PENALIZED LIKELIHOOD HAZARD ESTIMATION:
ALGORITHM AND EXAMPLES

by
Chong Gu

Purdue University

Technical Report #92-25

Department of Statistics
Purdue University

June 1992



Penalized Likelihood Hazard Estimation:

Algorithm and Examples

Cuong Gu*

Purdue University

Abstract

Based on an earlier theoretical analysis, the practical implementation of penalized likelihood
hazard estimation using censored life time data is studied. An algorithm with an automatic
smoothing parameter is implemented in a portable code and is examined via simulations. The
algorithm is an adaptation of the performance-oriented iteration developed earlier for density
estimation and the performance is measured by a proxy of symmetrized Kullback-Leibler. A
key ingredient of the algorithm is a cross-validation scheme based on the martingale structure
of censored data. Various practical aspects of the methodology are discussed via examples.
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symmetrized Kullback-Leibler.

1 Introduction

Censored life time data are common in life testing, medical follow up and other studies. Let T;
be the life time of an item and C; be the censoring time beyond which the item is dropped from
the study. One observes (Xj,§;), i = 1,---,n, where X; = min(T},C;) and é; = [[1;<c;}- Assume
that T; follow a common survival function S(t) = Prob(T" > t). Of interest is the estimation of the
hazard function A(t) = —dlog S(t)/dt. Assume A(t) > 0 on {t : §(¢) = Prob(X > ¢} > 0} and let
n(t) = log A(t). We shall use (%) to indicate the hazard in the remaining of the article and reserve

A for the smoothing parameter, to be discussed shortly.
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Data and model are two sources of information in a statistical analysis. Data carry noise but are
“unbiased”, while models, or constraints, help to reduce noise but are responsible for “biases”. In
a parametric analysis with strict constraints, 7 is assumed to be a member of a parametric family,
say Py = {n(t,0) : 6 € O}, where 7(¢,0) is known up to a finite dimensional parameter 6, and the
estimation is usually via the maximum likelihood (ML) in Py. In a constraint-free nonparametric
analysis, ML over “arbitrary” functions results in a delta sum estimator of 7 corresponding to the
Kaplan-Meier estimator of the survival function. See, e.g., Kalbfleisch and Prentice (1980) and
Fleming and Harrington (1991).

Strict constraints and no constraint represent two extremes on the spectrum of bias-variance
tradeoff. To strike a compromise between the two extremes, smooth function models with soft
constraints are needed. Defining a quadratic roughness functional J(7) with a finite dimensional
null space J,, a convenient way of specifying smooth function models with soft constraints is via
M, ={n:J(n) < p} for some p > 0. An example of J(7) is [ #? which has the linear polynomials
as J; . When p = 0, the model My reduces to a parametric model with Py = J,. When p = oo,
the model M, is usually “arbitrary” so delta sum results. For p € (0,00), the ML estimator over
M, usually falls on the sphere {: J(n) = p}, and Lagrange method converts the constrained ML
problem into a penalized likelihood problem

1 & Xi A
min - 36X - | e+ 5um, (1)
where the first term is the minus log likelihood and the Lagrange multiplier A is called a smoothing
parameter. A = oo corresponds to p = 0 and A = 0 to p = co. The minimization of (1.1) is implicitly
over H = {n: J(n) < oo}. J(n) forms a natural square (semi) norm in H and, supplemented by a
square norm in J) , makes H a Hilbert space. It shall be assumed that evaluation is continuous in
H so the likelihood part of (1.1) is continuous. See O’Sullivan (1988) and Gu (1991b).

Penalized likelihood method was introduced by Good and Gaskins (1971) in the context of non-
parametric probability density estimation. Its use in hazard estimation was proposed by Anderson
and Senthilselvan (1980), Bartoszynski, Brown, McBride and Thompson (1981), and O’Sullivan
(1988). The asymptotic convergence rates of the solution 7 of (1.1) were calculated by Cox and
O’Sullivan (1990) and Gu (1991b). An algorithm for computing a B-spline approximation of % was
proposed and studied by O’Sullivan (1988). A computable data-adaptive approximation #, of 7

was proposed by Gu (1991b) and shown to share the same asymptotic convergence rates as #.



The purpose of this article is to examine an automatic algorithm for calculating %, and to study
the practical performance of the methodology with the help of the algorithm. The algorithm is
identical in structure to an algorithm of Gu (1991a) in the context of density estimation. A key
ingredient in the algorithm is a simple cross-validation scheme based on the martingale structure
of censored data. The remaining of the article is organized as follows. Section 2 reviews some
background theoretical results, sets up the numerical problem, and discusses the algorithm. Sec-
tion 3 discusses the cross-validation scheme. Section 4 presents simulation results to demonstrate
various aspects of the algorithm and the methodology. Section 5 illustrates an application in data

analysis.

2 Formulation and Algorithm

2.1 Theoretical background

Let 7o be the true hazard and assume 7o € H. Define SKL(%,m0) = [5°(e" — e™)(f) — n0)S
and V(n) = [n%™S§, where §(t) = Prob(X > t) is the survival function of X. SKL(#, 7o) is
an appropriately weighted symmetrized Kullback-Leibler between 7 and 7o and V(#} — 1) is its

quadratic approximation. Under certain conditions, it can be shown that
SKL(fl,m0) ~ V(= 70) = Op(n ' A7/7 4 1), (2.1)

where the r codes the smoothness implied by J(5). For J() = [#?, r = 4. See Gu (1991b).

A Hilbert space in which evaluation is continuous is known as a reproducing kernel Hilbert
space possessing a reproducing kernel, a positive-definite bivariate function R with the reproducing
property that (R(¢,-),n) = n(t), where (-,-) is the inner product in the space; see, e.g., Wahba
(1990, Chapter 1). Given a square norm in J;, H has a tensor sum decomposition such that J
is a square norm in H © J,. Let Ry be the reproducing kernel in the space H © J, with J as
the inner product, H, = J1 & {Rs(X;,-),6; = 1}, and 7, be the minimizer of (1.1) in H,. With
a mild further condition in extra to what are needed for (2.1), it was shown in Gu (1991b) that
SKL(%n, M0) ~ V(i —10) = Op(n~*A~/" 4 X). Note that 7, is computable but 7 is not, while they

share the same asymptotic convergence rates. This article is about the computation of 7,.



2.2 Numerical preliminaries

Let N =37, 6; and let T}, ¢ = 1,-.-, N, denote the observed failure times. Write {¢I,}fj"_f__1 as a
basis of J; and & = Ry(T;,). By definition, a function in H,, has an expression
N M
n=> cti+y do, =£Ect+old, (2.2)
i=1 v=1
where £ and ¢ are vectors of functions and ¢ and d are vectors of coefficients. Substituting (2.2)
into (1.1), noting that
N N N N
J(g) = (O cili, D&y =D ciciRa(T:, T;) (2.3)
=1 j=1 i=1 j=1

where (Rj(t,-), Rs(s,-)) = Ry(t,s) is used, the problem becomes to minimize
_ A
Ay(e,d) = —%1T(Qc + 5d) + /Yexp(ETc + qud) + §cTQc, (2.4)

with respect to ¢ and d, where @ is N x N with (2, j)th entry &(T;) = Ry(T5,T5), S is N x M with
(4,v)th entry ¢,(T3), and Y = (1/n) X%, Yi = (1/n) X7y I1x;>4 is the empirical survival function
of X.

Let u,(h) = [RY €7, V,(f,h) = u,(fh), and V,(h) = V,(h, k). Note that the empirical survival
function Y is used in stead of S in the definition of V,, here. Write ) = £T¢ + ¢Td as the current
iterate of 7. For fixed A, the one-step Newton update for minimizing (2.4) can be shown to satisfy

(cf. Gu, 1991a, §2)

Vee+AQ Ve c | | Qi/n—pe+Vey (2.5)

Ve Vi d ST1/n — pg + Vg,

where V¢ ¢ is N x N with (4, j)th entry V5(&,&;), Veg N X M with (4, v)th entry Vi(&i, ¢.), Vs e
M x M with (v, u)th entry Vi(¢u,du), Ve N X 1 with ith entry Va(&;, %), Vg, M x 1 with vth
entry Vi(¢,, %), ue N x 1 with ith entry pg(&;), and pg M x 1 with vth entry wz(¢,).

2.3 Algorithm

A choice of A selects from among {M,,p € (0,00)} a smooth model, and a proper bias-variance
tradeoff via smoothing parameter selection determines the performance of the estimator. Among

natural performance criteria are SKL(#,, o) and V (7, —n0), where for practicality we shall estimate
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the survival function S appearing in SKL and V by the empirical survival function ¥. From 4,
the one-step Newton update of (2.5) provides a group of estimates with a varying A, and we
shall try to select a well performing update via a proper choice of A. Based on #, Lz(n,m) =
Vi(1)/2 = Vi(1,%) + (1) — pno (n) can be shown to be a proxy of SKL(n,n0) or V(n— o) (cf. Gu,
1991a, §3), where all terms are computable except pn, (7). When an estimate of y,,(7) is available, a
performance-oriented iteration can be conducted to jointly update (A, n) by choosing A to minimize
L:#(n,70) among the one-step Newton updates, where L;(n,70) is L5(n, no) with an estimated piny (1);
see Gu (1991a, §3). Hiding the differences under the definitions of quantities appearing in (2.5),
and using a certain estimate of y,,(n) which we shall discuss in §3, the computing formulas and the
algorithm in Gu (1991a, §§3-4) hold verbatim for hazard estimation. We will not duplicate further

details here, but only note that the algorithm takes as inputs the following information.
1. Data: The observed failure times 7T} and the empirical survival function ¥ of X.
2. A class of models: The reproducing kernel R;(t,s) and the null space basis ¢,(t).
3. Base measure: A quadrature formula (mesh points and weights) for calculating integrals.

If converges, the algorithm returns ¢ and d associated with an automatic A as the estimate.

3 Cross-Validation

We now discuss the estimation of p,,(7) = [3° nYe™ for 1) a one-step Newton update from 7. We
shall adopt the notation definitions of Gu (1991a, §§3-4) up to the quantities appearing in (2.5).
To quote (3.1) of Gu (1991a),

n=ETHY(Q1/n) + ETH Yo + (¢ — Vg e H'ETE  uye = by + by + ha.

We shall illustrate that the formulas (3.4) and (3.5) in Gu (1991a) estimate pp, (ho+h3) and pypy(h),
respectively.

Let N(t) = Iix<is=1) and A(t) = J5Y (v)em®du where Y () = Ijx»4. Under independent
censorship, M(t) = N(t) — A(¢) is a martingale. Given a predictable function % on [0,00), the
Stieltjes integral ff A(u)dM (u) is also a martingale under mild conditions. See, e.g., Fleming and

Harrington (1991, §2.7). A deterministic (meaning independent of M (%)) continuous function is



predictable, and in practice ¢, and & are usually chosen to be continuous. We shall use the
martingale moment property to estimate p,, (7). Specifically, since E(J;°hdM) = 0, one may
use [$° hdM to “estimate” 0 where M = (1/n)3Y 7, M;, which leads to estimating [5° AYe™ by
JoS hdN = (1/n) Y, 6:h(X;) where N = (1/n) Y%y N;. Applying this to estimate up,(h2 + h3)
yields (3.4) of Gu (1991a).

We need a simple cross-validation for estimating g, (hy). Write by = (1/n) X%, 6;¢T H1¢(X;) =
(1/n) ", h;. Note that &; is dependent on M; so fi h;(u)dM;(w) is not a martingale. To estimate
Jo° hi¥e™ for 6; = 1, we shall first approximate ¥ by ¥(;) where Y5y = 5, Y;/(n — 1), and then
use the martingale moment estimate 3_;.; 8;hi(X;)/(n — 1) for [5° Bil_/(i)e"". Equation (3.5) of Gu
(1991a) results after collecting terms, and formula (3.6) and Algorithm 4.1 of Gu (1991a) follow.

4 Simulations

Simulation results are presented in this section to demonstrate various aspects of the automatic
algorithm and the methodology in general. A real data application will be presented in the next
section.

Failure times T; were generated from a Weibull distribution with a hazard e™(*) = 24¢2. Inde-
pendent censoring times C; were generated from a truncated exponential distribution with a sur-
vival function Prob(C > t) = e~/3,1 < 1, and Prob(C > 14) = 0. The models were specified via
M, = {n:J(n) = [3if® < p}, where the J has a null space J, = {1,t}. Taking (f; 7)?+(Jy 7)? asa
squarenormin Jy, HEJ, = {n: fin= Jo 71 =0, 5 % < 0o} and Ry(t,s) = ka(t)ka(s)~ka(|t—s]|),
where ko = (k% — 1/12)/2, ks = (k% — k2/2 + 7/240)/24, and ky = (- — .5); see, e.g., Craven and
Wahba (1979). Integrals defining SKL(#,m0), V(n — 70), and quantities in (2.5) were calculated
by averaging the integrands over 300 equally spaced mesh points on (0,1).

For each of three sample sizes n = 100, n = 150, and n = 200, one hundred replicates of data
were generated as described above. The number of failures N averaged to 86.7, 129.7, and 172.8,
respectively, for the three sets of replicates. These groups of replicates shall be labeled by their
(average) N/n ratios as 87/100, 130/150, and 173/200. The automatic algorithm converged on
all but one n = 200 data set. SKL(#,,7n0) and V(#, — no) were evaluated at all the converged
automatic fits, where the empirical survival function ¥ was used instead of § so the definitions of

SKL and V vary slightly from data to data. Fixed-A solutions of (2.4) were also calculated on a
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Figure 4.1: The efficacy of cross-validation in the automatic algorithm.

grid log;g A = (—6)(.1)(—2.5) and SKL and V evaluated.

The relative effectiveness of the cross-validation smoothing parameter selection is illustrated in
Figure 4.1. The left frame of Figure 4.1 plots the SKL of the automatic fit against the smallest
SKL obtained on the grid for the n = 100 replicates, where a point on the dotted line indicates a
perfect performance of the automatic algorithm; the best automatic fit and the poorest automatic
fit are plotted as a plus and a star and two other points are plotted as crosses. The center and
right frames of Figure 4.1 present the relative efficacy of the cross-validation in SKL score and in V
score for the n = 100, n = 150, and n = 200 replicates, where the efficacy is defined as the smallest
score on the grid divided by the score evaluated at the automatic fit. Slightly improved relative
eflicacy associated with larger sample sizes is visible.

To check on the effect of censoring on the relative performance of cross-validation, I applied
heavier censoring on the n = 150 and n = 200 replicates by changing the censoring survival function
to e~4%/3 and =2 for t < 1, respectively. This caused the number of failures N a,\}erage to 84.5 and
87.4, which are comparable to the 86.7 of the n = 100 replicates with a censoring survival function
e~t/3. Censoring with a survival function e?, ¢ < 1, was also applied to the n = 200 replicates
which made N average to 129.7. These replicates are labeled as 85/150, 87/200, and 130/200,
respectively. The SKL efficacy and V efficacy of cross-validation on these replicates are plotted in

Figure 4.2 together with those of the other three groups of replicates. It appears that the sample
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size n doesn’t have a clear impact on the relative efficacy of cross-validation, but the number of
fajlures IV, and to a less extent the censoring ratio 1 — N/n, might have slight bearing on it. The
mechanism behind it is not understood yet.

We now look at the absolute performance of the method at different N/n ratios. Since the
empirical survival function Y of X, which serves as a weight function in the definition of SKL
and V scores, varies randomly from case to case within the same group and varies systematically
between the groups, the scores are not quite directly comparable. No attempt is made here to
correct for the random variation, but intuitively the systematic variation may be adjusted to an
extent by dividing the scores by the average total weight fol S, where S is the theoretical survival
function of X under the corresponding censorship. After such an adjustment, log;, SKL of the
automatic fits and of the best fits on grid in the six groups of replicates are plotted in Figure 4.3. It
appears that the sample size n and the censoring ratio 1 — N/n have some influence on the precision
of the estimates, as expected.

To perceive the practical performance of the method, the automatic fits corresponding to the
plus and the star in the left frame of Figure 4.1 are plotted in the top and bottom frames of
Figure 4.4 as solid lines with the true hazard superimposed as dot-dash lines. The lines extend
only to a point beyond which the empirical survival function Y is zero. The data are superimposed
as dotted lines in forms of the empirical survival function ¥ of X; (upside down from top of the
frames, in inflated scale) and the empirical hazard of discretized data (bar plots). For the “poorest”
fit, the minimum-SKL fit and minimum-V fit on the grid are also superimposed as dashed lines. It
can be seen that the “poorest” automatic fit fits the data reasonablely well, but the data appear
to be rather atypical given the test hazard. I also looked at two other poor fits, those marked as
crosses in the left frame of Figure 4.1, in Figure 4.5. The plots are constructed in the same manner
as in Figure 4.4. The “improvable” automatic fit demonstrates a plausible fit to the data were the
“truth” not given. The one with a nearly perfect relative efficacy virtually sits'in the null space
J1, and in fact, the fit calculated from this data set is insensitive to the choice of A\ over a broad
range.

In summary, our limited experiments indicate that the relative efficacy of cross-validation im-
proves slightly as the number of failures N increases, the absolute performance improves as the

sample size n increases, and in general the method fits data well.
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Figure 4.4: A good fit and the “poorest” fit in the n = 100 simulations. The solid line is the
automatic fit and the dot-dash line the truth. The dashed lines are SKL-optimal and V-optimal
fits. The dotted lines represent data.
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An ’Improvable’ Poor Fit (N=81)
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A 'Best Possible’ Poor Fit (N=90)

Figure 4.5: Two other poor fits in the n = 100 simulations. The solid line is the automatic fit and
the dot-dash line the truth. The dashed lines are SKL-optimal and V-optimal fits. The dotted
lines represent data.
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5 Application

Between January, 1974 and May, 1984, the Mayo Clinic conducted a double-blinded randomized
trial in primary biliary cirrhosis of the liver (PBC), comparing the drug D-penicillamine (DPCA)
with a placebo. The data are tabulated in Fleming and Harrington (1990) with a concise description.
Of the 312 patients participated in the trial, 158 were treated with DPCA with 65 recorded deaths,
and 154 were treated with the placebo with 60 recorded deaths. The trial lasted nearly 4800 days.
I mapped [0,4800] onto [0,1] and applied the automatic algorithm to the data using the same
J1 and Ry as specified in §4. Separate estimation for the two groups of patients yields the fits
presented in Figure 5.1 with the data superimposed in the same manner as in Figures 4.4 and 4.5.
The automatic fit for the DPCA hazard virtually sits in J; . The dashed line in the placebo frame
indicates the corresponding parametric fit in J; . The hazard pattern demonstrated by the placebo
automatic fit asks for some explanation. Combining all the 312 patients together, the automatic fit
again sits in the null space J; which is plotted in Figure 5.2 with the combined data, the DPCA fit,
and the placebo fits superimposed. It appears that DPCA might have slightly reduced the hazard
in the first three years or so during the treatment, but from about three and half years onward until
about eight and half years, the DPCA treated patients had higher hazard compared with those in
the placebo group. This, of course, could be due to the delayed failures of weak patients under the

DPCA treatment.

6 Concluding Remarks

In this article, we have studied an implementation of penalized likelihood hazard estimation, where
the algorithm, with a cross-validation performance-oriented iteration, is adapted from an earlier sim-
ilar algorithm on density estimation. Portable code is available from me at chong@stat.purdue.edu.
The current implementation is generic and is of order O(N3). Implementations of order O(N)
should be possible, for specific configurations separately, by using local basis expressions instead of
(2.2) for 7y, (cf. O’Sullivan 1988).

As noticed from the simulation results but not reported in §4, the SKL-optimal A and the V-
optimal A in hazard estimation are often far apart, which reflects the fact that (e7—e™) = e (7—1n0)

is often a rather wild approximation. For the same reason, the proximity argument in §2.3 is
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Figure 5.1: Hazard estimation of PBC patients. Estimated hazards are in solid lines. Data are in

dotted lines. Parametric placebo hazard is in dashes.
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Combined (N=125/n=312)

Figure 5.2: Combined hazard of PBC patients and treatment comparison. Combined hazard is in
solid line. Combined data are in dotted lines. The DPCA hazard is in short dashes. The placebo
hazards are in long dashes.

less plausible than its counterpart in density estimation. Consequently, the automatic smoothing
parameter works less effectively in hazard estimation than in density estimation, as can be seen
by comparing Figure 4.1 with similar figures in Gu (1991a). Hazard estimation might just be
a more difficult problem, and the current algorithm appears serviceable. However, much better
empirical results, even better than the corresponding density estimation results, have been reported
in O’Sullivan (1988) on an AIC score applied to hazard estimation. It remains to be understood
how O’Sullivan’s AIC score works.

Of more interest than plain hazard estimation is censored data regression, for which proportional
hazard models remain the prime tool in applications (cf. Kalbfleisch and Prentice, 1980; Fleming
and Harrington, 1991). Hazard proportionality may sometimes be violated in practice, however, so
more flexible models are needed. Inserting tensor product splines into the current structure, it is
possible to construct nonparametric models more general than the proportional hazard models for

censored data regression. Details on this line are to be developed in future works.
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