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ABSTRACT

We consider a branching Brownian motion with killing which starts with a single
particle at the origin, for which the instantaneous branching and killing rates of a particle
at position = are A(z) and k(z) respectively. We show that if 3 is continuous and bounded
and k(z) T oo as |z| — oo then Ry, the right frontier at time ¢, grows sublinearly as
t — co. For the class of killing functions kq(z) = |2|¥, a > 0 we show that R, "< c,t2/*t2
as t — 0o, for some constant c, > 0.



1. Introduction

A branching Brownian motion is a stochastic process that describes the evolution of a
system of particles that move through space and also reproduce and die. The process starts
with a single particle at the origin. At time ¢t = 0 the particle starts a standard Brownian
motion in R?; as it moves it is subject to branching and killing, with instantaneous rates
B(z) and k(z) respectively, depending on its position z. The motion continues until a
random time, when the particle either dies or splits into two. If it dies, the process
becomes extinct. Otherwise the particle and its offspring continue along independent
Brownian paths subject to the same laws of splitting and killing.

Let 7 and x denote the times to branching and killing respectively. We assume that
they satisfy the following laws:

P> to(Broc) =op { - [ 6B
P(r > t]o(By)ococt A o(1{x > £})) = exp {— /0 t ﬂ(Bs)ds}

where 14 denotes the indicator of the event A, and B denotes standard Brownian motion.

Under suitable conditions on the branching rate function § and the killing function
k, the process does not explode, survives with positive probability, and on the event of
survival, “spreads out” with probability 1.

If N; is the number of particles in existence at time ¢, the state of the process at time
t is completely described by their positions Yt(l), Yt(z), cees Yt(N°), when N; > 0. A natural
question that arises is: what area does the process cover by time ¢, and how fast is this
area spreading? The answer clearly depends on the nature of # and k.

In one dimension, the question reduces to the growth of the interval (L4, R;), where L,

and R; are respectively ?é’}v Y() (“left-most” position) and . Lng)jcv Y() (“right-most”
(3

position). This is the case that has been studied in detail, but for branching only, i.e. when
particles reproduce but do not die. In particular, the growth of the right frontier R; as
t — oo has been the subject of several papers. [1,2,5,12,13,14,16]

When ((z) = o, a constant and k(z) = 0, the function u(t,z) = P(Rt < z) satisfies
the partial differential equation

ou  16%
az 232”"“(1 w),

u(0,z) = 1(z > 0).

Kolmogorov, Petrovski and Piscounov [11], and independently, Fisher [6], originally studied
this equation (the “K P P” equation) and showed that u(t, m¢+z) — w(z) for some function
w(z), with m¢ ~ at as t — oo for some constant @ > 0, m; being the “median” of u. In
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other words, R; grows linearly with time, and its distribution stabilizes to a travelling
wave.

The connection of “homogeneous” branching Brownian motion with the K PP equa-
tion was established by McKean [16]. Bramson [1,2] and Lalley and Sellke [12] refined the
above results by giving a precise characterization for m; as ¢ — oo and an expression for
w(z) respectively.

When the branching rate function #(z) is not constant, we no longer have a parabolic
equation such as the above for P(R; < z). However, using probabilistic methods, Erickson
[5] and Lalley and Sellke {13, 14] showed that R; exhibits behavior similar to that for the
“homogeneous” branching case mentioned above, for 3 belonging to certain subclasses of

bC(R).

We have studied the problem of R; in one dimension, when the model incorporates
killing as well as branching. We assume that k(z), the killing rate, is continuous, and
B(z) € bC(R). Depending on how k grows away from the origin, the frontier should
grow at a comparable or slower rate than in the pure birth case (on the event of survival,
assuming the process is supercritical).

If k is bounded everywhere, then under certain conditions on § — k, the process is
supercritical, and it can be shown by methods similar to those in {13] that R; grows linearly
as t — oo on the event of survival.

The more interesting case is when k grows without bound away from the origin (but
is bounded at the origin). Suppose § is bounded. If the branching rate is large enough
in a neighborhood of the origin, then the process will be supercritical. In this case, the
movement of particles away from the origin is “discouraged” by the high rate of killing,
and R; grows sublinearly on the event of survival. The distribution of R; then settles to
a “degenerate” wave as t — 0o. Obtaining the growth rate itself involves analyzing the
trajectories of killed Brownian motion.

In this paper, we consider the latter case. First, we show that R; grows sublinearly
for any such k (subject to an additional restriction on k). Then we consider the special
class of killing functions k(z) = |z|®, « > 0 and obtain the growth rate of R; explicitly.

Our main results are as follows.

THEOREM 1: Assume 3(z) has compact support and is bounded. Suppose that k(z)
is bounded at the origin, k(z) T 0o as |z| — oo, k'(z)/k(z) — 0 as £ — oo, and that the
maximum eigenvalue of the differential operator 1 D2 +8—k is Ao > 0. Then the branching
Brownian motion with birth rate function § and killing rate function k is supercritical,
and on the event that the process survives,

(a) tlim R;/zy <1 a.s., where z; is a deterministic function of ¢ satisfying
—00

f:t V2k(y)dy = Aot, and

(b) tlim Ri/t=0 a.s. a



THEOREM 2: If k(z) = |z|*, a > 0, then under the conditions of Theorem 1,

R, ~ z¢ a.s. as t — oo on the event of survival of the process, where
2/a+2
Tt = (%&—;/\o) t2/2+2 is the solution of [ \/2k(y)dy = Aot. O

2. A Heuristic Argument

Assuming the conditions of Theorem 1, the rate of growth of the right frontier is
determined by the interaction of two factors: the exponential growth of the number of
particles in any bounded area of space (guaranteed by a theorem of S. Watanabe [17]),
and the probabilities associated with certain trajectories of individual particles.

The path of any particle is that of killed Brownian motion, i.e., if X(¢) denotes the
position of a particle at time ¢, then X (t) takes values in RU{A} where A is the “cemetery”
state (say, A = —o0). The law of X, is given by

P*(X; € A) = E* (e‘fo kB.dsy (B, ¢ A))

for any Borel set A in R, z € R being the initial position of the particle.

Let Ny(J) represent the number of particles in a subset J of R. Let ¢ be as in
Theorem 1 and let g be the corresponding eigenfunction.

WATANABE’S THEOREM: Under the conditions of Theorem 1, on the event of
survival of the process,

Ny(J) ~ Ze*'w(J) a.s.
as t — oo for any bounded interval J, where v(J) = [;wo(y)dy, and Z = lim; .o Zt,
with Z, = e 2t % o v). O

Remarks:

(i) 3D2% + B — k is the generator of the expectation semigroup M;f(z) =
E= N £(v?), defined for f € bC(R).

(ii) If B is bounded and k(y) — oo as |y| — oo then D% + B — k has a discrete
spectrum Ao > A1 > .... If I;Eai%c B(y) is large enough, then A\¢ > 0 and ¢y, the leading
eigenfunction is unique and strictly positive.

(ili) Z > 0 with probability 1. O

Using Watanabe’s theorem, we give here a heuristic argument for obtaining the rate

of growth of R;, i.e. some deterministic function z; of ¢ such that Rtfa:ct as t — oo.

Note that the intensity of the point process of births in any small interval I at time
tis [; B(z)N¢(dz), and according to Watanabe’s theorem, N(I)'< Zeroty(I) as t — oo.
From this it can be argued that at large time, conditional on Z = C, (C > 0 a constant),
the point process of births in space-time behaves like a Poisson process with birth intensity
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measure Ce*o?3(y)v(dy)dt (see Lalley and Sellke [13]). It follows that the point process of
the positions of particles in existence at time ¢ behaves like a Poisson process (and therefore,
N¢(J) like a Poisson random variable), as ¢ — oo with intensity measure proportional to

fot Jr e**po(2)B(x)P*(X¢—s € dz)dzds.

A system of Brownian particles born according to a Poisson process in space-time
with such a birth intensity measure was defined to be a Poisson tidal wave (PTW) in
[13]. We extend the definition to allow the particles to die with instantaneous rate k(x) at
position z.

We prove in Section 6 that when the branching Brownian motion (BBM) is supercrit-
ical, then, on the event of survival, and conditional on the value of Z, the right frontier at
large time behaves like the right frontier of a PTW with the appropriate birth intensity
function. Precisely, we have

PROPOSITION 1: Assume the conditions of Theorem 1, and let C' be an arbi-
trary positive constant. Let W be a Poisson tidal wave with birth intensity measure
Ce*f(x)v(dz)dt and killing rate k(z), where (t,z) € R%. Let R} denote the position
of the right-most particle of W at time ¢t. Then on some probability space may be con-
structed a copy of the branching Brownian motion with birth and killing rates 8(z) and
k(z) respectively, and the Poisson tidal wave W such that for all positive § < &y, for some
bo,

(a) R: < Rf + 6 on {Z < C/2} eventually with probability 1,
(b) R¢> R; — 6 on {Z > 2C} eventually with probability 1; and

(c) for all ¢, the histories of particles in W born after time ¢ are independent of the
histories of all particles in the branching Brownian motion, and W up to time t. O

Thus the problem of determining the behavior of R; reduces to the problem of deter-
mining that of the right frontier of a PTW.

Now, if R} denotes the right frontier of a PTW with birth intensity measure
Ce*o®u(dz)ds where u(dz) = f(z)v(dz), then
P(R! < z) = e ENi[z,)
where EN}[z,00) = [ fioo Ce**P*( X, > z)dsp(dz), N}(J) being the number of
PTW particles in J C R at time ¢.

The problem of characterizing R} as ¢ — oo then reduces to analyzing the above

double integral. In particular, if there exists z; such that R} Rz,, then z; should be such
that for any ¢ > 0, as t — oo,

EN}z,00) ~ e~ ifz > (1+¢€)zy
~e  ifz<(l—¢€)ze
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where a > 0 is a constant depending on ¢.

Now if we assume that the support of u is contained in [—M, M] for some M > 0,
and ¢ >> M, then as t — oo,

Mt t
/ / erst(.Xt—a > x)dsu(dz) >_</ 6)‘08P0(Xt—-8 > m)ds
-MJ—-—0

— 00

where < denotes logarithmic equivalence (g(t) < h(t) means log g(t) ~ logh(t) as t — o00).

Thus we have to determine z; such that P°(X;—, > ;) will decay exponentially, and
at just the right rate such that fioo er*PY( X5 > z¢)ds = O(1) as t — oo. This is, in
effect, a large deviations problem for killed Brownian motion.

Note that when there is no killing, then for any fixed s, P°(X;—, > z{) =
PY%(B;_, > z:) decays exponentially as ¢ — oo precisely when z; is a linear function
of t (for any b > 0, P°(B;—, > v/2bt) < e as t — oco0). This accounts for the linear
growth of R; [13, 14] when k = 0. This behavior also occurs for certain types of non-zero
killing functions, for example when k is identically a constant. However, it is not true for
the unbounded killing functions we are interested in.

The rest of this paper is organized as follows. In Section 3, we solve the above
mentioned large deviations problem for killed Brownian motion. In Section 4, we prove
analogues of Theorems 1 and 2 for Poisson tidal waves. Following this, we deduce Theo-
rems 1 and 2 using Proposition 1, in Section 5. Finally, in Section 6, we give a proof of
Proposition 1.

3. Killed Brownian Motion

Let X denote killed Brownian motion. Recall that if k is the killing function, then for
any z € R,

P*(Xy>z)=P* (s>t B, >z)=E* (e‘fo HB.)dey (g, > :v}) (3.1)

where B denotes standard Brownian motion. We will study such probabilities as t — oo
when z = f;, an increasing function of ¢, and k is continuous and grows unboundedly away
from the origin. Our final aim is to find, given b > 0, f; such that P*(X; > f;) < e™% as
t — oo.

Asymptotics for expectations of the form (3.1) were studied by Donsker and Varadhan
[4]. In particular, if k(y) — oo as |y| — oo, then there exists 75 > 0 such that for any
z€R, and fixed z € R, P*(X; >z)x e " ast — oo (a result originally due to Kac
[9]). Our problem differs from this in that we want z to vary with ¢. However, we shall
make use of a special case of this result, concerning the distribution of &, the life-time of
killed Brownian motion, as { — co. We state it below for future reference.
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THEOREM (DV): If k(y) — oo as |y| — oo, then for any z € R,
Pz(K, > t) = E* (6_ fot k(B,)ds) = e—‘Yot

as t — 00, where 7 is the smallest positive eigenvalue of the differential operator —%Di +k,
and is given by vyo = }2;: I(f), where

19 = [ {swro)+ 558" o

F ={pdf's f: f €C? Supp f =R or is compact,
and f > 0 in the interior of the support}. O

We shall also use a slight modification of this result which follows easily from its proof
in [4].

LEMMA 1: If k and 7, are as in Theorem (DV), then there exists A = A. > 0 such that

log E* (e— J; k(B’)dsl{llBHt < A}>
lim

t—oo t

> —(v0+¢)

where || - ||¢ denotes the supremum norm on C|0, #].

PROOF: In [4], it is shown that 7y = fiélyf-' I(f), where Fo = {f € F : Supp f is compact

and fab (f})zdy < oo}. For any A > 0, define Ft = {f € Fo : Supp f C [-4, 4]}, and
v = iI}EA I(f). Now there exists A large enough that I(f) < o + ¢ for some f € Fg*
fe

0

and therefore, 7o < 78 < 7o + €. To finish the proof, note that by (2.19) and (2.20) of [4],

].Og EZ (6_ fo k(Ba)dsl{“B“.t S A})
lim

t—o0 t

—I(f)

for all f € F§. (]

In proving the main result of this section, we shall also use the following lemma.

LEMMA 2: Let X be killed Brownian motion with killing function k(y) where k(y) T oo
as |y| = oo and k'(y)/k(y) — 0 as y — oo, and let Ty = inf{t : Xy > z}. Then for any

z>0and z < z,
P’(T,,- <oo)=e —H(z)+H(2)

where H(z) ~ ®(z) = f; \/2k(y)dy as z — oo.
6



PROOF: Let u(z,z) = P*(T, < 00) = E*(e” I k(B’)ds), where 7, = inf{s : B, > z}.
It is known that %z‘- exists [10]. Now for any § > 0, by the Strong Markov Property,
u(z, z) = u(z + 8, 2)u(z, z + ). Therefore

logu(z + 6, 2) log u(z,z) — logu(x,z+6)

i R B : = 7pg o8u(®?)
exists. Define h(z) = — ;in(l) B"—(;ﬁﬂ, then we have the differential equation
0
6_Z = h(2)u, u(z,2)=1.

The solution of this is u(z,z) = e H®+H () where H(z) = foz h(y)dy.
To determine the behavior of H(z) as £ — oo, let us first consider u(y + 6é,y) for

y > D and § > 0, for fixed D > 0. Now, u(y + 6,y) = E(e_fosk(B‘+y)ds

75 = inf{s : B, = §}. On the event (7_p > 75), we have

Ky — D) < k(B, +1) < k(y + 6),

), where

since k is increasing in (0, 00). Therefore,

u(y+6,y) <E (e_ S k(B‘+y)dsl{7'5 < T_D}) + P(1s > T_D)

— ¢~ 0V 2k(y-D) ———6 , and
6+ D

u(y +8,y) > E (e‘ Ji* RBendey ) T_D})
>F (e_k(-"""s)""l{r,s < T_D})
>F (e—k(y+5)r") — P(15s > 7-p)

___6—61/2k(y+6)_ 6 )

o6+ D
This implies that
_log u(y + 67 y) 1
it =R AL - A — —
,%I_I,I(l, 5 < 2k(y — D) D and
tim MUY 5 /oG - <,
§—0

thus,

VEIRG=D) - 5 <hy) < VEW + 5 Wy D.
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From this it follows that for any =z > D,

(s — D) — 2=

+H(D) < HG) = [ hy)dy

< &(z) — 8(D) + °=2

+ H(D).

Now, ®(z — D) > ®(z) — D®'(z), since ®"(z) = % > 0; by L’Hépital’s rule

lim %(f% = lim ;7;(%, which is 0 by hypothesis. It follows that H(z) ~ ®(z) as ¢ — oo.
Ir— 00 r—00

O

We now state the main result of this section.

PROPOSITION 2: Let X denote killed Brownian motion, with killing function
k(y) = |y|*, a > 0. Suppose &(z) = z—‘_{gzﬂzﬁ, and ¥ = 74 is the leading eigen-
value of (1/2)D% — k. Let M > 0. Then for any ¢ > 0, and z € [—M, M] there exists

Te =Teo >0, te =tco > 0and a constant a; = a;(e, o) > 0 such that
e~ (1F)(@ ()47 < p3(X, > ) < e~ (1) (@(2)+7) (3.2)
whenever z > z., t > t., and in the case of a € (0,2), t > alwz_Ta"'s. O

COROLLARY: If k(y) = |y|% « > 0, then for any z € [-M,M], and b > 4«,
2/a+2
P*(X; > f1) x e as t — oo, where f; = ((b - 7)‘2'—:;;) $2/a+2 0

Remark:

Note that P*(X; > z) = f:o pt(z,y)dy, where P; is the heat kernel of the operator
(1/2)D?% — k. Towards the end of this work, we learned about previous results on p; [3, 15].
In [3], Davies and Simon give very sharp upper and lower bounds for p; in the case when
k(z) = |z|*, @ > 2, which immediately imply (3.2). In the classical case of k(z) = z? there
is an exact formula for p; [7]. When k(z) = [2]|*,0 < a < 2, we also have bounds for p,
following from the results of Li and Yau [15] (they have the restriction that £” is bounded
above). But their results appear to give weaker bounds for P#(¢ > z) than ours.

We thank Mohan Ramachandran and Rodrigo Bafiuelos for pointing out out the
existence of these results.

However, we note that our method of obtaining the bounds (3.2) is applicable to a
wider class of killed diffusions than are permitted by the methods of either [3] or [15].
Examples of such diffusions are:

(i) X is killed brownian motion, k(z) = 2*1{z > 0}.
(ii) X is killed brownian motion with constant drift 4 > 0, k(z) = |z|*,a > 0. O
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The rest of this section is devoted to the proof of Proposition 2.

Upper Bound

To estimate P*(X; > z) above, suppose 0 < t' <t and 0 < z' < z. A Brownian path
attaining z at time ¢ either stays above z' throughout [t',t] or dips below ' some time in
[#,). Define the event F = {B, < &’ for some s € [t',t)}, and 1, =inf{s >t': B, < z'}.
Then,

P*(X; > z) = E* (e‘fo |Bu|®dvy (B, > .’l:)].F) + E* (e‘fo Bul*duy B, > z)ch>
o (5 ) (7
< E* (e— fo IBu]“du) {le(f‘z < OO) + e—(t——t')(z')"‘},

where X is killed Brownian motion independent of 7y, and T, = inf {t: X, > z}.

FIGURE 1

Suppose t' and z' are such that t —t' = o(t) and z —z' = o(z), then by Theorem (DV)
and Lemma 2 there exist ¢, and z. such that

EZ (e_ fot |B“|adu) S e—(l—E)‘)’t,

P* (T, < ) < (1/2)e~(1=9)%(=)

for all z > z.,t > t.. To finish the proof of the upper bound, it remains to estimate
e~ (t—t)=)" | We consider the cases 0 < a < 2,a =2 and a > 2 separately.

(i) When 0 < a < 2, choose z' = z? and t' =t — t?, where p = a_ﬁ‘;’_f%. Then there
exists a; > 0 such that if z. is large enough, for all z > z. and t > a1:c2_Ta+€,
at2
e~ (=t = (%) < (1/2)6_(1_6)%3z ’.
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(ii) When a = 2, choose z' = ar and ¢ =t — b where a = 1/¢/2,b = v/2(1/e — 1/2).

Assume z. is large enough that for all > z.,

e~(t=t))" o~ T2/ (1 /9)~(1-) T3

(iii) When o > 2, choose ' = zP and ' =t —bwherep =1 + 1 and b = i—g.
Assume z. to be large enough that for all z > z.,

e~ (=) = e—%z# < (1/2)6_(1_5)%’#. U

Lower Bound

Suppose we have shown that given ¢ > 0 there exists t. > 0 and z¢ > 0 such that
PY(X;>z)> e~ (1+e)(7t+2(2)) (3.3)

for all z > z., t 2> t., where ¢t and z also satisfy, in the case of « € (0,2), ¢t > 7_%3;2_7“
For any z € R, define Ty = inf{s > 0: X, = 0}. Then for any § < ¢,

PZ(Xt > (L') > PZ(T(] < 6(), X 2 .’I))
= E*(1{Ty < 60}P°(X;—1, > z|Th)),

where X is killed Brownian motion independent of Ty. Therefore, for all z > z. and
t 2 te + 607

Pz(Xt > :l:) > Ez(l(To < 60)6(1+6)To)e—(1+e)(—yt+q>(z))
> f(z)e—(1+€)(‘yt+¢(z)), (34)

where f(z) = P*(Ty < &), assuming t > f_%z‘z%ﬁ when 0 < a < 2. Note that f(z) is
bounded below for z € [-M, M]. So we have effectively proved the lower bound asserted
in Proposition 2.

t [+ 1
Thus it remains to prove (3.3). Recall that P%(X; > z) = E(e” Js |B.] dsl{Bt > z}).
The idea of the proof is that most of the value of the expectation is contributed by Brownian
paths concentrated in a neighborhood of a certain trajectory {¢}}o<s<¢, where ¢f = 0 and
p; =z, le.

z (e— /; IBoI*ds1 1B, > m}) ~E (e_fo 1Be"41 (B, > 2}1{||B - *|: < A}>

where || - ||+ is the supremum norm on C[0,t] and A is a suitably chosen large number.
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We determine ¢* as follows. Let C;, be the class of absolutely continuous paths
{s}o<z<t With w9 = 0, ¢y = z and ¢; = %‘f € L£?[0,t]. For any ¢ € C;,, consider
the translated process Y, = B, — ¢4, 0 < u < ¢. This translation induces an absolutely
continuous change of measures in C[0, ], by Girsanov’s theorem. Denoting the expectation
under the induced measure as E, and noting that Y, is a standard Brownian motion under
the new measure, we have, by Girsanov’s formula, for any A > 0,

E (exp {— /Ot lBs|°‘ds} 1{B; > z,||B — ¢t < A})

t ty t
=E, (exp {—/0 1B, + ¢s|%ds —/0 2g03ds -—/ ¢3st} 1{B; >0,||B||: < A})

t
=E, (exp {— / H(B,,ps)ds — ¢tBt} 1{B; > 0,||B||; < A}) e~ (%)
0
where B is standard Brownian motion under the new measure,

J(p) = /I%I" +5eds (3.5)

H(ﬁs’ 903) = I-és + (Psla - I(Psla - Sasés- (36)

Thus,
E (e‘ Jo1Bo1®doy (B > z)} >

sup Etp (e—.j; H(B,,p,)ds—¢: B: 1{Bt > 0, ”B“t < A}) e——J(cp).
¢€ct,z

We guess that this supremum is attained by a path ¢* = ¢;, € C;, which minimizes
J(). We show below that such a path exists and gives us the desired lower bound (3.3),
for suitably chosen A.

Specifically, let ¢ > 0. We will show that if ¢* is the minimizing path, then for any
A > 0 and z > A there exists numbers z. > 0 and ¢, > 0 such that for all z > z., and
t>t.,

t = - D ~ ~ *
E‘P (e"‘f; H(B,,p;)ds—¢; By 1{Bt >0, ”B”t < A}) e—J(<P )

> B, (¢ h PEB], < 4)) eroner- (3.7)

where z and t also satisfy £ > -%—[%xz—Tu when 0 < a < 2. The final step of the proof is to
note that by Lemma 1 there exists A. > 0 and ¢, > 0 such that

E‘P (6_‘];) lélgdsl{“é”t < As}) > 6—(1+€/2)'yt
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for all ¢t > ¢..

The proof of (3.7) is given in a sequence of Lemmas. First we show the existence of
¢*, and obtain an expression for J(p*). Then we estimate fot H(B,,ps)ds + ¢f By on the
event {||B||; < A}.

LEMMA 3: ¥(z,t) = g(l:f J(p) exists and is attained by a path ¢* which is non-
pCl, 2
decreasing, and non-negative.

PROOF: If a minimizing path exists, it has to be non-decreasing. To see this, note that if
¢b < pa where (a,b) C [0,1], then we can construct a path @ as follows, with J(@) < J(¢):

- _ ) Pu yu2b
Pu= YuNpp , u<b.

It follows that a minimizing path, if it exists, must also be non-negative and bounded.

Now suppose inf J(p) =5 >0. Let C~'t = be the sub-class of C; ; consisting of non-

decreasing paths; then 1nf J(p) = s as well. Therefore, C, = {p € C;, : J(p) < s+¢,},
¢€ctz
where €, | 0, is non-empty. C, is also point-wise bounded (sup {pu} =2V n >1,
p€ECy
YV u € [0,t]), and equicontinuous. The latter follows form Lemma 2.1(b) of Freidlin and

Wentzell [8], since for any ¢ € C,, J(¢) is bounded above.

Now pick a sequence {¢n}n>1, ¥n € Cn. Then by Ascoli’s theorem, there exists a
subsequence {¢n, } which converges uniformly to some ¢*. It follows that J(¢*) = s, since
J 1s lower semi-continuous. O

LEMMA 4: ¢* is the unique solution of the differential equation $2 = 292 + ¢ with
boundary conditions ¢g = 0, and ¢; = z. Here ¢ = ¢(z,t) = ©2 satisfies
(i) c=0whena<2andt> 24_%1;2_7“;

(ii) ¢ =4x?/sin h?/2t when a = 2;
(ili) ¢= O(—3z) as t — oo, uniformly in z when a > 2, if z is bounded below.
ta-—2

Remark:

We therefore obtain
2/2—a a
(a) ¢ = {(2_7,;‘) (u—tl)} 1{t; < u < t}, where t; =t — 2—211"”27’ when
0<a<2,andt>24_%:c2_Ta.
(b) f = zsithv2u11) < o, < ¢} when o = 2.

sinh V2t
A closed-form solution to the boundary value problem apparently does not exist when

o> 2.
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PROOF: J(p*) = fot F(p*,$*)du, where F(w,v) = w® + (1/2)v? is in C?. Therefore the
minimizing path must satisfy the Euler-Lagrange equation ¢, = ap2~! (the integration
of which gives p2 = 2p% + ¢) with boundary conditions p9 = 0,¢¢ = z. The constant

¢ = c(x,t) = $? is necessarily positive for o > 2 (otherwise the equation is not integrable).

(i) When 0 < a < 2, setting ¢ = 0 we have @, = \/igaﬁ/ %2 > 0 since the solution must
be nondecreasing. Hence, for some t; € [0, 1],

. 07 U5t1§
P\ v2es £0, ue(t,t].

2/2-a
Therefore, ¢, = [-2_72&(” - tl)] 1(t1 < u < t); using the condition p; = r we obtain
t;1. Note that this solution is valid only if ¢ > 241%:1:2__22 .

(ii) When o = 2, the solution of the Euler-Lagrange equation ¢3 = 2¢3 + c is
straight-forward, subject to the boundary conditions.

(iii) When a > 2, we cannot solve ¢2% = 2p§ + ¢ explicitly, but we may determine ¢
uniquely through the equation

z dy
——— =1 3.8
| A (3:8)
This may be rewritten as
mrod 2t
Y V2 (3.9)

(] \/ya'l‘l-_—mmT_2

where m = (2/c)/*. Now we use the fact that

(y +1)*
dy < 2Z—~2-.<d ;
<<, (3.10)

for certain constants dy,d; > 0, for all y > 0. From (3.9) and (3.10) we obtain

-1 ~1
—a_z 1— 1 oax—2 tsmi;_zsa_z 1_ 1 a—2 t’
V2d, (1+mz)z V2d; (1+mz) 35

from which we can deduce that, for some constants A; >0, 1 <1 <3,

(]___A_l_) A2 <c< fzi .

a—2 2a
ta-2 t«-2

tr 2

Thus if = is bounded below, ¢ = O (—%i) as t — oo uniformly in z.. U

ta—2

13



x ¢ o e e . _+_ *
LEMMA 5: If o* is the minimizing path and ®(z) = i‘_{; , then ¥(z,t) = J(¢*)
satisfies, for £ > 0,

(i) ¥(z,t) = ®(z) when 0 < a < 2,and ¢t > f_@&wz_;—a;
(i) ¥(z,t) = 2(z)(1+ O(e~2V2%)) when a = 2, as t — oo;
(iii) W(z,t) = &(z)(1 + O(1/t2*/*7%)) + O(l/tz_t—:) when a > 2 and z is bounded

below, as t — oo.

PROOF: o* satisfies the equation ¢, = /203 + ¢, wo =0, ¢ = z, where
¢ = ¢(x,t) = $2 depends on «a as in Lemma 4. Therefore, setting ¢ = ¢*, we have

foa 1, P DS dy
J(¢)=/(¢a+—¢3)ds=/ {v* + 5y +c)}\/Ta—T;
PP oa—2 2zy/22% + ¢ oa—2
_a+2/{d(y o)t 4 2y° +c} a+2 +2(a+2)6t’

making use of (3.8). Thus, by Lemma 4,

&(x), a<2 Vt> 223" 2> 0
VZt
(o,t) = { B(z) (i), a=2 Vt>0,z >0

®(z)\/T+ 35 + starmyct: @>2,Vt>0,z>0. [

LEMMA 6: If H(y,z) = Ha(y,2) = ly + 2|* — 2* — az* 'y, where o > 0, then for any
y € (—A, A) and z > 0 we have

(i) When 0 < @ < 1,H(y,z) < (A* + ad/2z'7*)1{0 < z < A/(1 + p)}, where p is
such that H(—(1 + p)z,2) = 0;

(i) When o =1,H(y,z) < 241{0 < z < A};

(i) When a € (1,2), H(y, z) < (A% +adz2")1{0 < z < A} + 2D 410 > 4}

(iv) When a = 2, H(y,z) = y* for all z > 0; and

(v) When a > 2,H(y,z) < (Biz+|y|*)1{0 < 2 < A} + B Az*"11{z > A}, for some
positive constants 81 and fs.

PROOF: (i) When 0< a <1,H(y,z) = [y +2|*— 2% — a(y/z'~9). Fix 2 > 0. It is easy

to check that as a function of y, H is decreasing in (—oo, —z), increasing in (—z,0) and
decreasing in (0,00). Also H — oo as y — —o0.

14



FIGURE 2
Since H(—z,z) = —(1 — a)z® < 0, and H(0,z) = 0, there exists p > 0 such that
H(—(1+ p)z,2z) =0, and H <0 for all y > —(1 + p)z (p is independent of z). Therefore,

if z > A/(1+ p),H(y,z) > 0 for all y € (—A4,A), while if 0 < z < A/(1 + p), then

— _ — _ a__ o 1—a< o l-a
_jx%a,y)éAH(y,z) H(-A,2)=(A—2)"— 2+ ad/z'"* <A+ aA[/z" ™%

(ii) When o =1, H(y, 2) = —a(y+2)1(y < —=2). For fixed 2, H — 0o as y — —oc and
H =0 Vy> —=z Clearly then, if 0 < z < A then max H(y,z) = H(—A,z) = 2(A-2),
—y<A<y
while if 2z > A then max H(y,z) = 0. Thus H(y,z) < H(—A,2)1{0 < Z < A} <
—y<A<y
241{0 < z < A}.

(ii) In this case, for fixed z > 0,H(y,z) = |y + z|* — 2* — ayz®"! is increasing in
(0, 00), decreasing in (—00,0), and H(0,z) = 0. Also H — oo as |y| — oo.

FIGURE 3
Thus for fixed z, max H(y,z) = max{H(A,z),H(—A4,z)}. It can be
—A<y<A ’

easily shown that H(—A:z)—z H(A,z) for all z>0. When 0 < z < A,
H(—-A,z) =(A—2)* — 2% —aAz*"! < A* + aAz*™', while if z > A,
H(—A,z) = (z — A)* — z* + aAz*"! < 5(0‘2;1)-A2/22_°‘.

15



(iv) When o =2, H(y,2) = |y + 2|? — 2% — 2yz = ¢*.

(v) First, fix z € (0,4) and consider G(y,z) = H(y,z) — |y|*. G is increasing in
(—o00, —2), decreasing in (—z,0) and increasing in (0, 00). Also, G — —oco as y — —co.

FIGURE 4

Thus when z € (0,A), max G(y,2) = max{G(—z2),G(A)} = max{(a — 2)2°,
—A<y<
(A+2)* — 2% —az* 1A — A%} < (2% — 2)A*" 12 = B2, say. Thus H(y,2) < prz + |y|*
for all y € [—A, A).
Now let z > A. For fixed z, H(y, ) is increasing in (0, 00), decreasing in (—00,0), has
a zero at 0, and H(y,2) — oo as |y| — oo.

FIGURE 5
Thus max H(y,z) = max{H(—A4,z),H(A,2)} = max{(z + A)* — az®"'4,
—A<y<
(z — A)* + az® 1A} — 2% = {(1+ 4)* — o(2) — 1}2* < {B2(£2)}2?, for some constant
B2 > 0. O

LEMMA 7: Let ¢ = ¢* and define the random variable Y ; = Yz":t = fot H(ps,Bs)ds +
$¢Bs,a > 0, where H(Bs,ps) = |Bs + ¢s|® — 05 — psBs. Let A > 0. Then, given e > 0
there exists t, =t , > 0 and z; = z; , > 0 such that on the event {liB]]s < A},

16



(a) Yz < fot |Bs|*ds + (¢/2)®(z) for all £ > max{z,, A} and t > %xz_Ta, when
0<a<?2
(b) Y. < [Y|B,[2ds+(¢/2)®(z) for all z > max{z., A} and ¢ > t,, when a = 2; and

(¢) Yz < fot |Bs|%ds + (¢/2)(®(z) + 4t) for all z > max{z,, A} and t > ¢, when
a > 2.
PROOF: (a) Recall from Lemma 4 that if ¢ > ?_%mﬂ_Ta then ¢, = % =
2/2—(! 2— o
(2—\7—;—) (s — t1)2/2_°‘1{s >t1}, where t; =t — 5%%:0“2_ Note that
Gs = a2 11{t; < s <t} and ¢, = \/itpf/zl{tl < s < t}. Therefore, on the event
{I1Blle < A},

t1 t
Yz,t = / |Bs|ads + ('Bs + Sosla - (Pg - aBSSOg—l)ds + \/§¢?/2Bt
0

t1

t t
= / |Bs|*ds + [ (|1Bs +¢s|™ — 05 — aBsgog‘_l)ds +V242%/?
0 11

We use the estimates from Lemma, 6 for the function H(y, 2) = |y+z|*—2*—ayz*"! to
show that fttl H(B,,ps)ds < bi(a) for some constant b;(a) > 0 on the event {||B||: < A},
when A < z. Then we will have, for some z. > 0,

t
Veu [ |Bulods 4 bu(e) + V2"
0
1
< [ 1BuJods + (e/23(2)
0

2—o

for all z > z andtZ%:z: 7 .

In estimating |, ttl H(B,,ps)ds, we note that ¢ is strictly increasing in [t1,t] with
¢t, = 0 and @; = z, so for any d € [0,z] there exists a unique t; € [t1,?] such that
—d b, = 245% 1 ¢
Pt, = Ay 12 = 2—a + 1-
We consider the cases 0 < a <1, a=1and 1 < a < 2 separately.
When 0 < a < 1, from Lemma 6, on {||B||: < A}, 4 < z,

t ta
H(Bs, ‘Ps)ds < / (Aa + 6:1_4-01) ds,
t1 (Ps

t

where t, is such that ¢, = &1—,. Thus,

: ANT (VB A\
H(Bo,ps)ds < A%(tz — 1) + Ay, = A (——) (L> £ 34 (—;)

t1
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which is a finite constant.

When o = 1, let 3 be such that ¢;, = A, then from Lemma 6,

t t2
H(B,,ps)ds < / 92Ads = 2A(ty — t1) = 2AV/2A4.

131 131

When 1 < a < 2, let t; be once again such that ¢;, = A, then by Lemma 6,

t ts t _1) A2
H(B;,p,)ds < (A* + aAp?™)ds + / ala—1)

-
t1 t1 ta 2 Qos

« epr afa=1) , ([ V2)7 1
< A%ty —t1) + V24 +—2_A/tz< ) ek

2—«w

_ \/i a(a—l) \/i =a _az_-*-_z
_(2—a 2+ 2 (2—(1) )A'

(b) When a =2, on {||B||: < 4}, A<z,

t t
Yee= / H(Bs,ps)ds + 1By = / |Bg|?ds + \/2¢? + cBy
0 0

t
< / |B,|?ds + v2zA (1 + O(e_zﬁt» .
0

ds

Therefore, there exists z!, ¢, > 0 such that for all z > max{A4,z.} and ¢t > ¢,

th</ B, |2ds+2< ) /|B Pds + = @(w)

(c) When a > 2, let ¢, be such that ¢¢, = A. From Lemma 6 we have, on {||B||: < A},
where A < z,

t2 t
Yoo= [ (s +|Bo|?)ds + / Ao ds + ¢ B,
0

t2

¢ t2 B2
< / | Bs|%ds + p1 / psds + ( ) Ay
0 0

To estimate fotz @.ds, recall that ¢ satisfies ¢ = /2p* + ¢ where ¢ = ¢(z,t) =
O(ﬁ;) for all z > A. Therefore,

ydy

t2 A y y mA
_gd3=/ = 2 / —_—
/0 ’ 0o V2y*+ec V2 Jo VTHy®
18




where m = (2/c)!/®. Note m = O(t?/%2) as t — oo for all z > A by Lemma 4. Making
use of inequality (3.8), we have

22 14mA) 52
12 mis [mA day (a—2)(4-0) ( m ) o, 2<a<d
[Touts< T [Ty = § Splog +ma) =4
0 \/_2- 0 (1 + y)a/2 a—4
2y/2dym” 7 a> 4.

(a—2)(a—4)

Therefore, whenever A < z, there exists positive constants D;, 1 < < 6 such that

ts D1+—_z’:D2, 2<a<4
-
/ SostS D3 +D410gt+D5/t, a=4
0 a—4
Dgte=2 | a>4

Thus, when a > 2, there exists constants z, t. > 0 such that for all z > z., ¢ > t.,
¢ & B2
Yot < / |Bs|*ds + 51 / psds + (E + 1) AV2z> + ¢
0 0
‘ B2 a €
< / |B3|°‘d3+\/§(— +1) Az= +§'yt
0 a

< [IBitas 4 5@@+m0. D

LEMMA 8: Let ¢ = ¢*. Then, given € > 0 and a > 0 there exists z. = z. o > 0 and
te = te,o > 0 such that for any A > 0,

E (e‘ Ji BB > o) 1B = 9"l < A})

Z E(P (e_ j;: Ileadsl{"B”t S A}) e—@(z)(l_i_e)_-y_;t

N

for all z > max{A4,z.} and t > t., with the additional condition that ¢ > ﬁxaT_z when

0 < & < 2. Here B is standard Brownian motion under P,, the measure on C[0,¢] induced
by the transformation B, — B, — ¢4.

PROOF: Recall from (3.1), that
E (e‘fo 1Bol"ds1 1By > 2,)|B — *||s < A})
— Ecp (e—j; H(Ba,?’a)ds—sbtét 1{Bt > 0, ”B”t < A}) e—\Il(z,t)
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We consider the different cases 0 < a <2, a=2and a > 2.

(i) When 0 < & < 2, from Lemmas 5 and 7 there exists z; > 0 such that

E, (6— fo H(B,,p,)ds—¢B: I{Bt >0, “B”t < A}) e~ Y(z:t)
- E, (e—ch{ét >0,||B|l: < A}) e~ ¥(21)
> 28, (KBTI, < 4)) 80

> E, (e“ JoBer ey, < A}) e (%)
for all z > max{A,z.} and t > %xz__zg
(i) When a = 2, from Lemmas 5 and 7 there exists z_, ¢, > 0 such that

E, (e"Y’»‘l{Bt >0, Bl < A}) e~ ()
>

B, (e— ) IB:I"de1 (1B < A}) o 58(2) =2 (2)(14+0(e™>V?"))

v

E, (e_ Jo 1Belde 1B, < A}) g~ (1+e)%(2)

for all z > max{A,z.} and t > ¢..

(iii) When a > 2, from Lemmas 5 and 7 there exists z¢, te > 0 such that

E, (e- 2t 1(By > 0)1{|| Bl < A}) e~ ¥(z:0)

t , = a ” - o __a+
<B, (6‘ Jo B1de 1B < A}) ¢~ (B 1)- ()10 ) 0 E1))

IA

E‘p (e_‘]; lB‘lﬁdSl{“B”t < A}) e—%’yt—-(l-}-e)@(z)

for all z > max(4,z.), t > te. O
This finishes the proof of (3.7).

4. Poisson Tidal Waves

In this section we will prove analogues of theorems 1 and 2 for Poisson tidal waves.
Consider a PTW with birth intensity measure Ce*u(dy)dt where C > 0, A > 0, p is
finite and has compact support, say contained in [—M, M]. Let k be the continuous killing - -
function, satisfying k(y) T oo as |y| — oo, and k'(y)/k(y) — 0 as y — oo.
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If RY is the position of the rightmost particle at time ¢, then
P(R; < z) = P(N{[z,00) = 0),

where N*(J), J C R represents the number of PTW particles in J time ¢, and is a Poisson

random variable, with EN;(J) = f_I_VIM fiw Ce**P*(X;—s € J)dsu(dz). Here X denotes

killed Brownian motion.

An analogue of Watanabe’s theorem holds for the PTW (proved in Section 6), and
thus R} — oo a.s. as t — oo.

THEOREM 1': t@o R}/z; <1 a.s. where z; is such that ®(z,) = oz' v/ 2k(y)dy = At.

PROOF: For z > 0, define T, = inf{s: X, > z}. By Lemma 2,

M t
EN{|[z,00) = C/ / e** P*(X¢—s > x)dsp(dz)
-MJ-

Mt
< C’/ / e’\st(Tz < 00)dsp(dz)
M J—-c0
< (C/N)p(—M, M)eHM) At—H(z) < At HE@) (4.1)

where H(z) ~ ®(z) = foz v/2k(y)dy as ¢ — oo, and A; > 0 is some constant.

Now, ®(z) is strictly increasing for z > 0, and continuous, so there exists such that
®(z;) = M. Note that for any € > 0,

(14¢€)z: z;(1+4¢)
(1 +¢e)zy) = / V2k(y)dy = At + v/ 2k(y)dy
0 Tt
> At + Ex/ 2k($t)
> At + 5/ V2k(y)dy = At(1 +¢).
0

Therefore, there exists t. > 0 such that H((1 +¢&)x:) > (1+ $)At V¢ > ¢, and we
have Vit > t.

P(R; > (1 +¢)z:) = P(N/[(1 + )z, 00) 2 1)
< EN{[(1 + €)z¢,00)
< A -HO+2)

S A16

_E£Xt
2

(4.2)
From this it follows immediately that tli_m— R;/ xt% 1.
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To show this holds true almost surely, consider the event
F, = {R'> (1+¢)x; for some t € (n,n+1)}, n € ZT.

Now
P(F,) < P(R; > (1 +¢)z, for some t € (n,n + 1))

< P(Yn 2 1) < EY,

where Y, n > 1 is the number of PTW particles whose positions exceed (1 + €)z, some
time in (n,n + 1). Y, is a Poisson random variable with mean

M n+1
EY, = / / Ce*P*(Xi—s > (1 + €)z,, for some t € (n,n + 1))dsp(dz)
—M J—oo

n+1
5/ CeM P*(T(14e)a, < 00)dsp(dz).
-M

- Therefore, by (4.1), for all n > t.,

EY, < Aje~s /2, (4.3)

Therefore, Z P(F,) < oo, which implies that P(F, ¢.0.) = 0, by the Borel-Cantelli

Lemma. Thus Wlth probability 1 3 ¢, < oo such that V¢t > ¢., Ry < (1 +¢)z;. This
concludes the proof. Ol

THEOREM 2': If k(y) = |y|*, a > 0 then R} ~ z; a.s., where z; satlsﬁes
®(xzy) = [ 1/2k(y)dy = Xt and thus equals ca,tz/“"*'2 where Co = ( )2/“"'2

PROOF: By Theorem 1’ it suffices to show that tﬁrﬁ R}/z¢ > 1 a.s., i.e. to show that
—_ 00
given any € > 0, with probability 1 there exists t. such that Ry > (1 —¢)z; V¢ > t..

We consider the cases 0 < a < 2 and a > 2 separately.

(i) 0 < @ < 2. Recall from (3.4) that for any § > 0 3 zs > 0 such that for any
z € [-M,M],
P*(X, > z) > f(z)e”(®@+19(1+9)

Vz>zsand s > 24_%9:2;2?', for some f(z) bounded below on [-M, M].

Therefore, there exists t. > 0 and positive constants a; and 7; such that for all ¢ > ¢,
and s > agtgi—_g,
PZ(Xa > (1 - 6).’1)t) > f(z)e—(l_e/z)’\t—’hs.
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Thus there exists t. > t. such that V¢ > .

M 00
EN}[(1 — €)x¢,00) = Ce /—M/o e M P*(X, > (1 —€)z¢)dsu(dz)

M fos)
> ([ fauan) [ e ds
—M aztm
2 Azeskt/4
for some constant A3 > 0.
Therefore, for all t > ¢,
Age
P(R;<(1—¢)zs) < e~ 2€ (4.4)

This implies that Y P(R% < (1 —¢€)za) < 00, so by the Borel-Cantelli Lemma,
n=1
P(R; < (1-¢&)zn 1.0.)=0 (4.5)

Now define W,, to be the number of PTW particles in existence at time n + 1 whose
position exceeds (1 — &/2)2n+1, and whose position at some t € [n,n + 1) is to the left of
(1 — €)zp+1. Then W, is Poisson with mean

M n+1

EW, = / / CN P (Xniros > (L= &/2)amity Xims < (1— )tnta
-M J—-c0
for some t € (n,n + 1))dsp(dz)

C
< (T) D L (-~ M, M) - P(l—e)x"“(or?fécl By > (1 —¢/2)zny1)
< Aae)\(n+1)—(€2/16)”:+1 = A3e)‘(n+1)_ezT;Z'("+1)4/a+2 (4.6)

Y n > N,, for some N. > 0, and constant A3z > 0.

Therefore, if we define the event
E,=(Riy > (1 —€/2)Tns1, Ri < (1 —¢€)zy for some t € (n,n + 1)),

then

S P(E) <Y PWa21)< ) EWa<oo

n>1 n>1 n>1

and therefore P(Ey, i.0.) = 0 by the Borel-Cantelli Lemma. Together with (4.5) this gives
the desired conclusion.

(ii) « > 2. In this case, from (3.4) we have for any 6 > 0, z5, s5 > 0 such that

Yz > x5 and s > ss
P* (X, >z) > F(2)e~ @@ +12)(1+5),
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Therefore there exists ¢. and s, > 0 and a constant y; > 0 such that for any
z € [-M, M],
PH(X, 2 (1 - e)au) 2 fle)eOe/Nms

for all ¢t > t., s > s..
Thus, there exists t. > max{t,,s.} such that

M oo
EN}[(1 —g)xy,00) = Ce”/ / e 2 P*(X, > (1 —€)z¢)ds
-MJo

> oo/ [ " femd) [ eornas
> A EA/2 - -
for all ¢ > t., and some constant A4 > 0, so for all t > t.,
P(R: < (1—&)zy) < =A™, (4.7)

Now define a sequence of times ¢, T co by marking all integers m > 1 and also points in

[m,m + 1] with spacing 1/m. Then, from (4.7)

Z .P(R;‘ﬂ < (1 _6)$tn) < E Z e_A4eeAtn/2

tn>te m>t. m<tn, <m+1

_ eAm/2
< _S_ me~A4¢ < 00.
m>ie

Therefore, by the Borel-Cantelli Lemma,
P(R; < (1—¢)zs, i.0.)=0. (4.8)

Next, let U, be the number of PTW particles whose positions at time ¢n41 are to
the right of (1 — a)mtn .. and whose positions are to the left of (1 — &)x4,,, some time in
[tn,tnt+1). Then Uy is a Poisson random variable with mean

tn+1
EU, = / [ 0P Kuppums > (= /Dot
-M J—c0
Xis < (1 —¢)xt,,, forsome te€ (tn, tnt1))dsu(dz)

< Ot P9 (| max > (1= Pze) w(-M,M)
S85tn417"tn i

2
_ 62 ztn 1
< AT (49)

for all tp41 > te, for some t, > 0, and some A5 > 0. Now let E! =(R} . >(1—¢/2)2t,4,

R} < (1 —¢)z; for some t € (tn,tn+1)), then

S P(E,) <Y P(Ux >1)< Y EU,.

n>1 n>1 n>1

tnt1
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Now,

e2c2 4/2+4a
Yoy Y el

tny1 >t m>t. m<tpp1<m+1
2,2
< Z AsmeA(m"‘l)_%‘mHﬁ;
m2>t,
< 00.

Therefore, > P(E!) < oo, and by the Borel-Cantelli Lemma once more we have
n>1
P(E! i.0.) = 0. Thus for any ¢ > 0 with probability 1 there exists ¢, such that
R >(1—¢e)z. Vit 2>t.. O
5. Convergence Results For R,

We use theorems 1’ and 2', and Proposition 1 to establish the main results of the
paper.
Let C > 0 be arbitrary and let R} now denote the right frontier at time ¢ of a

Poisson tidal wave with birth intensity measure C'e*°*3(y)v(dy)dt, where A\g and v are as
in Watanabe’s Theorem.

By Proposition 1, there exists 6 > 0 such that if 0 < § < §y then

P(R; < R} + § eventually |Z < C/2) =1 (5.1)
P(R; > R} — § eventually |Z > 2C) = 1. (5.2)

Proof of Theorem 1

(a) By Theorem 1', given any € > 0,

P(R; < (1+¢/2)z; eventually) = 1. (5.3)

Now for any 6§ < §p and C > 0,

P(R; < (1 +¢)z¢ eventually |Z < C/2)
> P(R: < R} + 6, R} < (14 ¢€)x; — 6 eventually |Z < C/2)
> P(R: < R} + 6, R} < (14 ¢/2)z4 eventually |Z < C/2).

It immediately follows from (5.1) and (5.3) that
P(R; < (1+4¢)z¢ eventually |Z < C/2) =1
and therefore, since C' is arbitrary,
P(R; < (14 &)z eventually) = 1.
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(b) Recall that f;* ®(y)dy = At. Since k(y) T oo as |y| = oo, z¢/t > 0ast — oo. It
is then immediate from (a) that R;/t — 0 a.s. as t — oo.

Proof of Theorem 2

It is sufficient to show that lim R;/z¢ > 1 a.s. since k satisfies the conditions of
t—o0

Theorem 1. From Theorem 2', we have for any ¢ > 0,
P(R} > (1 — £/2)z; eventually ) = 1. (5.4)
Now for any positive § < g,

P(R; > (1 — €)x¢ eventually |Z > 2C)
>P(R:>R;—6,R; >(1—¢)ze+6 eventually |Z > 2C)
> P(R; > R — §, R} > (1 —¢/2)z; eventually |Z > 2C).

Therefore, by (5.2) and (5.4), for any C > 0 we have
P(R; > (1 — &)z eventually |Z > 2C) = 1.

The desired conclusion follows. O
6. Coupling Argument

Before proving Proposition 1, we prove an analogue of Watanabe’s theorem for Poisson
tidal waves. Let, 8(y), k(y), Ao, Yo and v be as in Watanabe’s theorem. Consider a
PTW with birth intensity measure Ce*o*8(y)v(dy)dt and killing rate function k(y), where
(t,y) € R? and C > 0is a constant. Recall that the support of 3 is assumed to be contained
in [-M, M] for some M, v(J) = [;¢o(y)dy for any J € R, and that N} (J) denotes the
number of PTW particles in J at time .
PROPOSITION 3: If J is a bounded interval, then N (J) ~ Ce**v(J) a.s. as t — oco.

PROOF: Nj(J) is a Poisson random variable with mean

t M
ne =m(J) = /_ /_ N Ce** P*(Xy_, € J)B(2)v(dz)ds
M t—s
B / | / Cer B (e FEIY(B,_, € 1))B(2)po(2)dzds,
—o0J—-M

where B is standard Brownian motion. Recall that Ao and ¢ are the (leading) eigenvalue
and eigenvector of the differential operator 1D? + § — k. The above expression therefore
reduces to Ce*? [ po(2)dz i.e. e = Ce*oty(J) for all ¢t € R.
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To see this, note that if w(z) = [~ e")‘°’EZ(e_-]; k(B")dul{Bs € J})ds then
(Lw)(z) = —1(z € J), where £ = 1 D2 — Xy — k, and

M M
ne = Cero?t / " w(2)B(2)po(2)dz = —Ce* /_M w(z)(Lpo)(2)dz.

But £ is self-adjoint in L%, so finw(z)(,Ctpo)(z)dz = ff/IMcpo(z)(,Cw)(z)dz =
- fiMM 1{z € J}po(2)dz = —v(J).

Now write N; = N}(J). We prove that Ny ~ n; a.s. ast — oo by producing a sequence
of times 0 < t,, T oo such that

(i) N, ~ s, a.s. as n — oo, and

(i) for any € > 0, with probability 1 the events

F,=Fs={N;, <(1+¢/2)nt,, Ne> (1+¢€)n; for some t € (tp,tn+1)} and
Gn =G, ={N¢,,, > (1 —¢€/2)t,4,, Nt <(1— &) for some t € (tn,tn41)}
occur at most finitely often. This finishes the proof of the Proposition.

Suppose we define {t,}n>1 by marking points in Z*, and also points in [m,m + 1],
m € It by sub-dividing it into m equally spaced intervals. Thus if [t,,tn41] C [m,m + 1]
then t,41 — tn = 1/m.

We show now that this sequence satisfies (i) and (ii). First, since N; is Poisson with
mean 7¢, for any € > 0 we have

—Xotn —dom

B < 2, -\ ¢ " < i
2 PN = mal > ene) € 3 1/eMm0 = D 7y < X cagyr) <

n>1 n>1 n>1 m>1

By the Borel-Cantelli Lemma, therefore, P(|Ny, — nt,| > €me, 4.0.) = 0. Thus with
probability 1 there exists n. > 0 such that |Ny, /ns, — 1| < € for all n > n..

Next, by Lemma 9, proved below, there exists constants #, 6 and Ay such that

7}
P(F,) < exp {_Zeﬂtn + {4(1 — ¢(8/\/tnt1 — tn)) + eXUnt17) 1340 (1 + 5/2)9%»} :
and

P(G,) <exp {—%ntm + 44, (1 - ¢ (5/\/tn+1 - tn)) (1 + %) 977t,,+1} )

where ¢(z) = [° %Z—zdy.
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Suppose [tn,tn4+1] C [m,m + 1] and m > m. where m. is large enough that

(14 €/21{4(1 — $(6//Fr1 = ) + elotit)%0 1} 4,
= (1+6/2){4(1 — $(8v/m) + /™ — 1)

<

ool ™

Then
P(F,) < e < e—%‘nm,

P(Gn) < e—o_;m""'l < e—o—gnm-
Thus, recalling that 7,, = Cv(J)e**™, we have

YPE)=Y Y PE)< DY Y PE)I+ ) me~ % < oo

n>1 m=1 m<t,<m+1 m<m, m<t, <m-1 m>m,

Similarly S P(Gr) < co. Therefore, by another application of the Borel-Cantelli Lemma,
n>1
we have P(F, i¢.0.) = 0, and P(G, t.0.) =0. O

LEMMA 9. Fix ¢, s and € > 0, and define events

F={N;<(1+4¢/2)nt, Ny > (1+¢)n, for some u € (t,t + s)},
G = {Nego > (1 —€/2)0t4+s, Nu < (1 — &), for some u € (t,t 4 5)}

Then there exists constants 6, § and Ay such that

P(F) < exp {—% + (4(1 — $(6//3)) + e** —1)A06(1 + 6/2)} ul’

P(G) < exp {5+ 4(1 - 85/ VE) 081 + o/2)} e

PROOF: Let Y be the number of PTW particles which enter J some time during (¢,t+ s]
but were either in R\ J at time ¢ or were not in existence at time ¢, and let W be the number
of PTW particles in J at time ¢ 4+ s which were outside J sometime during [t,? + s).

We prove the Lemma in 3 steps.

(1) There exists § > 0 such that
(a) P(F) < e~ 100 4e/DBY,

(b) P(G) S e—-e—z,in¢+,+0(1+e/2)EW.
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Proof: We use Chebyshev’s exponential inequality. For any 6 > 0,
P(F) < P(N; < (14+¢€/2)n¢, Ny > (14 €)ny for some u € (2,1 + 5))
S P(Ne<(1+¢/2)n, Ne+Y > (L +e)ne)
< P(Y >ent/2)
< e—"—;mE(eoY) — e—lzsm+(e"—1)EY,

and
P(G) < P(Ntys > (1 —€/2)0t4s, Nu < (1 —€)neqs for some u € (¢, + 3))
< P(W 2 enets/2)
S e—%ng+,+(ea—1)EW-

Now choose 8 such that e — 1 = (1 + (¢/2))6.
(2) There exists constants § and Ag such that

EY < ne{440(1~ §(8/v/5)) + Ao(e*** — 1) +¢/6}
Proof: - Suppose J = [a, b] for some finite constants a,b. Let § > 0 be arbitrary, and
define J§ = [a — §,a) U (b,b + §].
Now Y = Y 4+ Y2 where YV is the number of PTW particles in R\J at time

¢ which enter J during (¢,t + s], and Y is the number of PTW particles born during
(t,t + s) which enter J before t + s.

If X is the trajectory of a single particle, then for any « > 0, v > 0 and z € R,

P*(X, & J, X, € J for some r € (u,u +v))
= P*(X, >b+6, X, <bfor somer € (u,u + v))
+ P*(X, < a—6, X; > afor some r € (u,u +v))

+ P*(X, € J?, X, € (a,b) for some r € (u,u + v))
< P(max By > 6)+ P( min B, < —6)+ P*(X, € J{)
0<r<v 0<rv

=4P(B, > 6) + P*(Xy € J}).

Therefore,

M t
EY® = / / Cerot P? (Xt—u & J, Xr—y € J for some r € (s,t + s)) B(z)duv(dz)
—M J—o0 i
M 1
<4CP(B, > 6)/ / e B(z)dsv(dz)
-MJ—-c0

M t
Aot pz 8Y3(2)dsv(dz
+/_M/_ooCe P*(Xt—u € J1)B(2)dsv(dz)

M
(% /_M ﬂ(z)u(dz>) e**P(B, > §) + Ce'v(J})
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Define A9 = (1/Aov(J)) fiv[M B(z)v(dz), and choose 6 such that v(J{) < ev(J)/6.
Then we have EYt(l) < (440 P(B; > 6) +€/6)ns. Finally,

M t+s
EY® = / Ce**P*(X,—, € J for some r € (u,t + s))B(z)dsv(dz)
-MJt

<(£) [ ptemiaepens e = o = 1.

(3) EW < ny(4Ao(1 — ¢(6/+/5)) + €/6) where Ao and § are as in (2).

Proof: Suppose J = [a,b] as before, and suppose the & chosen in (2) is small enough
that § < 25¢ and v(J{) < ev(J)/6 where Ji =la,a+ &)U (b—6,0b].

Write W = WO + W® where WO and W are the number of PTW particles in
[a + 6,b — 6] and in J{ respectively at time ¢ 4 s, that were outside [a, b] some time in

[t,t + s). Clearly
EW® < EN}, (7)) = Cv(J)e* () < ene /6,
while
M t+s
EW® = / / Ce**P*(Xiys—u € [a+ 6,0 — 4],
—-M J—o0
X,y € [a,b] for some r € [t,t + 5))B(2)dsv(dz).
Now for any u, v < u, and z € R,

P*(X, €[a+6,b—6), X, & a,b] for some r € (u —v,u))

= P*(X, >a+6,X, <aforsomer e (v —v,u))+
P*(X, <b—§, X, > bfor somer € (u—v,u))

< P(Orél?%{v B, > 6)+ P(O?rigv B, < -%)

= 4P(B, > 6)

Thus

M t+s
EW® < / / 4Ce " P(B, > §)p(z)dsv(dz)
—M J—o0

= 4A4,Cv(J)P(B, > §)ero(t+?)
= 4A0P(B3 > 6)T]t+3 d
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Proof of Proposition 1

Start with a copy of the branching Brownian motion (BBM) and an independent
Poisson process on R? with intensity measure Ce*tB(z)vd(z)dt. This is to be the point
process of births for a Poisson tidal wave which we shall denote as W. Assume that the
same killing rate k() applies to both of the above processes.

An individual particle in the W process executes a killed Brownian motion (starting
at its birth point) independent of the BBM, the birth process and the motions of all other
particles in W, until the instant it is “paired” with a BBM particle, or it dies, whichever
happens first. In the former case, it “shadows” the BBM particle, i.e. follows it keeping
a constant distance, until the latter dies or enters a region where it will be “unpaired”
(specified below). In either case, from the instant it becomes “unpaired”, the W-particle
continues to move until the next time it is paired or itself dies. Note that the changes in
the path of the W-particle happen at stopping times. Thus its movement is a Brownian
motion until the time when it is killed. Thus W is a Poisson Tidal wave.

We have two different pairing laws depending on whether we condition on
(a) {Z < C/2} or (b) {Z > 2C}. The pairing laws are constructed so that in the first
case, a W-particle “shadowing” a BBM particle dies before the BBM particle does, and in
the latter case, survives longer.

We first consider case (a). First, note that no BBM or W- particles are born outside
[— M, M] (which contains the support of 3). Any BBM particle born in [—M, M] is allowed
to wander until it hits 2M. At this instant, it is paired with the closest unpaired W-particle
in [2M — §,2M) if there is one, otherwise it continues moving unpaired. A paired BBM
particle remains thus until it hits 2M — é/2 from the right or it dies, whichever happens
first. In the case of the former, at that instant it is uncoupled from its W-shadow. If
after this time the BBM particle again returns to 2M, it is paired with a Wh-particle (if
available), and so on.

FIGURE 6
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To summarize:

(i) Any unpaired BBM particle hitting 2M is immediately paired with a free
W-particle in [2M — §,2M) (if there is one) and,
(ii) any paired BBM particle hitting 2M — §/2 is unpaired at that instant.

Thus no BBM particles in the region (—o0,2M — §/2) are paired, and we will show
that if 6 is small enough, eventually, all BBM particles in [2M, 00) are accompanied by
W-particles within § of their positions (by showing that (i) happens eventually with prob-
ability 1).

Since such a BBM particle is always to the right of its shadow, its rate of dying is
greater in the region [2M —§/2, 00). We know R; surpasses 2M eventually with probability
1, thus this scheme ensures that R} > R — § eventually with probability 1.

It remains to show that at large time, at the instant an (unpaired) BBM particle hits
2M, we can find an unpaired W-particle in [2M —§,2M) almost surely, for § small enough.

To do this, for any 6 > 0, consider, at such an instant, all the W-particles in
[2M —6,2M) which are already paired. The BBM particles which are the partners of these
W-particles must lie in [2M — §/2,2M + §) (recall that BBM particles in (—oco0,2M — §/2)
are unpaired according to our scheme).

We claim that there exists 6y such that for all § < &, N}[2M — §,2M) >
Ni[2M —§/2, 2M + 6) eventually with probability 1, where N;(J) denotes the number of
Wh-particles in J at time .

Now, by Proposition 3 and Watanabe’s Theorem, given any € > 0, with probability 1
there exists t. > 0 such that for all ¢t > .,

N}[2M — 6,2M) — N¢[2M — §/2,2M + 6)
> (1—€)Cv[2M — 6,2M)e*" — (1 + €)Zv[2M — §/2,2M + 6)erot

Recall that v(J) = f; o(z)dz where g is continuous. Fix ¢ > 0 and let 6o > 0 be
such that |¢o(2M) — @o(2z)| < € for all z € [2M — §,2M + &]. Then for all § < &,

v[2M — 6,2M) > (po(2M) — &)
and 35
v[2M — §/2,2M + §) < (po(2M) +€)(6 + 6/2) = ?(¢0(2M) +e).
Also, we are conditioning on Z < C/2. So for all ¢ > ¢,

NI[2M — §,2M) — N¢[2M — §/2,2M + 6)
> {(1 - &)(po(2M) — ) — 3/2(1 + €)(1p0(2M) + €)}Cse™*

> 2 {po(2M) — Te((po(2M) + 1)} Coe**
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Since we can choose € < 7—&%”%_—1-5, we conclude that with probability 1, there exists

T such that at all times ¢t > T, an unpaired BBM particle hitting 2M immediately finds
an unpaired W-particle in [2M — §,2M). Indeed, there is an infinite “surplus” of such
particles as t — oo.

Note that before time T there can be at most a finite number of BBM particles hitting
9M which do not find a W-particle to pair with. These particles will not affect Ry ast — oo
as they will die in finite time.

A complementary pairing scheme can be given in case (b) i.e. when we condition on
(Z > 2C) and have to show that R; > R{ — § eventually with probability 1. We reverse the
roles of the PTW and the BBM in the above argument. Any unpaired W-particle crossing
OM from the left is paired with an available BBM particle within é of it, to its left, i.e.
in (2M — 6,2M), and a paired W-particle crossing 2M — §/2 from the right is uncoupled
from its BBM partner. The rest of the argument proceeds as above.

Finally, note that the pairing scheme is such that for any s > 0, the paths followed by
particles in W born after times s are independent of the positions of particles of W and
the BBM at time s.

33



REFERENCES
[1] Bramson, M. (1978). Maximal displacement of branching Brownian motion. Comm.
Pure Appl. Math., 31, 531-581.

[2] Bramson, M. (1983). Convergence of solutions of the Kolmogorov equation to travelling
waves. Mem. Amer. Math. Soc., 44.

[3] Davies, E.B., and Simon, B. (1984). Ultracontractivity and the heat kernel for
Schrédinger operators and Dirichlet Laplacians. J. Funct. Anal., 59, 335-95.

[4] Donsker, M.D. and Varadhan, S.R.S. (1974). Asymptotic evaluation of certain Wiener
integrals for large time. Proceedings of the International Conference on Integration in
function spaces, Clarendon Press, Oxford.

[5] Erickson, K.B. (1984). Rate of expansion of an inhomogeneous branching process of
Brownian particles. Z. Wahrsch.verw. Gebiete, 66, 129-140.

[6] Fisher, R.A. (1937). The wave of advance of advantageous genes. Ann. Eugenics 7,
355-369.

[7] Folland, G.B. (1989). Harmonic analysis in phase space. Princeton University Press,
Princeton, New Jersey.

[8] Freidlin, M.I. and Wentzel, A.D. (1984). Random Perturbations of Dynamical Systems.
Springer-Verlag, New York.

[9] Kac, M. (1950). On some connections between probability theory and differential and
integral equations. In Proceedings of the 2nd Berkeley Symposium, 189-215.

[10] Karlin, S. and Taylor, H.M. (1981). A Second Course in Stochastic Processes. Aca-
demic Press, New York.

[11] Kolmogorov, A., Petrovsky, L. and Piscounov, N. (1937). Etude de 1’équation de la
diffusion avec croissance de la quantite de matiére et son application a un probleme

biologique. Moscow Univ. Math. Bull., 1, 1-25.

[12] Lalley, S. and Sellke, T. (1987). A conditional limit theorem for the frontier of a
branching Brownian motion. Ann. Probab., 15, 1052-1061.

[13] Lalley, S. and Sellke, T. (1988). Travelling waves in inhomogeneous branching Brow-
nian motions. I. Ann. Probab., 16, 1051-1062.

[14] Lalley, S. and Sellke, T. (1989). Travelling waves in inhomogeneous branchmg Brow-
nian motions. II. Ann. Probeb., 17, 116-127.

[15] Li, P. and Yau, S.T. (1986). On the parabolic kernel of the Schrodinger operator.
Acta Math., 156, 153-201.

[16] McKean, H.P. (1975). Application of Brownian motion to the equation of Kolmogorov-
Petrovskii-Piskunov. Comm. Pure Appl. Math., 28, 323-331.

[17) Watanabe, S. (1967). Limit theorem for a class of branching processes. In Markov
Processes and Potential Theory (J. Chover, ed.). Wiley, New York.

34





