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Abstract

Kiinsch(1989) and Liu and Singh (1992) have recently introduced a block resampling
method that is successful in deriving consistent bootstrap estimates of distribution and
variance for the sample mean of a strong mixing sequence. Rais and Moore (1990) and Rais
(1991) extended the results of Kiinsch and Liu and Singh in the case of the sample mean
of a homogeneous strong mixing random field in two dimensions (n = 2).

In this report, the general case (n € Z1) is considered, and a general resampling tech-
nique for strong mixing random fields is formulated, which is an extension of the ‘blocks of
blocks’ resampling scheme for sequences in Politis and Romano (1992a, 1992c). The ‘blocks
of blocks’ method can be used to construct asymptotically correct confidence intervals for
parameters of the whole (infinite-dimensional) joint distribution of the random field, for
example, the spectral density at a point. A variation of the ‘blocks of blocks’ resampling
scheme that involves ‘wrapping’ the data around on a torus will also be studied, in view of

its property to yield an unbiased bootstrap distribution.
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1. Introduction

Suppose {X(t),t € I} is a multivariate random field in n dimensions, with n € Z™T, i.e.,
a collection of random variables X(t) taking values in R?, defined on a probability space
(2, A, P), and indexed by the variable t € I C R™. The set I is assumed to be a regular discrete
lattice in R™. If n = 1, I is just the set of integers Z, and the random field reduces to being a
random sequence. In two dimensions, the regular lattice can consist of triangular, rectangular,
or hexagonal cells. For the case n > 2, the usual choice for I is the integer (rectangular) lattice
Z™. The random field {X(t)} will be assumed to be homogeneous (stationary, shift invariant),
and weakly dependent (see Section 2 for the exact definitions).

Consider the statistical problem of estimating a certain parameter of the first marginal
distribution of the random field {X (t)}, i.e., of the distribution of the random variable X (0).
To fix ideas, suppose that it is desired to obtain a confidence interval for p = EX(0), on
the basis of observing {X(t),t € En}, where Ey is the rectangle consisting of the points
t = (t1,t2,...,t,) € Z™ such that 1 < tx < Ng, where k = 1,2,...,n. Hence, the total
number of observations is |Ex| = [[i=; N; = N. For this purpose, an approximation to the
sampling distribution of the sample mean Xy = [Enx|™' Tijcg, X (i) is required. The Central
Limit Theorem for random fields (cf. Bolthausen (1982), Rosenblatt (1985), Bradley (1992))

provides the convergence
(Var(Xn)) Y3 Xy - p) = N(0,1) (1)

as N — oo, under the assumptions 0 < EX(0)? < oo, and the strong mixing coefficient ax (k)
satisfies ax (k) — 0 as k — oo, (the definition of ax (k) is found in the next section). However,
the variance Var(Xy) is unknown and must somehow be estimated for the Central Limit
Theorem to be of any practical use. This is by no means a trivial problem, since it essentially
requires an estimate of the spectral density of the random field at the origin. .

Alternatively, a different, possibly non-normal, approximation of the distribution of the
sample mean could be used for the purpose of constructing confidence intervals. For the
case of a strong mixing random sequence (n = 1), Kiinsch (1989) and Liu and Singh (1992)

have introduced a nonparametric version of the bootstrap and jackknife that yields confidence



intervals for p with asymptotically correct coverage. Their technique amounts to resampling
or deleting one by one whole blocks of observations.

The block resampling method can be used to consistently estimate the distribution of the
sample mean and related (differentiable) statistics, with the objective of setting confidence
intervals for a parameter p of the first marginal distribution of {X(t)}. As shown by Lahiri
(1991), under appropriate conditions the block resampling method of Kiinsch and Liu and Singh
yields a ‘better-than-the-normal’ approximation to the sampling distribution of the sample
mean. This property is in exact analogy to the well-known (cf. Singh (1981)) optimality of the
classical bootstrap for independent, identically distributed observations of Efron (1979, 1982).

The ‘blocks of blocks’ resampling technique (cf. Politis and Romano (1992a, 1992c)) was
introduced as a generalization of the block resampling method of Kiinsch (1989) and Liu and
Singh (1992), that permits construction of asymptotically valid confidence intervals for param-
eters of the whole (infinite-dimensional) distribution of {X(t)}. A prominent example of such
a parameter is the spectral density function evaluated at a point, or at a grid of points.

Rais and Moore (1990) and Rais (1992) extended the results of Kiinsch (1989) and Liu and
Singh (1992) to the case of the sample mean of a homogeneous random field in two dimensions
(n = 2), observed on a finite part of a regular discrete lattice on the plane. All three regular lat-
tices in two dimensions were examined by Rais and Moore, and the block resampling bootstrap
method was shown to be valid under reasonable moment and mixing conditions. Alternative
resampling approaches for spatial data are found in Hall (1985, 1988) and Lele (1991).

It is the purpose of this report to simultaneously generalize the results of Rais and Moore
(1990) and Rais (1992) in two directions: (a) to formulate a general resampling technique (the
‘blocks of blocks’ resampling scheme) for triangular arrays defined on a homogeneous random
field, and (b) to allow for the possibility of having a random field in n dimensions, with n
being any positive integer. As implied by its name, the ‘blocks of blocks’ resampling scheme
for random fields is a generalization of the ‘blocks of blocks’ technique for sequences (cf. Politis
and Romano (1992a, 1992c)).

The significance of extension (a) is that the ‘blocks of blocks’ method can be used to con-

struct confidence intervals for parameters of the whole (infinite-dimensional) joint distribution



of the random field {X (t),t € Z"}, such as the spectral density of the random field. The sig-
nificance of extension (b) is apparent considering the following two broad classes of interesting

examples.

¢ Spatial random fields. In this example the dimension n is usually 2 or 3, and {X(t),t €
Exn C Z™}, are measurements of some physical quantity (pressure, temperature, etc.) at

different points of a two-dimensional surface, or three-dimensional space.

o Time series in (n — 1) dimensions. Here t; (the first coordinate of t = (¢1,%2,...,%,)) is
reserved to represent ‘time’. As an example with n = 3, let ¢; denote the time parameter
and (t2,3) denote the spatial coordinates of a point on a surface. Then {X(t),t € Ex}is
a series of ‘snap-shots’ taken over time, where each snap-shot contains the measurements

of a physical quantity at many different points of the surface and some point in time.

The importance of having such a resampling methodology for random fields lies in the fact
that a whole host of different estimation problems can be approached and solved in a general
framework. Results that are either unavailable or possibly just too cumbersome using classical
asymptotic methods would now be immediate corollaries of a general theorem. In addition,
from a computational point of view, a single general purpose resampling algorithm can be
employed to produce point and interval estimates for practically any parameter of a random
field model.

A variation of the ‘blocks of blocks’ resampling scheme that involves ‘wrapping’ the data
around on a torus will also be studied, in view of its property to yield an unbiased bootstrap
distribution. This ‘circular blocks of blocks’ methodology is new even for the one-dimensional
(n = 1) case, since it has been previously defined and studied only for the sample mean of
a stationary sequence (cf. Politis and Romano (1992b)). As will be discussed in Section
4, the ‘circular’ bootstrap is preferable to the ‘non-circular’ one, because, in addition to its

unbiasedness property, it also yields a more accurate variance estimate.



2. Some definitions and assumptions

The random field {X (t)} is assumed to be homogeneous, meaning that for any set E C I,
and for any point i € I, the joint distribution of the random variables {X(t),t € E} is identical
to the joint distribution of {X(t),t € E 4 i}, where theset E+i={tecl:t =1t +1i,t' € E}
is the set E ‘translated’ by i !.

For simplicity and concreteness, attention will focus on the integer (rectangular) lattice
I =2Z" in the general n-dimensional case. For two points t = (¢1,...,%,) and u = (uy,...,u,)

in Z", define the sup-distance in Z™ by
d(t,w) = sup Jt; — )
and for two sets E,, E; in Z", define
d(E1,E;) = inf{d(t,u):t € E;,u € E;} (3)

In addition, the random field {X(t)} is assumed to satisfy a weak dependence condition.
Recall Rosenblatt’s (1985) strong mixing coefficient, as applied to the setting of homogeneous

random fields, which is defined by
ax(k) = sup |P(AN B) — P(A)P(B)| (4)

where A € F(E;), B € F(E3), and the supremum is over all sets E;, E; in I = Z”, such that
the distance d(E;, E;) = k; note that F(E) is just the o-algebra generated by {X(t),t € E}.

The homogeneous random field {X(t),t € Z™} is said to be a-mizing if ax(k) — 0 as k —
oo. Examples of a-mixing homogeneous random fields include Gaussian fields with continuous
and positive spectral density function (cf. Rosenblatt (1985)), and finitely dependent (moving
average type) random fields for which ax (k) = 0, for k¥ > some 7 (cf. Moore (1988), Tjgstheim
(1978)).

Suppose p € R is a parameter of the whole (infinite-dimensional) joint distribution of

the multivariate homogeneous random field {X(t),t € Z"}, where X (t) takes values in RS,

'Note that the fact that for any E C I, and i € I, the set E +1i is a subset of I, can be thought of as the

defining property of the assumed regularity of the lattice I.



The objective is to obtain confidence intervals for y based on the observations {X(t), for
t € En}, where Ey is the rectangle consisting of the points t = (¢1,2,...,%,) € Z" such that
1 <t < N, where k = 1,2,...,n. Hence, the total number of observations is N = [[i=; N;.
For simplicity, in all that follows, only rectangular observation ‘sites’ Ex will be considered.
Extensions to non-rectangular observation ‘sites’ (that possess some regularity) are possible,
and will be apparent from the treatment of the rectangular case.

Furthermore it will be assumed that, as the sample size N increases, the corresponding set
Epn ‘expands’, i.e. that if N < N*, then Exy C En~». Actually, it will be required that the set
Ep ‘expands’ more or less uniformly in all directions by defining:

N = o0 is equivalent to N — 0o in such a way that Ey C Ball(cN'/™),
where Ball(r) is the ball of radius r in R", and ¢ is some positive constant.

The set-up to apply our estimation procedures is as follows. Let the block B(i,M,L) =
{X(t),t € E; M1}, wherei = (41,43,...,%n) and Ej pf 1, is the smaller (and displaced) rectangle
consisting of the points t = (t1,%2,...,%,) € Z™ such that (ix —1)Lx+1 < tx < (3g—1)Lr+ My,
fork =1,2,...,n,and where Ly and M}, are integers depending in general on the corresponding
Ni. Denote M = (My,Ms,...,M,), L = (L1,Ls,...,Ly,), and M = [[iey M;, L = [[i=; L.
Note that, given the observations, B(i, M, L) is defined only for i such that iy = 1,...,Q% ,
where Qf = [Mﬁ/f-‘l] +1, and [] is the integer part function. The total number of the B(i, M, L)
blocks available from the data is therefore @ = [Ti—; Q:.

As in the time series case (cf. Politis and Romano (1993)), the general linear statistic can

be formulated as

_ 1
Tn = 0 > TimL (5)
iEEQ

where Tj v 1, = oMm(B(i, M, L)), and ¢y : R?M _, R is some appropriately chosen function of
the block B(i, M, L) that makes Ty an almost unbiased estimator of p, (cf. assumption A in
what follows). This formulation permits the treatment of all standard estimation problems in
the random field setting, e.g., estimating the mean, the autocovariances, the spectral density
function, etc., as special cases of parameters estimable by a general linear statistic. The three
abovementioned examples will be revisited in Section 4, together with specific comments on

the implementation of the resampling methodology.



Note that, for each Ex considered, {Tj M L,i € Eg} is a homogeneous, weakly dependent
random field in its own right, observed on the finite lattice Eg, where Eg is the rectangle
consisting of the points t = (¢1,%2,...,t,) € Z" such that 1 <ty < Qg, for k = 1,2,...,n. As
a matter of fact, the {Tj pp1}’s represent actually a triangular (more accurately: ‘pyramidal’)
array of random fields, since for each N and Ep considered, the values of M, L are generally
different, resulting in a different random field. To make the notation easier, in what follows
the dependence of the values of the {7} pp 1.} field on NV and Ey will not be explicitly denoted.
While the homogeneity of {T} z11,} is obvious, its weak dependence properties are the subject

of the following lemma.

Lemma 1 For each Ey fized, if the {X(t)} field is a-mizing with mizing coefficient ax(k),
then the following is true:

(a) The {Tinm 1} field is a-mizing with mizing coefficient ar(k) < ax(kL* — M*), for k >
[])—:I—:] + 1, where M* = max; M;, L* = min; L;.

(b) If aM™* < L*, for some constant a > 0, then the {Ti v 1.} field is also a-mizing with mizing
coefficient ar(k) < ax(kL* — M*), for k > [%] +1.

(c) If, in addition to aM* < L*, M* — oo as N = oo, then for any fized k > [%] + 1,

limy=eo ar(k) = 0.

In the next sections we will make frequent use of the following assumptions, where all limits

and order notations are taken as N = 0o, unless otherwise stated.

Assumptions:
(Ao) The random field {X(t),t € Z"} is homogeneous and a-mixing.

(A1) E|Ti’M’L|2P+5 < C, for any M, where p is an integer withp > 2,and 0< § <2,C >0

are some constants.



(A2) ETim L = y—l—o(Q”l/Z), where p is a parameter of the infinite-dimensional joint distri-

bution of the {X(t)} random field, i.e., a parameter associated with the probability measure P.

(AS) \/G(TN - ETN) :L> N(Oaago)7 and li1'nN=>oo VQ/N = Ugo >0,
where VQ/N = Var(\/@TN) = Var(% EieEQ Ti,M,L)'

Regarding assumptions A; and As, note that F lTi,M,L|2p+5 is the same for all i, because of
the homogeneity of the {X(t)} and {T} 1} fields; therefore, E|T; pv L*P76 = E|Ty \m 1%,
where the latter expectations do not even depend on L. Similarly, ET; v 1, = ET3 v 1, where
of course 1 = (1,1,...,1).

The Central Limit Theorem of assumption A3 will actually hold under common regularity
conditions. For example (cf. Tikhomirov (1983)), sufficient conditions for A3 to hold are the
moment condition A; which is already assumed, an exponential mixing rate, i.e., ax(k) <
Ke=P* for some positive K and 8, and a variance condition of the type impy—co Vo/n exists
and equals g%, > 0.

Assumptions A, and Az taken together can be used to obtain approximate confidence

intervals for p, given a finite sample of size N. Note however that to actually set the confidence

2

o, must be estimated. Estimating the

intervals, the variance Vg or the asymptotic variance o
variance and, in fact, the whole sampling distribution of T, can be accomplished by one of
the resampling methods that will be described in detail in the next section.

In parallel to the time series case, the ‘blocks of blocks’ resampling technique for homoge-
neous random fields amounts to resampling or deleting one by one whole blocks (rectangles)
of the Tj p 1L’s. In Section 3 it will be shown that, under appropriate conditions, the resam-
pling estimates of variance and sampling distribution are consistent. As a consequence, the
corresponding confidence intervals for y have asymptotically correct coverage probability.

It should be pointed out that assumption A, ensures that the asymptotic order of the bias
of Ty is smaller than the asymptotic order of its standard deviation. This implies that the

asymptotic confidence intervals for ETy that are obtained from the Central Limit Theorem

of assumption A3 can be regarded as approximate confidence intervals for u as well. How-



ever, for the purposes of variance estimation alone, assumption A%, which is weaker than A,

is sufficient, and allows for estimators T optimal from the point of view of Mean Squared Error.

(AY) ETypmL = p+ 0(Q™Y/2).

The following moment inequality will be useful for our proofs. It was first proven by
Yokoyama (1980) in the case of one dimension (n = 1), and by Rais (1992) in the case of two

dimensions (n = 2).

Lemma 2 Let the univariate homogeneous random field X (t) be observed at points t € Ep,
and assume E| X (t)|?71? < oo, for some p € N, and & > 0, and that Y52, k™~ {ax (k)}6/(2r+9)
is finite. If N = oo, then a constant 0 < ¢ < co exists that depends only on p and ax(-), and
not on Ey, such that

El Z X(i)|2p < CNP(E|X(t)|2P+6)2p/(2p+5) (6)
icEy



3. The ‘blocks of blocks’ resampling scheme for random fields

3.1 The jackknife. Focus attention on a particular sample size N, (and hence particular
values of M, L as well), and a corresponding set of observation ‘sites’ Ep, and define the
block Bj = {Tjm,1.,i € Ejbn}, where j = (j1,72,...,Jj.) and E;bn is the smaller rectangle
consisting of the points i = (41, 42,...,4,) € Z™ such that (jx— Dhp+1 < i < (Jx — Dhg + b,
for k =1,2,...,n, and where b = (by,...,b,), h = (hy,..., h,) are vectors in Z™ that depend
in general on N and Ey. As before, denote b =[], b;, and A = [, k;. Observe that, with
Eyn and N fixed, Bj is defined only for j such that 1 < jp < gx , where g3 = [Qﬁlz&] + 1, and
thus the total number of the B; blocks available from the data is ¢ = ], g¢;.

Analogously to the time series case (cf. Politis and Romano (1992a, 1992c)), let Ty,—j be

the average of the remaining T} \p 1,’s, after deleting the block B, i.e.,

1
In_3= 0-0 > TimL (7)

where the sum is over all Tj pp 1, that are not in the block B;. Then, define the pseudovalues
J; = $(@Tn — (@ — b)Tn_3), for j € E,, where E, is the rectangle consisting of the points
J=(J1,J2,.--,Jn) such that 1 < jp < qg, forall k =1,2,...,n.
The ‘blocks of blocks’ jackknife estimate of the variance of \/QTy is defined by
A = b _
Viack(V@QIn) = = > (J;— Tn)? (8)
7:F
JEE,
The following theorem gives conditions ensuring the consistency of the ‘blocks of blocks’

jackknife estimate of variance.

Theorem 1 Under assumptions Ag, A1, Ay, A3, and if for N = 0o we have
(i) @ = 00, ¢, < AM’I; < ¢*, and AA,I': — a;, for some constants 0 < ¢, < ¢*, a; € (0,1], and for
any t,j =1,...,n;
(1) b= 00 and & — d; > 0,i=1,...,n;
(ii1) b = o(Q);
(iv) T4 £ ax (k)} 57 < oo;
then:
EViack(VQIN) = Vyn + 0(b/Q) (9)

10



and

Var(Viack(VQIN)) = 0(b/Q) (10)
where Vb/N = Var(% ZiGEl,b,h Ti,M,L)-

Note that in the assumptions of the theorem, M is allowed to either remain constant, or
to satisfy M = co as N = oo, as long as assumption A} is satisfied. Choosing M (as well as
L,b, h, and [) appropriately will be discussed in Section 4. It will now be shown that it is not

necessary that h = oo for Theorem 1 to be true.

Theorem 2 Under assumptions Ay, A1, A%, Az, and if for N = 0o we have

(i) @ = o0, ¢ < %; < c*, and J\L/f,' — a;, for some constants 0 < ¢, < ¢*, a; € (0,1], and for
anyi,j=1,...,n;

(#4") b = 00 and h = (1,1,...,1);

(i) b = o(Q);

(iv) $720 k"~ Hax (k)}77 < oo;

then equations (9) and (10) remain true.

An alternative expression for Vyiox (vQTN) is
Viack(VQTIN) = b > ('11; Y. Timu-—Tn) (11)
7 jeE, i€Ejph
Thus, the jackknife variance estimate is identical to a ‘sample variance’ estimate; see Politis
and Romano (1993) for a discussion of the notion of ‘sample variance’ in dependent samples.
As it turns out, instead of directly estimating Vo/n = Var(y/QTx) from the observations
{Tim,L, i € Eq}, the quantity V3/y (for b << Q) is estimated by looking at the variability of
EieEj,b,h T M L as j varies. Under our assumptions ¢ = co and b => oo and assumption As,
it is immediate that both Vo, — 02, and Vyyy — 02, and thus, Vg,n — Vyyn — 0. Hence
the following corollary of Theorems 1 and 2 is true, which (in part) answers to the affirmative

a conjecture of Cressie (1991, p. 492) regarding the suitability of a ‘sample variance’ estimator.
Corollary 1 Under the assumptions of Theorem 1 or Theorem 2
. - 5 \2
E (VJACK(\/@-TN) - Uoo) -0 (12)

11



As a matter of fact, the closeness of the approximation of Vg,n by V; /N s crucial, since it
determines the bias of VJACK(\/GTN) as an estimate of Vg /N or 02 . The following theorem

addresses this issue.

Theorem 3 Under the assumptions of Theorem 1 or Theorem 2, and the additional condition

ax(k) = O(k™), with A > m2letd)
Vo/v = Vo = O(b7/") (13)

and

Vo/n — 0% = 0(Q7/) (14)

Since b = o(@), it is apparent that Vg y is ‘closer’ to 0%, than Vi/n is to either Vg n
or 0% . Hence we can define the bias of Vyacx (v@Tn) either by Bias(Visox (vV@IN)) =
EVJAC[{(\/GTN) ~ Vo/n, or by Bias(VJA(;K(\/QTN)) = EVJACR’(\/@TN) — o, and the

following interesting corollary is immediate.

Corollary 2 Under the assumptions of Theorem 3

Bias(Viaox (VQTN)) = O~ + 0(b/Q) (15)

which, combined with equation (10), implies that the choice b ~ aann?, for some constant

ap > 0, minimizes the asymptotic order of the Mean Squared Error of VJACK(\/QTN) as an

2

oo "

estimator of Von or o

The estimates offered by equations (10) and (15) cannot generally be improved. In partic-
ular, in the case where T is the sample mean of a stationary sequence (cf. Kiinsch (1989)),
the asymptotic rates indicated by equations (10) and (15) are in fact attained. The same is
true in the more general setting of the sample mean of a homogeneous random field, i.e., if

TimL = X (i), in which case Vyack (vV@Tn) is just a nonparametric estimate of (a constant

12



multiple of)) the spectral density of the random field evaluated at the origin.

3.2 The bootstrap. The ‘blocks of blocks’ bootstrap resampling is defined as follows.
Sampling with replacement from the set {B;,j € E,} defines a (conditional on the original
observations {X(t),t € Ex}) probability measure denoted by P*. Let Yi,...,Yx be ii.d.
samples from P*. Obviously each Y; is a block (rectangle), with dimensions equal to the

dimensions of By. Let Y; be the average of the T; m,1’s that are found in block Y7, i.e.,

Y= %Z Tim,L (16)
where the sum is over all T} g 1, that are found in block ¥;. Now define T}* to be the average
of the ¥}’s, i.e.,

I LA
=< ; Y: (17)
and note that T} is actually the average of the I = kb observations Tj 1, that are found in
the resampled blocks Yi,...,Y%.
The following assumption on the order of magnitude of [ will be needed for consistency of
the ‘blocks of blocks’ bootstrap.
(Ag) b= o(1).
Assumption A, together with the condition b = oo implies that £ — oo as N = oo. It is easy
to see that (because of condition (¢4¢) or (4¢1’) below) assumption Ay is trivially satisfied if [ is
taken to be of the same asymptotic order as @.
The ‘blocks of blocks’ bootstrap approximation to the sampling distribution of Ty is provided

by the following theorem.

Theorem 4 Under the assumptions of Theorem 1 or 2, the additional assumption A4, and the

additional condition
(iii') b = o(Q*/),
it is true that
E (Var(VIT}) - 030)2 -0 (18)
where Var*(\/le*) is the variance of \/ZTI* under the resampling probability P*, and

sup |[P{VI(T} - B*T;) < 2} = P{VQ(Ti — ETn) < v} = 0 (19)

13



If assumption Ay is adopted (instead of the weaker A} ), we additionally have
sup| P{VI(T} — E°T}") < o} - P{VQ(Tw — 1) < o} = 0 (20)

as well as B ) B
BT ) PV <oy o (21)
\/Var*(\/ZTl*) Tco

where -2 denotes convergence in probability (as N = c0).

sup | P*{V1

An important observation is that Var*(\/ZTl*) = gzjeEq(%EieEj’b,h TimL — E*Tr)?,
and E*Ty = %Zj ¢E, %ZiGEj,b,h T; M,L, both of which can be computed without resampling.
As seen from the proof of the theorem, (cf. equation (34)), the bootstrap variance estimate
Var*(\/iTl*) is asymptotically equivalent to the jackknife estimate Vyacx (v@TN).

Equations (19), (20), and (21), would still be true with Ty substituted in place of E*T}, pro-
vided a stricter bound is put on the block size b, e.g., b = o(+/@) and [ ~ @ (cf. Kiinsch(1989)
and Liu and Singh (1992)), or b = o(+/Q) and | = 0(Q?/b?) (cf. Politis and Romano (1992c)),
in the one-dimensional case. However, it is now well known (cf. Lahiri (1991), Politis and Ro-
mano (1992b)) that this is not desirable since it introduces a bias in the bootstrap distribution,

resulting in poorer approximations than the ones provided by (19), (20), and (21) as stated.

3.3 The ‘circular’ bootstrap. Equations (19), (20), and (21), all involve the re-centered
bootstrap distributions, where subtraction of E*T}* forces the bias of the bootstrap distribution
to be exactly zero. A simple and ‘automatic’ way to have an unbiased ‘blocks of blocks’
bootstrap distribution is to ‘wrap’ the T} g 1,’s around on a compact n-dimensional torus, that
is, to define (for i ¢ Eqg) Ti m 1 = Ti« M L, Where i* = (é],...,4), and ¥ = i,(modQ;), for
s=1,...,n.

The ‘circular’ block resampling bootstrap amounts to resampling whole rectangular ‘patches’
of the torus, and goes as follows. Define the blocks B; as previously, but note that now, for
any b, there are Q such B;, j € Eq, (provided that h = (1,1,...,1) as will be assumed in the
following theorem).

Sampling with replacement from the set {Bj,j € Eq} defines a (conditional on the original
observations {X(t),t € Ex}) probability measure denoted by P*. Let Yi,...,Y; be ii.d.

14



samples from P*. Each Y; is a block (rectangle), with dimensions equal to the dimensions of

B1. As before, let

- 1
V=12 TimL (22)

where the sum is over all T} pg 1, that are found in block Y;, and

1 E
l*:EZ" (23)

i.e., T} is the average of the | = kb observations Tj pp 1, that are found in the resampled blocks
Yi,..., Y.
The circular ‘blocks of blocks’ bootstrap approximation to the sampling distribution of T

is provided by the following theorem.

Theorem 5 Under the assumptions of Theorem 2 and the additional assumption A4, it follows
that
BTy = Ty (24)

E (Var*(\/ZTl*) - 020)2 -0 (25)

where EXTy,Var*(T}) are respectively the mean and variance of T} under the resampling prob-

ability P*, and
sup | P*{VI(T} — Ty) < o} = PLVQ(Tw ~ ETw) < 2} = 0 (26)
If assumption A, is adopted (instead of the weaker Aj}), we additionally have
sup |P{VI(T} ~ T) < @} = P{VQ(Tw — ) < 2} = 0 (27)

as well as

TN _ <o) /@ <0y L g (28)

sup |P{v1

Again observe that Var*(vIT}) = %ZjeEQ(% EieEj,b,h T; v, — Tv)?, which can be com-
puted without resampling. Also E*T} = Ty, implying that the circular ‘blocks of blocks’

bootstrap distribution is automatically centered around Ty. Another most desirable feature of
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the circular bootstrap is that (like the jackknife) it is valid under the condition (%:2), which is
weaker (and more natural) than condition (4¢7). This becomes apparent by comparing equation
(36) to equation (34) in Section 5.

Indeed, the inherent improper centering of the noncircular bootstrap seems to bias the
corresponding variance estimate as well, while the circular bootstrap variance estimate does
not suffer from this defect. Although both the circular and non-circular ‘blocks of blocks’
bootstrap methods are valid asymptotically, and in particular they were both shown to be
better than the normal approximation in the special case of the sample mean of a stationary
sequence (cf. Lahiri (1991), Politis and Romano (1992b)), the existence of such a bias in the
(non-circular) variance estimate suggests that the circular bootstrap might be more accurate
in finite samples.

To intuitively see this, concider the usual sample variance of an i.i.d. (independent, iden-
tically distributed) sample, which is essentially the average squared deviation from the sample
mean if the true mean is unknown. Since the true variance is the expected squared deviation
from the true mean, centering the data around the sample mean, before squaring and averag-
ing, results in a good estimate of the true variance, one of the reasons being that the sample
mean is a good estimator of the true mean. It is obvious that centering the data around some
other number than the sample mean would yield a variance estimator that is generally larger

and not as accurate as the sample variance.

3.4 Multivariate extension. Using the §-method, it is immediate that the jackknife, as
well as the two bootstrap methods that were previously defined, remain asymptotically valid
for smooth functions of the general linear statistic, i.e., statistics of the form g(7x) as long as
the function g has a non-zero derivative at p.

Similarly, analogs of Theorems 1 — 5 hold true even if the function ¢y is multivariate, i.e.,
ém : R¥M — RP | in which case both u and the general linear statistic Ty are D-dimensional.
In this case the bootstrap methodology is especially useful in that it can immediately yield ap-
proximate confidence regions for u, that is, simultaneous confidence intervals for the coordinates

(pM, ..., uP)) of u, (cf. Politis and Romano (1992a)).
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For the multivariate limit theorems to hold, the assumptions A; and A3 should be modified
to accomodate the fact that T is D-dimensional, with coordinates (7 1(\/} ), ... ,T](VD)). The new

assumptions should read:

(A1) E]Ti(?\}I)LPPH < C, forny = 1,...,D, and for any M, where p is an integer with

p>2,and 0 < 6§ <£2,C > 0 are some constants.

(As) VQ(Ty — ETn) =% N(0,%), the multivariate normal distribution with a posi-
tive definite covariance matrix Yoo = (0n,ng,00), Where limy— oo Cov(\/@T](\?l),\/CjT](\?z)) =

Onyng,00r A Ong nyoo >0, foralll <ng <ny < D.

The ‘blocks of blocks’ jackknife, bootstrap, and circular bootstrap are defined the same way
as in the univariate case. To elaborate, the ‘blocks of blocks’ jackknife estimate of oy, 5, 00 18
A =(n A(n b =(n n =(n
Crack VRTGD VRTG?) = 2 32 () — TG - 1) (29)
? jeE,
where Jj(nl),TI(\}”), etc., are the nith coordinates of J;, Ty, and so forth. The ‘blocks of

blocks’ bootstrap and circular bootstrap estimates of the (multivariate) sampling distribution

of VQ(Tn — p) are VI(Ty — E*Ty) and VI(T} — T) respectively.

Theorem 6 Under the assumptions of the respective univariate theorem, the ‘blocks of blocks’
jackknife, bootstrap, and circular bootstrap methods are asymptotically valid in the multivariate
setting as well, i.e., they provide consistent estimates of the asymptotic covariance matriz and

multivariate sampling distribution of the general linear statistic Ty .
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4. Some remarks and examples

In this section it will be discussed in detail how the three archetypal problems of the
nonparametric analysis of homogeneous random fields, namely estimating the mean, the au-
tocovariance, and the spectral density function, can be approached by calculating and then
resampling the general linear statistic 7. In addition, some comments on the practical choice
of the design parameters M, L, b, h, and ! will also be offered.

To start with, consider the choice of I. As indicated also in Section 3.2, may be taken to
be of the same asymptotic order as @); since [ = kb, this can easily be accomplished by letting
k = [@Q/b]. Now comparing Theorems 1 and 2, one might be led to think that the choice of h
is immaterial, at least to a first approximation; however it does influence the constant factor
in Var(Vyscx) = O(b/Q), and it is advisable to let h = (1,1,...,1). For example, in the case
where Ty is the sample mean of a stationary sequence it has been shown (cf. Kiinsch(1989),
Brillinger(1981)) that letting h = 1 corresponds to a 33% reduction of lim 'OI‘;VQT(VJACK) over
letting h = b.

To turn to the choice of b, note that by Corollary 2 an optimal choice would satisfy
b~ aan%, for some constant a; > 0. This could be done by letting the coordinates of
b satisfy b ~ ab%in?, for k = 1,...,n. However, properly choosing the constant a; is
most important (and difficult) in practice, and is quite analogous to choosing a bandwidth
for a spectral estimator; see Politis and Romano (1993) for some practical guidelines in the
one-dimensional (n = 1) case. Finally, regarding the choice of M and L, two important and
separate cases must be distinguished.

4.1 Parameters associated with a finite-dimensional marginal. For simplicity
assume that the random field {X(t)} is univariate. If one takes My = Ly = 1, for all
k=1,2,...,n, then the B(i, M, L) block consists of just the observation X(i). Leting Tj m L,
be equal to X (i), it is seen that T is a regular sample mean, and the parameter p would be
EX(0). Similarly, if My = m, for all k£ = 1,2,...,n, then the B(i, M, L) blocks are cubes of
side m, and by letting Tj 1, be equal to X(1)X(i+s), it is seen that Ty is the (unbiased)

sample autocovariance at lag s = (s1,..., S,), where s1,..., s, are integers with absolute value
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less than m, provided of course that now FX(i) = 0.

The two abovementioned examples correspond to parameters associated with a finite-
dimensional distribution of the random field {X(t)}, i.e., the distribution of {X(t),t € Es},
where Eg is a finite subset of Z™ consisting of the points t = (#1,%3,...,%,) such that 1 < 3 < s,
for £ = 1,2,...,n. Such parameters can in general be consistently estimated by the linear
statistic T, by choosing My = s and Ly = 1,for k¥ = 1,2,...,n, provided the function ¢yps is
such that assumption A, is satisfied. In this case one would naturally chose ¢pg to make Ty
an exactly unbiased estimator of .

4.2 Parameters associated with the whole infinite-dimensional distribution. If
however p happens to be a parameter of the whole (infinite-dimensional) distribution of the
random field {X (t)}, consistent estimation of by T would generally require taking some (or
all) of the My’s to be increasing as the sample size N increases. The typical example of such
a parameter is the spectral density function associated with the random field, evaluated at a
point.

Let

Ti,M,L(W) = @*;%WI Z WtX(t)e—j(w~t)|2

teEi,M,L
that is, T} p,1.(W) is the periodogram of block B(i, M, L) of data, ‘tapered’ by the function W,
and evaluated at some point w = (w1,...,wy) € (=, 7]"; note that (w-t) = > iv; wit; is just
the inner product in R”, the symbol j denotes the imaginary unit (v/—1), and for simplicity
it was taken M = (M7, ..., MY/"). Now define Ty = -é— Z?:l T; m,L(w) as before. This is a
so-called lag-window spectral estimator (cf. Zhurbenko(1986)) and it can be shown that, under
suitable moment and mixing conditions, and if M — oo with M = o(N), T is a consistent

estimator of the spectral density function f(w) which is defined by

w) = 1 o—i(Wt)
f(w) (27T)nteZZ:HR(t)

where R(t) = EX(0)X(t) is the autocovariance at ‘lag’ t, and it was implicitly assumed that
EX(0)=0.
For concreteness also assume that Wy = 1, i.e., that there is no tapering. As it turns out

in this case, to have assumption A, satisfied, we must choose M ~ ap/N?, for some constants
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apy > 0and 1 > 8 > n/(n + 2), which corresponds to undersmoothing the n-dimensional
periodogram. Notably, we could chose an optimal (from the point of view of mean squared
error) smoothing, i.e., M ~ apN™("+2) and still have assumption A} satisfied, which is
sufficient for the purposes of just estimating the variance of Th.

In addition, to have condition (7) of the theorems satisfied, Ly for ¥ = 1,...,n should be
chosen to be approximately proportional to the corresponding My. This is not a mere technical
assumption but is crucial to the validity of the resampling methodology, although the point
estimator T would still be consistent even if Ly = 1 for k = 1,...,n; see Politis and Romano
(1992c) for an elaborate discussion of this phenomenon in the one-dimensional case.

The spectral density example helps outline the general problem associated with estimating
parameters of the whole infinite-dimensional distribution of the random field. Loosely speak-
ing, one should choose the function ¢pg such that the bias of Ty is as small as possible, as
compared to the order of magnitude of its standard deviation (see assumptions A, and A5).
This would invariably require the coordinates of M to be increasing functions of the sample size
N; for consistency of the resampling estimates of variance and sampling distribution of Ty, the
coordinates of L should then be chosen to be approximately proportional to the corresponding

M coordinate.
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5. Technical Proofs

Proor or LEMMA 1. (Proof of (a), the other parts being easy consequences of part (a).)
Let k = (ki1,...,kn), and look at the mixing coefficient between the variables T} )1 and
Tiyx ML, i-e, o{Tim . Tizk ML} = sup |P(AN B) — P(A)P(B)|, where the supremum is
over all sets A, B that are in the o-algebras generated by 7T; p,1, and Tiyx M, 1 respectively.

It is easy to see that, if max; |k;| > [M*/L*] + 1, then

AT m L Tivkm, L} < ax(mjaax(lkﬂLj - M;)) < ax(mfx |kj| L* — M™))

Since max; |k;| = d(i,i+ k), it follows that the mixing coefficient o{Tjn 1, Tiyk ML} is
bounded above by a function with argument the distance d(i,i+ k). The same idea can
be used to show that the mixing coefficient corresponding to any two sets of T M 1.’s, €.g.,
{Tim,L,1 € Er}and {Tj \m 1,,1 € Ep}, is bounded above by a function with argument d(E;, E,),
provided d(E;,Ey) > [M*/L*] + 1, and that this function is in turn bounded above by
ax(d(E,,Eg)L* — M*)). O

Proor oF LEMMA 2. Extend the lattice homogeneous random field {X(t),t € Z"}
to an inhomogeneous random field {x(t),t € R"} by defining x(t) = X([t]), where [t] =
([t1], [22), - - -, [tn]), and [t] is the greatest integer < ¢. Then Lemma 2 follows from Lemma 1.8.1
of Ivanov and Leonenko (1986) as applied to the random field {x(t)}. O

Proor or THEOREM 1. Note that conditions (i), (i) imply that Aﬂ,ﬂ- ~ a;Q; — oo,
1=1,...,n.

B. = LS. ,
Denote By, n = 7 Z‘EEj,b,h T; M,L- Then

Viack (VQTn) = % > (Bjpn—In)?

JeE,
1 i i 1.
=3 Y {B;bn— EBjpn— VO(In - %1‘315’5,10,11)}2 = Ay - 2Cn + Dy
JjeE,

where
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Z Vo(Ty — %EBj,b,h)(Bj,b,h — EBjbn)
.]eE

2
JGZL; b(Tn \/—EB 5,b,h)
The proof will consist of showing that Ay is the dominant part of Vyicx (v@In), both
in terms of expected value and variance. In other words, Cy and Dy can be considered as
negligible error factors.

Let £(j) = (Bj,b,h - EBj,b,h)2, in which case

WO iz S €l i)

7 jeE, Vji=15m1 jam1
is just the sample mean of the homogeneous, strong mixing random field £(j), which is observed
on E,. Because the random field {X (t)} is a-mixing with mixing coefficient ax(+), an argument
similar to Lemma 1 shows that the random field £(j) is also @-mixing with mixing coefficient
ag(+), satisfying

ag(s) < ar(sh* — b*) < ax(sh*L* — b*L* — M™) (30)

provided s > so = [ T L* + b 8-114 1, where b* = max; b;, and h* = min; h;. Since by conditions
(4), (¢7) we have that M* = O(L*), and b* = O(k*), it follows that there will be a smallest s*
that does not depend on N, and such that equation (30) will hold for all s > s*.

Now EAn = E£(1) = Vi, and by the homogeneity of the £(j) random field

VarAN_ zlj Z Z (1- Ihl l;—Z')---( lJni)P(Jl,J% -y Jn)

.71-—‘11 J2=—q2 In=—gn

where p(j1, J2,. . ., Jn) = p(J) = Cov{€(1),£(1 + j)}. But (cf. Roussas and Toannides (1987))

|Cov{€(1), €1 + )} < 10(E1(1)*7)*/?{ag(max D)}
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2
By Lemma 2 now, E|£(1)|P < KX(E|T1,M,L|27’+5)$4%, where Kx depends only on ax(+)
and p. Observe that

Z Z Z{aé(maXIJkl)} z —nzwul){agm)} 2 (31)

n=1jp=1  jn=1 i1=1
where W () is the cardinality of the set {j € Z™ : j; = maxg ji, and jr > 0,k = 1,2,...,n}.

It can now be easily seen that W(j;) < 577!, and from equation (30) it follows that the sum
in equation (31) is finite. Invoking assumption A;, it now follows that VarAy = O(1/q) =
0(b/Q).

To complete the proof, it is not hard to see that EDy = O(Q), ED% = O( ), ECn =
0(5)’ and EC% = O(@) To elaborate, let us focus on Dy, since Cy can be handled in a

similar way.

Dn
b

Using assumptions A% and As, we have that u— ﬁEgl,b,h =0(Q1?), and E(Tn—p)? =
O(Q™1), and thus it follows that EDy = O(%)

=(Ty — p)* + (u - \/—1‘731 bh)’ + 2(Tn — p)(p - 7—E 1bh)

Similarly, look at
D2

5N =(Tn—p)*+ (p- \/—EBlbh) +6(Tn — p)?(u - \/—EBlbh)'i'

+4(Ty — p)(u — 751515’1,b,h)3 +4(Tv — p)*(p - %Eﬁl,b,h)

Again by using Lemmas 1 and 2 and assumption A} we have E(Tn — p)* = O(Q7?) and
E(Ty — p)® = 0(Q~%/?), from which the result ED% = O(QT) is proved. O

PrOOF oF THEOREM 2. Look at the ‘whole sample’ S = {Ti M 1,,1 € Eg}, and define the
‘reduced samples’ S; = {Tim,L,1 € Eg)}, for j = (J1,72,-.-,Jn) such that 1 < ji < by, (i.e.,
J € Ey), and where Eg) is the rectangle consisting of the points i = (¢1,42,...,%,) € Z™ such
that jx < ix < Q, for k = 1,2,...,n. In this notation, § = 8.

Let VJ 1o (V@TN) be the ‘blocks of blocks’ jackknife estimate of variance computed from
the ‘reduced sample’ S, and using h = b. Since Theorem 1 applies here, it follows that

EVS ok (V@IN) = Vi + 0(6/Q) (32)
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and
Var(V3ox (VRTn)) = 0/Q) (33)

for any j considered.

Now let Vyaox(v/@TN) be the ‘blocks of blocks’ jackknife estimate of variance computed
from the ‘whole sample’ S, and using h = (1,1,...,1). It is easy to see that

Viack(VQTN) ~ < Z VJAC’K(\/_TN)
JEEb

from which it is immediate that EVyack(vQIN) = Voyn +O(b/Q), and, since by the Cauchy-
Schwarz inequality and equation (33) we have Coy( JACK(\/_TN) VJACK(\/_TN)) =0(b/Q),
it follows that

V‘”‘(VJACK(\/_TN))N 2 Z Z Cov( JAGK(\/_TN) JACK(\/_TN)) = 0(b/Q)

JGEbJ €E,

and the Theorem is proved. O

Proor oF THEOREM 3. To make the calculations easier assume by = by =---=b, = /0.
Now
S un A Ll
Voin= 2. Z Z (1= G- g0 (1= g)Covr(§) = 3 Ko(i)Covr(J)
1=-Q1j2=~Q2  jn=—Qn 2 _]eE*

where E§ = {j € Z" : [jil < Qr,k = 1,...,n}, Ko(G) = (1 - &1 - 12by... 1 - i), and
Covr(j) = Cov(Tim,L» Tis5M,L); note that Covr(j) depends on N in general, but it is not
explicitly denoted.

Similarly

by ) i
= 33 3 a-Bha Bl Bhogg - 3 ke

n==bi jo==by  jn=—bn JeE§

where EE = {j € Z" : |ja| < b,k = 1,...,n}, and Kp(j) = (1~ b1 - 121 - L2l
Look at

Von = Vin = 3 (Kq(3) — Ku(3)) Covr(§)+ > Ko(3)Covr(j) = Ci + C2 + Cs
jeBs jeB5-Bf

24



where

Ci= Y (Kq(j) - Ku(i)) Covr(j)

jeE%
Cr= ), (Kq())— Ks(3)Covr(j)
JeEE-E&
Cs= Y, Kq(j)Cour(j)
JeEZ-Ef
where EX = {j € Z" : |jx| < m,k = 1,...,n}, and the constant m = [1] is defined in Lemma

1(b); since b = 00, @ = o0, and b = o(Q), it was implicitly assumed that N is large enough so
that m < bp < Qr, k=1,...,n.

Now note that for j € Ef, 0 < Ko(§) — Kp(j) < 1~ (1~ %)n < clm—xb’;lj—kl, for some
constant ¢; > 0, from which it follows immediately that C; = O(%) (As a matter of fact,
|Kq(j) — K»(j)| is of exact rate r&i’;lj—“l, as can be shown by the lower bound Kg(j) — Ki(j) >

= el _ ¢, magllj"l >(1- e)%]’—kl, for large enough N, and for some constants c; > 0 and

0<e< 1)
By Ibragimov’s strong-mixing inequality (cf. Roussas and Ioannides (1987)) and assumption

Aq, it follows that
. i 2(p—-1)+6
Covr(j) = O({ar(max |jk[)} 2% )
But from Lemma 1(b) we have ar(k) < ax(kL* — M*), for k > m = [1]. Combining this
with assumption ax (k) = O(k™*), it follows that ar(k) = O(kL* — M*)~> = O((M*)~*(ak —
1)=*) = O((ak — 1)=?), for k > m + 1, and thus

Covr(j) = O((amax |ji| — 1)7) = O((max |jx}) ")

where v > “£(2p — 2+ 6) > 9n, for j such that maxy [ji| > m + 1, which actually holds if
J¢Eq.

As in the proof of Theorem 1, let W(j;) be the cardinality of the set {j € Z" : j; = maxy jx,
and jx > 0,k =1,2,...,n}, and note that

) by : by
. 1o 1 e 1
ool ¥ Mo 20( 55 W(Jl)z_ihg)zo(a 3 318)20(5)

JeEE-EL ji=m+1 f1=m+1
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Similarly

Q* Q* .
. N\ —on . —9n 1
C3=0| >, Cour(j)|=0 ( > Wi ) =0 ( > W(Jl)z—lhg ) = o(3-)

jeEg—-Egh s1=b1+1 J1=b1+1 1 1
where Q* = maxy Q, and equation (13) is proven.

By an almost identical calculation equation (14) is also proven. O

Proor or THEOREM 4. First look at
_ 1A y
Var*(VIT}) = lVaT*{E;Yi} =Var'y;
where Y; = VbY;, i = 1,...,k, and the facts that the Y;’s are i.i.d. under P*, and [ = kb were
used. But
Var¥y = = 3 (Bipn — B’

JeE,
where
s 1 1
Ele—Z% Z Ti ML
?5eB, VP ieE pp

In this double sum, each Tjpg 1, with index i such that by < 3 < Qr — bk, k= 1,...,n,1s
represented exactly szl[%‘: + 1] ~ b/h times. This implies that

=~ ]._‘[’]rs:br:.l[%,h + 1] 1
) T Ll M— TimL — —=Oms(b*/h)
Vb ig}:@ 1 Vb

where the notation Zy = Oprs(mpy), with Zn representing a sequence of random variables, and
my a sequence of numbers, means that EZ% = O(m%), and it was used that, by assumption 4,
and Lyapunov’s inequality, each Tj pm 1, = Oms(1); note that the ‘order in mean square’ Ops
is quite weaker than the definition of ‘expected order’ Og of Woodroofe (1970), but stronger
than the order ‘in probability’ Op.

Recalling that ¢ ~ @/h and that b = o(Q) yields:

p3/2 b3/2

5 _ /
IE*Yl - \/ZTNl = OMS(-h—q—) = OMS(T)
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Therefore
. 13, . _ y3/2 . N _ p3/2
Var*yy = gZ(Bi — VbTn + OMS(F)) = Viacxk(VQTn) + OMS('Q—) (34)
1=1
Now by Corolllary 1, and condition (i1¢'), equation (18) follows.

Since by assumptions A, A3 we have that

sup |P{VQ(Tn — 1) < 2} — ®(2/0c0)| — 0

to prove equation (21), it suffices to show that

T BTy ,
sup | P {W <z}—®(z) —0 (35)
T !

Note that VI(Ty — E*Ty) = VE Yk, (V; — E*Y;), where the ¥;’s are i.i.d under P*. Recall
that the theorem’s assumptions imply that £ — oo, and therefore by the Berry-Esseen theorem

it follows that (35) holds provided E*|Y; — E*Y;|° is bounded in probability. However,

(X 1Bipnl)? + a7 Y Bipnl}

EXY; - BV = Z |Biph — = Z B;pnl® <
q icE, icE,

1eE jeE,

=

where the quantity on the right-hand-side converges in probability to {(E|By p n|*)!/*+|E By pnl}?,
because a weak law of large numbers holds for the a-mixing random fields Bi,b,h and |Bi,b,h13a
i € Z™, similarly as in the proof of Theorem 1. Hence equation (19) is proved.

To complete the proof, note that equations (20), (21) follow immediately from equations

(18), (19), and assumption Ay by Slutsky’s theorem. O

PROOF oF THEOREM 5. Since E*T} = q* EJGEq* 5 er bh Tim,L = Tn, we will focus
on Var*(\/IT}).
We have
Var*(VIT}) = Z (— Z TimL — Tn)?

JGEQ IEE bh

=—{Z(“ Y Timn-In’+ > (‘ > Timr-Tn)"}

JeE 1eE bh JEEp-E, 1eE ibh
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Observe that in the second summation above we have a sum of ¢) — ¢ terms, each of which is
of order Opr5(1/b). This can be shown by the same argument used in the proof of Theorem 1

to show that the dominant term in the sum

b 1 _

0 Z(g > Timi-—Tn)?
j ieEj,b,h

is actually

b
> Timi-—ETimu)

ieEj,b,h

Q]
| =

>

and an application of Lemma 1 (b) and Lemma 2.
Note that @ —q = O3y b 11,4 Q) = O(b;I:Q%), since by assumptions b = co and
Q = o0, all the b;’s are of order b1/7, and all the Q;’s are of order Q'/*. Thus

Var*(VIT}) = %VJACK(\/QTN) + %OMS( Y (%)”_1) = %VJACK(\/@TN) + Oms( i’/g)

Recall that q = (¢1,...,4n), with ¢, = @; —b;+1,¢ = 1,...,n. It follows that 1——-5— = O(c/g ,
and so finally

Var*(VITF) = Viack (WVQTN) + Ons( {/—%‘) (36)

Now by Corollary 1, and condition (7¢1), equation (25) follows.
By a similar argument to the proof of Theorem 4 it is shown that vI(T} — Ty ) is asymp-
totically normal (with high probability) and the theorem is proved. O

ProOOF OF THEOREM 6. The proof follows easily by the same arguments as in Politis and

Romano (1992a), using as a reference the univariate theorems concerning random fields of the

present paper.O
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