1952) or Pukelsheim (1981)), we have for

k
denote the set of all inball vectors of §; and ¢ = {"’ } denote a classical E-optimal
v=1

every c € A a representation

k
(3.9) c=_ puf(zy)es(c)
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where €,(c) = ¢'f(z,) =F1 (v =1,...,k) and the p, are positive because the E-optimal

design has a nonsingular information matrix. In the following let

k k
ATk (e) 1= {Z oy f(xy)en(c)| ay >0 Za,, = 1}

denote the corresponding boundary face of the inball vector ¢ € A (with a representation
(3.9)) and define

A* .= ch Azl,...,zk(c)

as the union of all these faces. Because all weights p, in the representation (3.9) are

positive, every inball vector ¢ € A is a point of the relative interior of its corresponding

face A*1»%(¢) and we obtain
(3.10) t = inf{||ul|2| v € 35\ A*} > 1.

In a first step we will now show that there exists an ng € N such that whenever n > ng
we can find for every inball vector ¢,, of IC&") an inball vector ¢ € A and a boundary point

Un € A%k (C) satisfying

Up + -,I;Rc

3.11 c, = —n T whe
(3.11) (1+ 1c'Re)z

(note that the unique supporting hyperplane at u, € A%t %% (¢) is given by c). To do this
we assume the contrary and obtain from the definition of K:ﬁ”) and Lemma 2.7 a sequence

of inball radii 1
Uy, + ERdnk

" (1+ Zdn,Rdny)}

an

where un, € 681\ A* and d,, € C(un,). This sequence is bounded and contains a conver-

gent subsequence also denoted by ng. The inequality (3.10) now yields
lim |lep 2 >t >1
NE— 00

which contradicts the fact that ICE") approximates the set Sy arbitrary close as n — oo
(note that we have assumed that the inball radius of S; is 1). This shows that (3.11) holds

for sufficiently large n, say n > n,.
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Because ¢, is an inball vector of }an), the unique supporting hyperplane d, to ’an)
at cp, has the same direction as ¢, which yields d,, = c—,cg-n— But by Lemma 2.7 and its

proof the vector (1 + %c’ Rc)"%c is a supporting hyperplane to ICin) at ¢, (note that c is
the unique supporting hyperplane to S; at u,) and we thus obtain

ch=cpcn|{ 1+ —cRec c.
n

This shows that whenever n > ny we can find for every inball vector ¢,, of IC{") an inball

vector of 1 with the same direction as c,,, and completes the proof of Theorem 3.2. MW

k
Theorem 3.3. Let ¢ = {;”} denote a classical E-optimal design supported at k
v J)y=1

points such that the E-optimal information matrix M (¢) is unique and the minimum
eigenvalue Api, has multiplicity 1 with corresponding normalized eigenvector ¢. Let

F =[f(z1),..., f(z1)] be non singular, T = F~1, R* = TRT' = (r%; f’j=1 and

k k
. 1 1 .
(3.12) Pv=p |1+ - Z €i€Ty; | — oy Zevsjrij
1,7=1 J=1
where €1, ..., are the quantities of the Elfving representation (2.1) of the inball vector

vV Amin¢. There exists an ng > min{n|p, >0 v =1,... , k} such that whenever n > ng the
k
design g') = {;" } . with masses p, at the points z, is Bayesian E-optimal. Moreover,
v v=

the multiplicity of the minimum eigenvalue of M B({gl)) is 1.

Proof. In what follows let £(®) denote a Bayesian E-optimal. In a first step we show
that there exists an n; such that for all n > n; the minimum eigenvalue /\I(:lll of M B(.f("))

has multiplicity 1. To this end we assume the contrary and obtain the existence of a
(n&)

subsequence (nk)reN such that the minimum eigenvalues A .*" of the Bayesian information
matrices M B(f("")) have multiplicity greater than or equal to two. The design space X
is compact and thus the set of all probability measures on X is relatively compact (see
Billingsley (1968)). This implies the existence of a weakly convergent subsequence £("+)
(also denoted by ny) with limit ¢*. From the continuity of the regression functions we

obtain

M(E) = lim Mp(c™)

* 14



and Theorem 2.11 and Theorem 3.4 of Dette and Studden (1992) imply

(3.13) Amin = lim (™).

ny—oo WM

Using (3.13) it is now straight forward to show that ¢* is also a classical E-optimal design
such that the minimum eigenvalue of the information matrix M (€*) has multiplicity greater
than or equal to 2. This is a contradiction to the assumptions that the classical E-optimal

information matrix is unique and its minimum eigenvalue Ay, has multiplicity 1.

From now on assume that n > n; such that all Bayesian E-optimal information matri-
ces Mp(¢£(™) have a minimum eigenvalue with multiplicity 1. By Theorem 3.2 there exists
an nz > nj such that for all n > n, we have the following: For every inball vector ¢y of IC;")
there exists an inball vector ¢ of S; with the same direction as ¢n. Using similar arguments

as in the proof of Theorem 3.1 it follows that for sufficiently large n > ny > max{n|p, >0

v =1,...,k}, cn is an eigenvector of the Bayesian information matrix M 3(51(3")) corre-
sponding to /\f:lzl The proof will now be completed by showing that for sufficiently large

n, )\1(:31 is in fact the minimum eigenvalue of M, B(Ef,_;n) ) (note that the arguments at the

end of the proof of Theorem 3.1 do not apply because R* is not necessarily diagonal).

For this final step we again assume the contrary which means the existence of a subse-
quence of Bayesian information matrices M B(fg"‘) ) with minimum eigenvalues
Alne) < /\l(:i;). From the weak convergence of fg”‘) to the classical E-optimal design
£* we conclude

(3.14) lim Mp(¢™)) = M(€*).

N ~+00

Let b,, denote a sequence of normalized eigenvectors corresponding to A(™*) such that
by, cn, = 0 (note that cp, is an eigenvector of M B(Eg'))). Because ’\x(:i;) = |lcn, || is the
squared inball radius of ﬁi"'“) we obtain from (3.14), Theorem 2.11 and Theorem 3.4 of
Dette and Studden (1992) that

(3.15) Amin = HEm AP < fim A% — )y

ny—00 ny—oo MM

Obviously, there exist convergent subsequences of {bn.} and {c,,} with respective limits

b and ¢ such that 8¢ = 0. Thus it follows from (3.14) and (3.15) that b and ¢ are linearly

* 15



independent eigenvectors of the classical E-optimal information matrix M (¢) correspond-
ing to the minimum eigenvalue Apj,. This is a contradiction to the assumption that this

eigenvalue has multiplicity 1 and the assertion of Theorem 3.3 is proved. |

Remark 3.4.

a) It is an immediate consequence of the proof of Theorem 3.2 and Theorem 3.3 that
the number ny defined by Theorem 3.3 can be much larger than min{n|p, >0 v =

1,...,k} although it will be the same in the examples of Section 4.

b) The assumption that the classical E-optimal information matrix is unique can be
replaced by the weaker assumption that the minimum eigenvalues of all classical E-

optimal information matrices have the same multiplicity.

c) In general the assertion of Theorem 3.2 is not necessarily true for the sets S,, and
ICS,? ) ifm > ko. > 1 because in this case (3.10) can not be verified. However, in most
cases there will exist inball radii of the sets S,,, and ICS,? ) with the same direction when

n is sufficiently large. This is intuitively motivated from the definition of the set Id,? ),

The results stated so far investigate the case when the classical and the Bayesian
E-optimal design are supported at the same set of points (for a sufficiently large number
of observations). The following theorem gives a sufficient condition guaranteeing that the

two designs are identical.

Theorem 3.5. Let ¢ denote a classical E-optimal design, m > ky and /AL 4 an inball

vector of the set S,,. If RA = \A for some A > 0 and Amin + fz\- is the minimum eigenvalue

of the Bayesian information matrix M B(§), then the design ¢ is also Bayesian E-optimal.

Proof. Because v/AninA is an inball radius of the set S, we obtain for the supporting
hyperplane D to S,, at v/ Amin 4

A -1
(3.16) Do =D=M )V A

(see e.g. Dette and Studden (1992)), which shows that the columns of A are eigenvectors of
the classical E-optimal information matrix M (€) corresponding to its minimum eigenvalue

Amin. Theorem 3.4 of Dette and Studden (1992) shows that the design ¢ is also (classical)

* 16



optimal for A’9 and we obtain from Theorem 2.2 (putting formally R = 0) that
fl(@)MH(OAA M () f(z) < tr (A'MTH(E)A)
for all z € X or equivalently (using (3.16) and tr(A'A) = 1)
f'(z)AA f(z) < Amin-

Defining z; = a;/||ai|2 and @; = ||a;]|2 where a; denotes the i-th column of the inball
vector A it is straightforward to show that the matrix E = ) - | a;ziz} satisfies (3.8). By

the assumptions and (3.16) we have for ¢ =1,...,m

Mg(€)zi = Aminzi + iZi = </\min + i) zi
n n

establishing that 21, ..., 2z, are normalized eigenvectors of the Bayesian information matrix

Mp(€) corresponding to its minimum eigenvalue A + % Thus we obtain from (3.8)

f/(a:)Ef(a:) < Amin = ;aizé (MB(E) — %R) 2 = ()\min + -2-) — %tr(RE)

and the assertion follows from Theorem 2.1. [ |

4. Applications and examples. In this section we consider the polynomial regression
model on the interval [-1,1], that is f(z) = (1,,...,2%)" and X = [-1,1]. The classical
E-optimal design problem was recently solved by Pukelsheim and Studden (1992).

Corollary 4.1. (Bayesian E-optimal designs for polynomial regression) Let k > 2,
f(z) =(1,z,...,z¥) and = € [-1,1]. There exists an ng € N such that for all n > ng the

design which puts masses
1 & o 1 .
(4.1) o= |14= 3 (-1 | e - = > (=1t
1,j=0 Jj=0

at the support points z, = —cos(%E) (v =0,...,k) is Bayesian E-optimal. Here p, de-
notes the weight of the classical E-optimal design at the point z,. The minimum eigenvalue

of the Bayesian information matrix is given by

1
o (1 + lc'Rc)
A
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where ¢ denotes the Chebyshev vector containing the coefficients of the k-th Chebyshev

polynomial as coordinates (i.e. ¢ f(z) = Ti(z) = cos(k arccos z) ).

Proof. Pukelsheim and Studden (1992) proved that the classical E-optimal design is
unique and supported at the Chebyshev points z, = — cos(4Z). The minimum eigenvalue
of the E-optimal information matrix has multiplicity 1. Thus the assertion about the
support and the weights follows directly from Theorem 3.3. For the second part we remark
that the results of the same authors show that the Chebyshev vectors :I:"—cc"g are the only
inball vectors of the set S; and thus the minimum eigenvalue of the E-optimal information

matrix is given by Amin = "c" Observing (3.3) (note that A is unique up to the factor

+1) we obtain for all n > ng
Al L 1+ lc'Rc
el n

which completes the proof of Corollary 4.1. ||

Remark 4.2. Pukelsheim and Studden (1992) showed that the classical E-optimal design

for polynomial regression of degree k on the interval [—1, 1] puts masses

(—l)k_"u,,
Pv=—"—"—""7"7—"—" V= 0 .o k
’ llell T
at the Chebyshev points z, = — cos(4E) where the coefficients u, are determined from

k
Z uyf(zy) =c
(note that this is essentially the Elfving representation of the inball vector Wy of &1).

Example 4.3. (Quadratic regression) Let f(z) = (1,z,22)" and

™11 T12 713
R={ri2 ro re
13 T23 733

denote a positive definite precision matrix. From Remark 4.2 it follows that the classical

E-optimal design puts masses %, 5 '5' at the points -1, 0, 1. The matrix F is given by
= [f(-1), f(0), f(1)] and its inverse
1 0 -1 1
T= F_l = § 2 0 -2
0 1 1



which yields

R* =TRT' =
r33 — 2ra3 + 22 2(—r33 + ri3 + res —r12) T33 — T'22
1 2(—r33 + r13 + 23 — r12) drzz — 8riz + 411 2(—733 — r23 +7r13 + 712)
T33 — a2 2(—r33 — ro3 + r13 + r12) T33 + 2ra3 + ra2

By (4.1) and Corollary 4.1 it is now straight forward to show that for sufficiently large n

the F-optimal Bayesian design puts masses

1 1
Do = 10 (2 + ;{27'11 — &r12 — 3r13 + 1073 — 27‘33})
1 = i 6+ g{3 2r11 + 2r33}
n = 10 n 713 711 T33
. 1 1
P2 =2+ —{2r11 + 5r12 — 3r13 — 10ry3 — 2r33}
10 n
at the points zo = —1, z; =0, z2 = 1. Using the equivalence Theorem 3.1 it is easy to

see that the design
2 -1 0 1
€= ( D p p )
Po P1 P2

is Bayesian E-optimal whenever n > ng = max{n|p, > 0} (note that in general ng is not
determined by the assumption that the weights p, have to be positive). The minimum

eigenvalue is given by (note that the Chebyshev vector is (—1,0,2)" )

n 1 1
/\fnizl = g (1 + —[47'33 ot 47‘13 + 7‘11]) B
n

Corollary 4.4. Let k > 2, f(z) =(1,z,...,2%), z € X, ¢ € R¥*! denote the Chebyshev

vector (i.e. ¢' f(z) = Ti(x) ) and £ be the classical E-optimal design. If the precision matrix
R satisfies Re = Ac for some A > 0 and ﬁ; +% is the minimum eigenvalue of the Bayesian
2

information matrix Mp(§), then the classical and Bayesian E-optimal design are identical.

Proof. It follows from the results of Pukelsheim and Studden (1992) that the minimum
eigenvalue of the classical E-optimal information matrix is Ay = ||_c1|'|7 and has multiplicity
2

1. An inball vector of &; is given by W and the assertion now follows directly from
2
Theorem 3.5. |
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Example 4.5. (Quadratic regression) Let k& = 2, f(z) = (1,z,2?)" and consider a

5 2 2
R=|2 11
2 1 2
The Chebyshev vector ¢ = (—1,0,2)" is an eigenvector of R with eigenvalue 1 and thus

precision matrix R of the form

Corollary 4.4 is applicable. From Example 4.3 we obtain that the classical E-optimal

design puts masses %, %,-}; at the points —1,0,1 which yields for the classical E-optimal

information matrix and for the Bayesian information matrix of £

2 25 10 10
L 2 2 1 EH1_0 "5 2—:"
M =10 ¢ 0], M=+ 2+ 2 =
2 2 ) 10 5 10
2 0 2 ol 5" 910

Straight forward calculations show that the eigenvalues of Mp(£) are given by

1 1 4 T 4 45

)\1—3-%-—, A3 = +2—:t 25+_+4_n2—
where the eigenvector corresponding to A; is the Chebyshev vector ¢ = (—1,0,2)'. For
n >4, \; is the minimum eigenvalue of Mp(£) and the design { which puts masses ;, g, ;

at the points —1,0,1 is the Bayesian E-optimal design for all n > 4.

Remark 4.6. The results of Corollary 4.1 and 4.4 carry over for polynomial regression on
the interval [a, b], where 0 < a < b (see the discussion in Pukelsheim and Studden (1992)).
Note also that these corollaries will also hold for the weighted polynomial regression models
f(z) = /Az) (1,2,...,2") (z € [-1,1]) where the efficiency function A(z) is one of the
functions 1—z, 142, 1—z2. In these models the classical E-optimal designs were recently

determined by Dette (1993).

Example 4.7. (Weighted linear regression) In our final example we will illustrate the
application of Theorem 3.1. Let f(z) = v4 — z%(1,z) and z € [-2,2], then it is straight

forward to show that the classical F-optimal design £ puts masses at the two points —1

MO = (5 3):

and that a matrix E satisfying (3.8) is given by

<32 9)-2(on+3 (o
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From Theorem 3.3 of Dette and Studden we have that the matrix
_ (V2 0
A= (%)

defines an inball vector of the Elfving set S;. For the matrix

it can easily be shown that

* __ v _ [ T1—T2 0
R —TRT—( 0 7'1+7'2)

is diagonal, and we obtain for the quantities defined by (3.1)

ﬁ1=%(1+§%), p2=%(1—;—;).

Observing the discussion following the proof of Theorem 3.1 it is straight forward to show

(by an application of Theorem 2.1) that the design ¢, which puts masses p; and p, at the

support points -1 and 1 of the classical E-optimal design, is Bayesian E-optimal whenever

n > 22 (note that this statement could also be obtained by a direct application of Theorem

3.1 showing that for n > %2 there exists an inball vector A™) of the Bayesian Elfving set

ﬁgn) with the same direction as the vector A).
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