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Abstract

Inference for restricted parameters is often considerably harder than it is for the
unrestricted case. A simple example is the estimation of a univariate normal mean,
when the mean is known to lie in a fixed bounded interval. Levit (1980), Casella and
Strawderman (1981), Bickel (1981), DasGupta (1985) describe a minimax estimator in
this case. The general problem remains unsolved. An alternative to deriving the exact
optimal rule is to use an easily computable rule with very good or near optimal perfor-
mance. Donoho, Liu and MacGibbon (1990) demonstrate that the linear minimax rule
is at most (about) 25% worse than the exact minimax rule uniformly over all bounded
intervals. We consider a Bayesian version of this problem where the unknown mean is
assigned a prior belonging to an appropriate family T' of prior distributions. Using the
criterion of usual minimaxity amounts to allowing all possible prior distributions. We
show that if T is the class of all symmetric and unimodal priors, the linear minimax rule
is at most 7.4% worse than the exact minimax rule, again uniformly over all bounded
intervals. We also consider the high dimensional problem when the unknown mean is
known to lie inside a sphere, and has a spherically symmetric and unimodal distribution.
Key Words: linear rule, Gamma minimax, linear Gamma minimax, Bayes risk, spher-
ically symmetric, unimodal.

AMS 1985 subject classification: 62C20

1 Introduction

It is of a general statistical interest that estimators of unknown parameters be easily
calculable and simple. As a rule, optimal estimators are sometimes not so. For example, in
Bayesian estimation, in case of non-conjugate families of prior distributions, Bayes estima-
tors can be difficult to calculate and investigate. We may instead use non-optimal but easy
estimators, like linear ones, whenever the loss of efficiency, measured by some reasonable
criteria, is small. Donoho, Liu and MacGibbon (1990) prove that in minimax estimation of
a bounded normal mean, use of linear rules will produce a loss of efficiency of at most 25%,
irrespective of the size of the compact bound on the mean. Their efficiency measure is the
ratio of the minimax risks of the linear and plain minimax rules.

*This research was supported by NSF Grant DMS-8923071 at Purdue University.
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We consider the Bayesian version of the same problem. Restricting the class of all priors
on the mean to unimodal and symmetric distributions, we prove the fact that we may lose
at most 7.4% by using nonoptimal linear rules. As a criteria of optimality we compare
corresponding I'-minimax risks.

In the I'minimax approach, the statistician specifies a class T' of prior distributions
on the parameter space and for each decision rule from an appropriate class, calculates
the supremum of the Bayes risk over the family I' and then selects the decision rule that
minimizes the above supremum.

This is attractive as a middle ground between the subjective Bayes setup, which is I'-
minimax for a family of prior distributions containing a single prior, and the full minimax
setup which, as another extreme, is I-minimax for the family of all prior distributions.
Though many Bayesians object to the use of Bayes risk as a measure of performance (since
it contains averaging with respect to the sample space), it is a fact that frequentist measures
do play a role in Bayesian analysis, especially for checking robustness of procedures.

For a nice discussion on the I'-minimax approach and its relation to robust Bayesian
estimation, see Berger (1984, 1985).

Let us consider the problem of estimating a bounded normal mean under squared error
loss, and let X be a single observation from the A/(6,1) distribution where 8 € [—m,m].
No generality is lost by the assumptions that the variance is 1, and that the interval is
symmetric. Restricting the parameter space seems to be reasonable since in real life there
hardly exists an example in which the mean is truly unbounded.

In the case where no more prior knowledge is imposed on 6, the problem has been
studied by Miyasawa (1953), Levit (1980), Casella and Strawderman (1981), Bickel (1981),
DasGupta (1985), and Gatsonis, MacGibbon and Strawderman (1987), among others.

Suppose that, in addition to boundedness, we believe that 6, viewed as a random vari-
able, has a symmetric and unimodal distribution. The properties of symmetry and uni-
modality are very natural in describing our prior knowledge (or prior ignorance) about .
Therefore, let us pose the following model:

X160 ~ N(8,1),
6 ~ m € I',T is the set of all symmetric and unimodal priors on [—m, m], (1)
Squared error loss.

Olman and Shmundak (1985), Eichenauer (1990) and Eichenauer, Ickstadt and Weiss (1991)
have studied the problem of estimating § under model (1) for small values of m.

In addition, let D be the set of all decision rules and Dy, be the set of all linear decision
rules. The rule 6* € D is I'-minimax if

inf sup 7(m, ) = sup r(w,6*) = rr. (2)
8€D rer nel

The quantity rr is the corresponding I'-minimax risk. Similarly, the rule 6§ € Dy, is linear
I-minimax if

inf supr(m,d)=supr(r,67)=rg, 3)
6€DL rer wel
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and the quantity rp, is the corresponding linear I'-minimax risk.

For the family of priors I' as defined above, the ratio p = p(m) = L measures how
good the linear [-minimax rule is, as opposed to unconstrained I'-minimax rule, in terms
of appropriate I'-minimax risks. If we believe in the I'-minimax approach, then it seems
reasonable to use easily calculable linear rules whenever p is close to 1.

Donoho, Liu and MacGibbon (1990) calculate an upper bound on p* = sup,, p(m) for
the class T of all disrtibutions on bounded intervals. They prove that py* (Ibragimov-
Has’minskii constant, as they refer to it) is less than 1.25 and cite the work of Feldman (at
Hebrew University of Jerusalem) who obtained 1.246 < p* < 1.247.

By analytical and numerical considerations we establish a similar uniform upper bound
on p when T is the class of all symmetric and unimodal distributions. It turns out that
linear I'-minimax rules in this case are more attractive since p* < 1.074. One can do even
better. The bound for p* of (approximately) 1.045 is obtained by replacing linear rules with
truncated linear rules, i.e. with rules of the form:

—m, r< -2
— m m
Oa,m(z) = ar, -Z<z<7
m
m, 2>

These necessarily take values inside the parameter space, unlike linear rules.

Any linear rule in this problem has the disturbing property that it is bound to assume
values outside of the parameter space. Our calculations in the paper show that this can
happen with the probability as large as 50% in the worst cases. With this in mind, we also
consider the problem of deriving the linear I'-minimax rule under the additional constraint
that the estimate belongs to the parameter space with a prescribed probability of 1 — «, for
all  in [-m,m], where 0 < & < 1 is any fixed number. Clearly, this leads to a larger loss
of efficiency. But we prove that this is not much. Thus linear estimates can be chosen that
they are inside of [—-m, m] with a large probability, these are still easily calculable, and yet
the loss of efficiency is still typically small. This is atffactive.

Motivated by the calculations in Ghosh (1964), we next consider the problem of deriving
the I'-minimax rule in the class of polynomials of a specified degree n, n any finite positive
integer. The general problem is formulated, and the cubic case, in particular, is solved
explicitly. In the process, we make some novel applications of canonical moments. This is
of some independent theoretical interest.

The multivariate case, naturally, is even more important and interesting. Here, we let
the unknown mean belong to a sphere of radius m, and assume that the prior is spherically
symmetric and unimodal about the center of the sphere. The linear I''minimax estimate
is derived in closed form, and analogous bounds on the loss of efficiency are derived. The
argument here involves interesting uses of the multivariate Brown identity and calculations
with the multivariate Bickel prior and induced marginal distributions. As in the univariate
case, we again address the issue that linear estimates can go outside of the sphere in which
the mean is assumed to lie and find new linear estimates which stay inside the sphere with
prescribed probabilities and still keep the loss of efficiency within reasonable to very good
bounds.

Sections 2 and 3 deal with the derivation of the linear I'-minimax rule together with
its efficiency calculations. Revised linear rules under probability constraints are derived in
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Section 4. Section 5 discusses a number of modifications in the lines of Donoho et. al. In
Section 6, polynomial rules and the corresponding theory are presented. Sections 7 and 8
address the multidimensional case. We would like to point out here that even though the
results in the multivariate case are similar in spirit to those in the univariate case, due to
the simple fact that one dimensional problems are easier to solve, we do have more explicit
results in the univariate case. This is the central reason the univariate case is isolated for
better focus and understanding,.

The main message of this article is that easily computable rules can be verifiably near
optimal according to standard criteria, in which case it is reasonable to use these instead
of pursuing computationally hard exact optimal rules.

2 Linear I'-minimax rule

If we restrict the decision rules to the class of linear rules of the form §(z) = az + b,
then the linear I'-minimax rule and its risk is given by the following theorem.

Theorem 2.1 In the model (1), the linear I'-minimaz rule is

5(X) = —_x 4
LX) =— 3% (4)
with the corresponding I'-minimaz risk
2
m
TL = m? + 3’ (5)

Proof: First,in a rule §(z) = az + b the constant b can be dropped, since the symmetry of
the prior distribution of @ implies

E°R(6,aX +b) > E°R(8,aX).

We will use the fact that any symmetric and unimodal random variable # has the
representation

9=U2Z, (6)

where U is an uniform ¥[-1, 1] random variable and Z is a nonnegative random variable,
defined on [0, m], and independent of U.
The frequentist risk of the linear rule §(z) = az is

R(0,aX) = EXV(9 - aX)? = (a — 1)°6* + a?,
and its Bayes risk with respect to the prior 7(8) € I is

r(r,a) = a®+ (a — 1)2E"¢°.
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Taking into account that EU% = %, EZ? < m?, and the independence of U and Z, we
obtain

sup r(m,a) a? + (a — 1)* sup E¢?

= a’+(a-— 1)2%sup EZ?

2
m
= a®+(a- 1)2?, (M)
and the infimum of (7) over a is achieved at a = mT—:_S Therefore, the linear I'-minimax
rule is 67 () = mT—j_?’z , and the corresponding I'-minimax risk is
m* 3 g m?

O (8)

ro(m) =infswpr(r.a) = T e iy e ™ T mE 43

Remark 2.1 The following secondary fact is interesting: the normal N (0,’”?2) prior on
the whole real line yields the same Bayes rule, and uniformly in m, gives the probability
of 0.9164 to the interval [-m,m]. This prior with unbounded support can be viewed as an
“approzimation” to the whole class T.

3 TI'-minimax risk

Let us define sup,pinfsep r(m,8) = super 7(7) (=r). In general, rr > r holds, and
one of the results of this paper is the proof of the fact rr = r, i.e. that the corresponding
statistical game has a value. The motivation for the above interchange of inf and sup is
that it is the one of the principal ways to obtain Iminimax solutions. When the decision
problem, viewed as a statistical game, has a value, then the Bayes solution with respect
to the least favorable prior and the I'-minimax solution coincide, and we can use the more
powerful mathematical machinery of the dual problem.

Ghosh (1964), using a Hilbert space approach, derives a sequence u,, of estimators that
approximate the I'-minimax estimator when T is the class of all distributions on [—m, m].
The risks of estimators u,(z) = 3.7, an;2%~! tend to the risk of the I-minimax estimator
uniformly on [—m, m]. For small values of n, Ghosh derives the values of a,; explicitly.

Kempthorne (1987) gives conditions under which a more general statistical game has
a value, proving that the support of the least favorable distribution is discrete and finite.
He also gives a sequential algorithm for obtaining an approximation to the least favorable
distribution of the underlying statistical game.

The following theorem gives an exact form of I'-minimax rules in our setup.

Theorem 3.1 Under the statistical model (1), the corresponding statistical game has a
value

inf 6) = inf = .
ggpilélgr(w, ) ilélgggpr(w,ﬁ) (o, bg)
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The least favorable prior wy is a finite linear combination of uniform distributions and the
point mass at zero,

7o(8) = aol(0 = 0) + 3 5(;%_'1(—77%' <6 <m),
t=1 2

n
O<m <...<my =m, aiZO,Zaizl; (9)
=0

the corresponding marginal density of X is

a;

(z) = aod(®) + 3 Z(B(z + my) — B(z - my)), (10)
i=1

— 2m;
and the Bayes rule §o(z) = z + %f)l has the form

_ aoeg(z) — 3y aa (e + mi) — ¢z —mi))
aop(z) + Lic1 5 (B(z + M) — O(2 — ™))
(: 6(w;0’a0am17a17'--amn’an)); (11)

bo(z) ==z

Furthermore, 8y is T'-minimaz.

The proof of Theorem 3.1 is given in the Appendix.

Remark 3.1 Differing from the linear case, the ezplicit T-minimaz solutions for general
m seem to be intractable. Regardless of the fact that we know the form of the solution,
the ezplicit expressions of the parameters a; and m; as functions of m, are unknown. The
number n of uniforms in the least favorable distribution clearly increases with increase of
m, but an explicit relationship is also unknown. Numerical evidence suggests that the point
mass at zero alternatively comes in and out of the least favorable distribution with increase
of m.

In estabilishing an upper bound on p(m), we consider small, moderate and large values
of m separately.

3.1 Small m

For small m, the I'-minimax rule is Bayes with respect to the uniform U[—m, m] prior.
This is a special case of a more general result proved in DasGupta and Delampady (1990).
Namely, when T is the class of all spherically symmetric and unimodal distributions on the
p-dimensional ball X,(0, m) of radius m, then §,, the Bayes rule with respect to the uniform
distribution on the entire ball ¥,(0, m), minimizes sup,,cp (7, ), provided the risk function
R(6,6,) is subharmonic. Subharmonicity (convexity in one dimension) is sufficient for the
uniform U[—m, m] distribution to be least favorable. To search for the value of m (mg, say)
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until which a least favorable distribution remains uniform, we need to inspect the shape of
the function

R(z,60) = 51; (8, 60)d0 (12)

where R(,6g) is the frequentist risk of §g = 6(z;0,0,m,1), the Bayes rule with respect
to the U[—m,m] prior. As long as R(m,6y) > R(z,6p), holds for z € [0,m), the least
favorable distribution remains uniform on [—m, m] (See DasGupta and Delampady (1990)).
Numerically we establish that the above inequality holds if m < mg = 2.532258.

The Brown identity (See Appendix) in the univariate case has the form

_ * (m'(z))*
r(r)=1 /_oo m(z) dz, (13)
where m(z) is the marginal density of X.

Theorem 3.1 gives that rp = r(mp), and that the marginal density corresponding to mq
is

_ ®(z+m)— O(z —m)
if mg is uniform on [—m,m]. Combining these facts we establish the following

Theorem 3.2 For m < mg = 2.532258,
1 ($(z + m) — g(z — m))?
=1—-—= dz. 14
=1 m,/o ®(z 4+ m)— ®(z — m) ’ (14)

The expression (14) is much more convenient for numerical work than the integral

e = % / / (6 — 8(2;0,0,m, 1))2(z — 8)dzdd.

Table 1 gives values of rr,rr, and p, for some values of m < mg. The values of p(m)
require numerical evaluation of the integral (14). The following theorem allows us to place
a completly analytic upper bound on p(m).

Theorem 3.3 (Chentsov (1967)) Let X|0 ~ N,(8,1) and let L(9,6) = || — §||2. If = is
the uniform prior on the hypercube [—m,m|?, then

()2 p (1 - ZENy (15)

Corollary 3.1 For any m > 0,
> 1 - 22Rm), (16)

m
and
(m) m (17)
m) < . 7
TS B w1 -

Though the lower bound on the I'-minimax risk (15) holds for any m, it is sharp when
m is small. For example, when m = 1, (15) gives rr > 0.23841, while the exact value is
0.24919.
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Table 1: Values of rr, 1, and p, for small m

m T rL P
0.1 0.0033226 | 0.0033226 1
0.2 0.0131579 | 0.0131579 1

0.3 0.0291260 | 0.0291262 | 1+7 105
0.5 0.0769152 | 0.0769231 | 1.0001

1 0.24919 0.25 1.0032
1.5 0.42184 0.42857 1.0160
2 0.55121 0.57143 1.03668

2.5 0.63895 0.67568 1.05748
2.53226 | 0.64351 0.68127 1.056870

3.2 Moderate m

For m > my, the uniform U[—~m,m] prior is no longer the least favorable and the rule
0o = 6(z;0,0,m,1)is not I'-minimax. Numerical work shows that for 2.5323 < m < 3.2962,
the prior mo(8) = a1(f = 0) + 5-21(—m < 6 < m) is the least favorable for appropriate e,
and the rule g = 6(z;0,a,m,1 — a) is I-minimax. In Table 2 we give values of a,rr,7r,
and p for some chosen values of m.

Table 2: Values of a, rr, r1,, and p for moderate m

m o T T, p

2.6 | 0.01280 | 0.65284 | 0.69262 | 1.06093
2.7 1 0.02910 | 0.66610 | 0.70845 | 1.06358
2.8 1 0.04274 | 0.67870 | 0.72325 | 1.06564
2.9 1 0.05404 | 0.69064 | 0.73707 | 1.06723
3.0 1 0.06335 | 0.70190 | 0.75000 | 1.06853
3.2 [ 0.07665 | 0.72246 | 0.77341 | 1.07052

For 3.2962 < m < m*, the least favorable prior has the form n¢(f) = ﬁl(—ml <0<
ml)-l—lij—n‘il(—m < 8 < m). The corresponding I'-minimax rule is §p = é6(;0,0,my, ¢, m,1—
a). The value of m* is between 4.5 and 5. Table 3 gives values of a, my,rr, 7L, and p, for
chosen values of m. The numbers in the column marked by rr in Table 3.3 for m > 5
are only lower bounds on rr since the prior we used there, mo(6) = lel(—ml <8<
my) + 12_—m°‘1( —m < 8§ < m), is not least favorable. Better bounds can be obtained by using
the prior which is “next” in line, namely a linear combination of two uniform distributions

and a point mass at zero. Specifying this prior is an extremely intensive calculational
problem.
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Table 3: Values of a, mi, rr, 71, and p for moderate m

m m o r Tr p

3.2962 0 0.08137 | 0.73144 | 0.78363 | 1.07135

3.5 0.8819 | 0.10753 | 0.74894 { 0.80328 | 1.07256

3.75 | 1.2675 | 0.13642 | 0.76819 | 0.82418 | 1.07299

1.5897 | 0.17431 | 0.78535 | 0.84211 | 1.07227

4.25 | 1.8324 | 0.20498 | 0.80068 | 0.85757 | 1.07105

4.5 2.0525 | 0.23280 | 0.81440 | 0.87097 | 1.06946
m my o T > TL p <

2.4548 | 0.28175 { 0.83771 | 0.89286 | 1.06583

5.5 2.8523 | 0.32348 { 0.85653 | 0.90977 | 1.06216

3.2615 | 0.35778 | 0.87187 | 0.92308 | 1.05874

4.0980 { 0.41225 | 0.89509 | 0.94230 | 1.05247

4.9660 | 0.45400 | 0.91163 | 0.95522 | 1.04782

3.3 Largem

Another analytic lower bound on rp can be given which is more useful for large values
of m. Levit (1980) and Bickel (1981) have independently shown that under the model (1),
when T is the family of all distributions on [—~m, m], the weak limit of the least favorable
priors, rescaled to the interval [-1,1] is

01(6) = cos?(D) 1(16] < 1).

Fortunately, the prior

9nl0) = —g1(2) = = cos (2 )1(16] < m) (18)

belongs to the family ' of all symmetric and unimodal distributions on [—m,m], and this
fact is used to give estimates of 71 and p(m) for large m, though the Bayes rule with respect
to g, is not asymptotically I'-minimax. Denote by G, the cdf of the density gr,.

To derive upper bounds on p for large values of m, we will use the following two facts:

Theorem 3.4 (Borovkov-Sakhanienko (1980)). Let X have a density pg(z) and let € ©
have a prior density 7(8). Let, further, Z(6) = Eg(%log pg(X))? be the Fisher information
for pg. Suppose that c1{8|w(0) > 0} C int{O}, where cl and int are the closure and interior
of a set, respectively. Under the usual regularity conditions needed for the Cramér-Rao
inequality to be valid, and under the squared error loss, the following lower bound on r(r)
holds:

2

>
_ (0) o E?
where C = fze)dH and D = [ —r5—d6.
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Theorem 3.5 (Huber (1964). Among all absolutely continuous distributions F, with a
density f, supported on the interval [-m,m], the distribution G,, minimizes the Fisher
information functional,

I(F) = (ffl((g)2da:.

L .2
Furthermore, this minimal value is pony

Corollary 3.2

2

rp > 1 =supr(mr)> (20)

m2+7r2'

Proof: When X|0 ~ N(6,1), and 7(8) = ¢gn(8), then C = 1 and D = I(Gn(9)) =
? ? g
f %%:((%ﬁdﬁ. The bound (19), in this particular case, gives (20). O

Corollary 3.3 The quantity p — 1 tends to 0, as m — oo, as fast as ;LQZ— The constant C
can be taken as n2 — 3.

Remark 3.2 A different bound

12+ ¢
m2

supr(r)>1-—
was obtained by Bickel (1981) by using properties of the Fisher information functional.

A sharper lower bound on rp, in fact an improvement of the Borovkov-Sakhanienko
bound, can be obtained by using a result in Brown and Gajek (1990).

Theorem 3.6 (Brown and Gajek (1990)). The bound (20) can be improved as follows:

upr(r) = 1.2 r(G) 2 1= (14 T + )7, (21)

where

4m? [™/2 (sin(t) — 2t cos(t))?
B = / 5 > di.
7T Jo 72 4+ 2m?t cot(t)

For selected values of m, Table 4 gives the values of the bounds (20) and (21), as well as
the corresponding bounds on p. The graphs of the bounds are given in Figure 1. The graph
marked by 1 corresponds to the bound on p obtained by using the Borovkov-Sakhanienko
inequality, while the graph marked by 2 corresponds to the bound gotten by using the
Brown-Gajek improvement.
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Figure 1: Bounds on p
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Table 4: Values of the bounds by Borovkov-Sakhanienko and Brown-Gajek inequalities

m | Bound (20) | Bound (21) | Bound on p by (20) | Bound on p by (21)
6 0.78483 0.80137 1.17614 1.15188
7 0.83235 0.84427 1.13211 1.11612
8 0.86639 0.87511 1.10253 1.09154
10 0.91017 0.91509 1.06670 1.06096
12 0.93586 0.93882 1.04673 1.04343
15 0.95798 0.95951 1.03013 1.02849
20 0.97592 0.97654 1.01705 1.01640
30 0.98915 0.98931 1.00761 1.00744
50 0.99607 0.99610 1.00274 1.00272
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Discussion: It is clear from the preceding results that we have used a variety of methods
to bound the ratio p. For instance, we have used bounds implied by (i) a single uniform,
(ii) linear combinations of many uniforms, and (iii) the Bickel prior. For the single uniform
itself, we have sometimes used a fully analytic bound provided by Chentsov’s inequality and
at other times used the Brown identity followed by a numerical integration of the integral in
(14). On the other hand, both the Borovkov-Sakhanienko inequality and the Brown-Gajek
improvement were used to bound the Bayes risk with respect to the Bickel prior. Each
of these methods can be used, in principle, for any m. However, using the uniform prior
to bound rr for large m is clearly not optimal, because use of the Bickel prior results in
substantially sharper lower bounds in this case. Likewise, the use of the Bickel prior for
small m is not advised. The Chentsov inequality has the aesthetic advantage of being fully
analytic but a numerical evaluation of the exact Bayes risk with respect to the uniform
prior on [—m, m] produces sharper bounds on rp. The ultimate goal of all of this analysis is
to produce the sharpest possible uniform (in m) bound on p, while keeping the derivation
as analytic as possible, using numerical work only as an unavoidable last resort. This calls
for combining the bounds obtained above by various methods in just the optimal way so as
to meet the aforementioned goal. This is done in the following single unifying table that
gives the best possible bound on p for any given m. One can therefore regard Table 5 as the
state of the art, so far as the loss of efficiency due to use of linear rules is concerned. Part 1
of Table 5 contains bounds on p obtained by Chentsov’s inequality. Exact, but numerically
obtained values of p are in part 2. Part 3 is made by using linear combinations of uniform
priors. Finally, part 4 utilizes the Borovkov-Sakhanienko analytic bound on p.

The results obtained in the subsections 3.1, 3.2, and the current subsection 3.3 (small,
moderate, and large m), prove the following theorem.

Theorem 3.7

p(m) < 1.074, for all m. (22)

In other words, if we choose the family T' of all symmetric and unimodal distribution
to describe our prior knowledge about the parameter  and use linear I-minimax rules, the
loss of efficiency with respect to the calculationally hard, exact I'-minimax rules is at most
7.4%. The general shape of the function p = p(m) is given in Figure 2.

4 Probability constraints on linear rules

A somewhat disturbing property of linear I'-minimax rules in our setup is that they
might take values outside the set of possible values of the parameter they are estimating.
In the most extreme case, the probability of §z(z) being outside [—m,m] can be close to
0.5. The fanction

2 3 3

¢(mid) = PX""(ImZn+ sX|Sm)=8(m+ —~6)~ &(-m— — —0)
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Table 5: Unifying table

m | _p<
1| 0.1 | 1.00066
0.2 | 1.00263
0.3 | 1.00581
0.5 | 1.01528
0.8 | 1.03454
1 1.04863
1.2 | 1.06236
21 1.2 | 1.00702
1.5 | 1.01595
2 1.03668
2.5 | 1.05748
3| 2.8 | 1.06564
3 1.06853
3.2 1 1.07052
3.5 | 1.07256
3.75 | 1.07299
4 1.07227
4.5 | 1.06946
5 1.06583
6 1.06874
7 1.05247
8 1.04782
10 1 1.04147
41 10 § 1.06690
11 | 1.05540
12 | 1.04673
15 | 1.03013
20 | 1.01705
50 | 1.00274
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~375

Figure 2: The function p = p(m).

is decreasing in |6, for fixed m, and hence
3 3
m‘9ax§(m|0) =®(m+ E) - ®(—m — ;) = £&1(m) (say)
: 3 3
momf(m|0) = Q(E) - ®(—2m — E) = £&(m) (say).

The function £2(m) has the limit 0.5, when m — oo.

A related natural problem is to derive an upper bound on the loss of efficiency by using
a linear rule that belongs to the parameter space with a prescribed probability of at least
1 — a, uniformly in |8] < m. The following theorem is useful in this regard.

Theorem 4.1 The rule 6, ,(x) = ca, where

- (5t v (%)

is T-minimaz in the class of linear rules az which satisfy PX1¥(JaX| < m) > 1—a, V|| <
m. Here a A b is the minimum of a and b, and F~*(1 — a) is the (1 — a)th quantile of the
noncentral x* distribution with one degree of freedom and parameter of noncentrality m?.
The corresponding I'-minimaz risk is

m2

TL,a :C2+(1—C)2 3

(24)
Proof: Let us restrict our attention to only those linear rules for which

moinPXIB(|aX| <m)>1-oc.
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Due to the monotonicity of PXI(JaX| < m) in |0|, for fixed m, the above constraint is
equivalent to

PXIm(laX|<m)>1-a«w 0<a<ag, (25)

where
m

The problem of determining the I''minimax linear rule in this subclass then amounts to
maximizing a? + (a — 1)2% for 0 € a € ag. The assertion of the theorem now follows
immediately.

(26)

Table 6 gives the slopes of the linear rule for @ = 0.1,0.05 and 0.01, for different values
of m. In the case when the slope ¢ differs from ;n%—j_—g, the corresponding linear I'-minimax
risk as well as an upper bound on p are calculated. The next three theorems characterize
the behavior of

e

Theorem 4.2 p — 1, as m — 0.

Proof: Easy.

Theorem 4.3 p — 1+ 3{%, as m — oo, where zy is the (1 — a)th quantile of the standard
normal distribution.

Proof: It is well known (see, for example, Johnson and Kotz (1970), p.141) that

P(nex}(m?) < 2) = & )+0(-0), (21)

T — p—m?
V2(p +2m?)
uniformly in z, for any fixed p. This immediately implies that ¢ converges to 1, as m goes to
infinity. The same uniform approximation gives after a little work that (1 — ¢)m converges

to z4. Together, these imply that rr , converges to 1 + ﬂ;l Since rr converges to 1, as m
goes to infinity, the theorem is proved. O
Finally, the following analog of Theorem 3.7 holds.

Theorem 4.4 Forany0<a <1,
TLa
T

p =
is bounded, uniformly in m.

Proof: Follows from Theorems 4.2 and 4.3, and the fact that p is a continuous function of
m, for any a.

Remark 4.1 An analog of Theorem 4.4 holds in the full minimaz case (Donoho, Liu and
- MacGibbon setup ) also. The proof is almost the same. Finding uniform upper bounds on p
~ for different values of « may be a project of separate interest.
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Table 6: Slopes, risk, and p of restricted linear rules

m a=01la=005|a=0.01
2 c 0.54872 | 0.46228
TLo 0.57263 | 0.59922

p 1.03886 | 1.08710

3 c 0.70068 | 0.64588 | 0.56324
Lo || 0.75973 | 0.79337 | 0.88952

P 1.08239 | 1.13032 | 1.26730

4 c 0.75735 | 0.70861 | 0.63228
TLo || 0.88760 | 0.95497 | 1.12095

p 1.13020 § 1.21598 | 1.42733

5 c 0.79598 | 0.752462 | 0.68247
Lo || 0.98045 | 1.07682 | 1.30598

p< || 1.17039 | 1.28543 | 1.55899

7 c 0.84525 | 0.80973 | 0.75056
TLo || 1.10558 | 1.24697 | 1.57959

p < | 1.23516 | 1.39312 | 1.76473

10 c 0.88640 | 0.85875 | 0.81127
TLo || 1.21585 | 1.40252 | 1.84545

p < | 1.33585 | 1.54094 | 2.02760

20 c 0.93978 | 0.92401 | 0.89503
Lo || 1.36670 | 1.62378 | 2.27024

p < || 1.40042 | 1.66385 | 2.32626

50 c 0.97501 { 0.96815 | 0.95553
TLeo || 1.47106 | 1.78267 | 2.56102

p < | 1.47682 | 1.78965 | 2.57105

100 c 0.98735 | 0.98382 | 0.97726
TLo || 1.50827 | 1.84054 | 2.67873

p < i 1.50975 | 1.84235 | 2.68136

250 c 0.99490 | 0.99346 | 0.99078
Lo || 1.93170 | 1.87804 | 2.75265

p< | 1.53193 | 1.87832 | 2.75306

1000 c 0.99872 | 0.99836 | 0.99768
Lo || 1.54348 | 1.89326 | 2.78950

p < 1.54350 | 1.89328 § 2.78953

16
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5 Truncated linear I'-minimax rules

The fact that linear rules in a bounded parameter estimation problem necessarily take
values outside the parameter space, as was elaborated in the previous section, leads us to
consider modifications to linear rules.

Thus, for instance, take the truncated linear I'-minimax rule:

3
_’Zn’ "I"S_ ~m

m(z) = P ~m-2<z<m+3
m, a:Zm—l—%

This estimate lies inside [—m, m] with probability 1 for all #. Calculations in the lines of
Section 2 give that the loss of efficiency in comparison to the exact I'-minimax rule is now
at most 5.7%, uniformly in m. Of course, it is obvious that due to truncation the loss of
efficiency will be smaller than in the untruncated case. This 5.7% bound is not hard to
obtain.

One can do even better. Take any linear rule ez, and truncate it in the obvious way:

—-m, z <~
6ﬂ,m(m) = ar, —4 <z S ﬂ
m, x> ’—Z—

Then, for any given m, there exists an optimal choice of a in the sense of this article (it is
not —5 +3') This involves a moderate amount of calculational complexity. In any case, the
efﬁc1ency calculations can be done again, and now it can be shown that the loss of efficiency
is at most 4.5%, uniformly in m. Considering that it is a rather feeble improvement on the
rule described above, it is perhaps a waste of time to try to use these rules as competitor to
the exact I-minimax rule. We refrain from giving the technical details in these two cases
because the calculations are largely similar to those in Section 2.

6 Polynomial ['-minimax rules

The results in Section 3 show that the loss of efficiency due to the use of linear rules is
at most 7.4%, uniformly over all compact intervals. This will naturally improve even more
if one considers polynomial rules, of which linear rules are a special case. In this section, we
formulate the general problem and work out the details for the cubic case. In the process,
some interesting use of canonical moments is made.

Let D,, denote the class of all polynomial rules of the form

on(z) = Zaizi,n € N.
1=0

As an indirect consequence of the result of Ghosh (1964), exact I'-minimax rules can be
approximated arbitrarily close by I'-minimax polynomial rules. The polynomial I'-minimax
rule (i.e. when the infimum in (2) is taken over D,,) is skew-symmetric,i.e. ag=az=...=
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ajz = 0. Define ¢ = (a1,as,...,a2+1) and y = (z,2%,2%,...,2%FF1) where k = [251].
The frequentist risk of §,(z) = @'y is:

R(6,6n(2)) = (6 — d'Ey)’ + ¢'Zg, (28)

where ¥ = Cov(y,y). The quantities Ey and ¥ can be expressed through Chebyshev-
- - 2
1 _—

Hermite-like polynomials of 8. Let ¢(z) = \/—z—re‘zz ,and D = %. The polynomials defined
as

(=D)"¢(=)
¢(2)

are the usual Chebyshev-Hermite polynomials. Define now

H.(z) =

Qn(z) = iian(i;v). (29)

If tr = Qx(#) , then
Ey= (1,835 o> t2kt)

and )
ta — 11 lg — tits coo topgo — titok4
5 ty — 13ty s — 13 voo togga — ta3tok41
toky2 — toks1ts  fokid — foktils ... faky2 — topyq

By simplifying (28) we get
Theorem 6.1

R(6,d'y) = E a’ty; + 22 Zi,jeokﬂ.qaiajtiﬂ - 260 Z ait; + 6%, (30)
1€0y i€O0y

where O = {1,3,5,...,2k + 1}.

6.1 Cubic I'-minimax rules

In finding the minimax solution we can interchange the sup and inf, since the
corresponding statistical game can be formulated as a finite S-game and therefore has a
value. Therefore to find the polynomial I'-minimax rule we first minimize E™R(#,a’y) with
respect to a, for fixed 7, and then maximize with respect to 7 € I'. For a fixed %, the least
favorable distributions are linear combinations of at most k + 2 uniform distributions, if
we consider a point mass at zero as a degenerate uniform distribution (See Blackwell and
Girshick (1954)).

We will elaborate the case n = 3 in detail. Larger values of n differ from the case n = 3
only by the amount of calculational complexity.
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Theorem 6.2

sler}Dfn :gg r(m,6) = (31)
2ABCDE + AB?E? — AC*D? — A2CE? + B2CD? - 2B®DE
sup AV + F,
0<p1.p2,p3<1 (AC - B?)

where

1
= §m21/1 +1,

= %m‘iz/z +2m2n + 3,

1
= —7—m6u3 + 3mtys + 15m2y + 15,
1

—m21/1,

3

1
= gm‘lz/z + m?yy, and

1
= —m21/1,

3
and v; = vi(p1, p2,ps3) are as in (63).

5 I < B~ R O B = R N
i

Proof: Let
03(z) = (a1, a3) ( ;3 ) = a1 + asz>.

Then

_ 4 0 2 7 1 302 + 3
= a2(6% + 1) + 2a1a3(6* + 66% + 3) + a3(6° + 156* + 456° + 15)
~2a,0% + —2a3(0* + 36%) + 6°.

If we take the expectation of R(0,§3(z)) with respect to 0, and use the representation
(6) to replace E8™ with n—l_{_l-EZn, we get

7'(7[',(53) = Aa% + 2Bajaz + C’a% —2Day, —2Fa3 + F,

where v; is the i-th moment of W = £ ¢ [0, 1].
Minimizing r(7, 83) with respect to a; and as first, we get, by standard calculus argu-
ments, that the minimum

9ABCDE + AB*E? — AC?D? — A’CE? + B*CD? — 2B°DE
(AC — B?)z

r(m,83) =

+ F,

is achieved for the rule 6% = a¥z + a%z>, where

a*_DC—BE nd a*_AE—BD
1™ AC - B2 3T AC-B?°
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To maximize r(m, %) with respect to the moments 14, v5, and v3 of the random variable
W, we will employ the canonical moments (see Appendix). Expressing v;’s through canoni-
cal moments, as in (63), we transform the original extremal moment problem with complex
boundary conditions, to an equivalent problem where boundary conditions on py, p2, and ps
are independent and simple. As a matter of fact, we then perform the maximization over
the unit cube [0,1] x [0,1] x [0,1]. O

The numerical maximization ( IMSL routine for constrained maximization DBCONF
was used) gives that only two types of distributions can be least favorable in the cubic
I'minimax problem. For m < 2.7599, the maximizing p, is equal to 1, which corresponds
(regardless of p; and p3) to the uniform U[—m,m] distribution of §. Some values of m <
2.7599, and the corresponding values of af, a3, rc, :—1? (where r¢ is the I-minimax risk of
the cubic rule 6%), are given below.

Table 7: Values of coeflicients for the cubic rule and corresponding p

m ay al rC re/rr
0.3 | 0.02962 | -0.00016 } 0.029126 1
0.5 | 0.08023 | -0.00102 | 0.076915 1

1 10.28032 | -0.00777 | 0.24922 | 1.0001
1.5 1 0.50624 | -0.01597 | 0.42241 | 1.0014
2 | 0.69311 -0.02 0.55315 | 1.0035
2.5]10.82672 | -0.02 0.64193 | 1.0047
2.710.86704 | 0.01928 | 0.66862 | 1.0038

If m > 2.7599, then the maximizing p; is strictly less than 1, p, is equal to 1, and
p3 is arbitrary. This corresponds to the least favorable distribution of # which is a linear
combination of the uniform ¥[—m,m] and a point mass at zero, i.e. mo(#) = a6({0})+ (1 —
a)s=1(-m < 8 < m).

The cubic rules perform very well. Some bounds on r¢/rp (for moderate m) in Table
8 are not sharp, and we think that the cubic rules are at most (about) 1% worse than the
plain I-minimax rules. The drawback is the calculational complexity of such rules. Also,
even though the loss of efficiency improves further from the linear case, cubic and other
polynomial rules can badly suffer from taking values outside of the parameter space.

7 Multidimensional problem

Considerably harder and more numerically intensive but even more interesting is the
multidimensional analogy of the problem. Let us consider the following model:

X160 ~ MVYNy(8,1),
g ~ m € T' — the set of all spherically symmetric and unimodal priors on |6} < m, (32)
Loss L(8,6) = 16 — ]
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Table 8: Continuation of the previous table with values of point mass at zero

ay aj} a=1-pm rC re/rr
0.87906 | -0.01845 0.01011 0.68054 | 1.0027
0.88499 | -0.01581 0.05447 | 0.70300 | 1.0015
0.89928 | -0.01080 0.13326 | 0.75217 | 1.0043
0.91228 | -0.00748 0.18379 | 0.79215 | 1.0087

ay al a=1-m TO ro/rr <
0.93347 | -0.00379 0.24253 | 0.85037 | 1.0151
0.94885 | -0.00207 0.27412 | 0.88861 | 1.0192
0.96793 | -0.00075 0.30535 | 0.93256 | 1.0228
0.97835 | -0.00033 0.31976 1 0.95526 | 1.0177
12 | 0.98451 | -0.00016 0.32758 | 0.96831 | 1.0147
15 | 0.98984 | -0.00007 0.33398 | 0.97938 | 1.0116
20 | 0.99417 | -0.00002 0.33895 | 0.98825 | 1.0094
50 [ 0.99905 | -5.82 10~° 0.34428 | 0.99809 | 1.0020
100 | 0.99976 | -3.65 10~3 0.34513 | 0.99952 ~1

w o
o|w|o|o| S|~ w3

7.1 Affine ['-minimax rules
Let us consider the set of affine rules
D ={AX, A any p X p matrix}.

We prove the following theorem which is the multivariate analog of Theorem 2.1. In the
following, ||A||?> denotes trA’A.

Theorem 7.1 The affine I'-minimaz rule is

LX) = — X (33)
with the risk
2
pm
= — 4
= (34)

Proof: Any spherically symmetric and unimodal random variable 6, restricted on the p-
dimensional ball ¥,(0, m) of radius m, can be represented as a product UZ, where U is
uniform on the unit ball ¥,(0,1), and Z € [0, m] is an arbitrary univariate random variable
independent of U. The density of U is

_IGE+1)
- 2

T2

u(9)

1(/lell < 1)-

Straightforward calculation gives that

EUU' = LI.
p+2
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Now, the frequentist risk of the affine rule AX is:
I(A - Defl* + 1| A4]?

and hence,

supr(r, AX) = + [ AI%,

for any A. By standard matrix calculus, one now has

o m?
i p+2

2

2
m
+ IIA|!2) = p—+2||A*—IH2+ 1417,

where A* = z?;n;n—z— - I.
The linear I''minimax risk is
m? m? 2 2 pm?
= . 35
= v Mgy D A +2+m2) pt2tm? (35)

7.2 T'-minimax risk

As in the case p = 1 we will consider small, moderate and large values of m separately
to derive a global upper bound on p(m). However, it will be seen that the general technique
adopted in the univariate case still works.

The following theorem is a multivariate generalization of Theorem 3.1. The proof is
long but straightforward and is omitted.

Theorem 7.2 Under statistical model (32), the corresponding statistical game has a value

inf sup r(7,8) = sup mf r(m,0) = r(7o,dp)-
8€D rel
The least favorable prior mq is a finite lznear combination of uniform distributions on p-
dimensional subballs of radius m;, and the point mass at zero,

- (2+1)

To = a01(6= 0)+ Y o= 2221 (]| < m),
=1 ’l
0<m <me<...my =m, az-zO,Zaizl; (36)
=0
the corresponding marginal density of X is
1 _Lzlf2 L P( + 1)
m(z) = a0 e A ; it Lol () (37)
where F is the cdf of the Bessel distribution, with density given by
2 2
dF, . p(z) = (E)”_la”e‘%m%(”_l)e_azf,,_l(ﬁ\/:?)l(z > 0)dz. (38)
The corresponding Bayes rule
Vm(z)
6 = =
@ =2t s (39)

is, in addition, T'-minimaz.
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7.3 Small values of m

For small values of m, Theorem 2.6 in DasGupta and Delampady (1990) implies that
the prior

(9) =

is least favorable, since the frequentist risk function R(9, é) is subharmonic. For arbitrary
m the least favorable distributions are of the form given in Theorem 7.2. Numerically
obtaining the Bayes risk 7(mo) is extremely calculationally intensive. One elegant way to
put lower bounds on rp (for small values of m even exactly calculate rr) is to employ the
Brown identity with the uniform prior (40) (see Appendix for an exact statement of the
Brown identity).

To transform the marginal distribution M(z), with the density

r(2+1) 1
rimp  Jlgl<m (2r)%

2 Dag) < m, (40

m(z) = Hliz-0l gg (41)

to a form suitable for calculations, we will pretend, for a moment, that § has the multivariate
normal MVYN,(z,I) distribution. Then

1
(2m)?

Jp e O d = PABI? < g ~ MYN(,1) (42)

In this case, v = ||g]|? has the noncentral x? distribution, with p degrees of freedom and
with the parameter of noncentrality ||z||2. The density function of v is given by

o) = —erlleFr g1 3 (lellym .
2% 21 w4 m)

,vm

(43)

After straightforward algebraic transformations, we get

()= e HEPefopf-iyoe LT
’ - ;g m=0 m!F((§—1)+m+1)

_ 1o ey CEETHETD
= I ET ¢ Lm0 (D)

The sum in the previous expression is exactly the definition of the modified Bessel function
of the first kind, of order & — 1 and argument /v||z||. The usual notation is Iz_;(v/v[|z|)-
Using modified Bessel functlons it is possible to define a family of Bessel distributions
(see Laha (1954)), with densities given by (38), and in our case, p(v)dv = dFg 1 ”z”(v)

Therefore,
m2
P(|g]* < m?|8 ~ MYN(z, 1)) = /0 AFy 1 (%) = P31 o (m°)- (44)

The marginal distribution M(z) therefore has the density

mlel) =~ py o), (45)
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Since the marginal density depends on z only through v = ||z||, then

Z(

ey Z(m’() T2 = (m (o),

and
ot e )P
EM=renh U mp)

The facts above and the Brown identity prove the following:

Theorem 7.3

o0 ( 5 Fp 1, (m?))?
/0 v 8F21 (m?)

212V

T > p— L dv. (46)

mp

The integral in (46) is now evaluated numerically to produce upper bounds on p, and
the results in Table 9 come as a slight surprise. For small m the affine I'-minimax rule does
better with the increase of dimension.

Again, for small values of m, values in the p-columns in Table 9 are exact, while for
larger values of m, the given numbers are only upper bounds on p. The analogy with the
univariate case is complete. The replacement of the uniform prior (40) with the multivariate
analogy of the least favorable prior, given by (36), yields the marginal distribution

z||? ( +1) 2
m(z) = ao °(2r )p/2 el "'Z TP em? Fg 4 (m4), (47)
a; >0, Zai:1,0<m1<m2<...<mn:m,
=0

and then through the Brown identity yields the values of rr and p.

Table 9: Bounds on p in multivariate case by the uniform prior

m| p=3 | p=5| p=7
p= p= p<

1.0010 | 1.0002 § 1.00008
1.0144 | 1.0067 | 1.0035
1.0392 | 1.0225 | 1.0138
1.0571 | 1.0382 | 1.0263
1.0654 | 1.0483 | 1.0361
1.0678 | 1.0567 | 1.0423
1.0671 | 1.0551 | 1.0454
1.0650 | 1.0475 | 1.0359

WO D OY W] DN~
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7.4 Large values of m

For large values of m, as in the univariate case, we will use multivariate analogies to the
Bickel prior, Borovkov-Sakhanienko inequality and Huber’s result. This will give again an
analytical bound on rr.

Let J; be the Bessel function of the first kind, order ¢, and let ; be its first positive
zero. Let G, be the spherically symmetric distribution on ¥,(0, 1) given by the probability
density function

gis(l16lD) = Coligl* JZ(l18llva)1(llell < 1),
where
‘= £-1 if p is odd or divisible by 4
| —&+1 if piseven, not divisible by 4

and Cj, is the normalizing constant. For general m > 0, g, denotes %glp(%) and Gpp the
corresponding cdf.

Shemyakin (1985) generalized the Borovkov-Sakhanienko bound (19) to the multivariate
case.

Theorem 7.4 (Shemyakin (1985)). Let X be a single observation from a population with
a distribution belonging to the family P = {P,0 € O}, where ® C RP is compact. Suppose
that the family P satisfies regularity conditions necessary for the Cramér-Rao inequality to
hold. Let m be a prior on ©, such that cl{8|7(6) > 0} C int{©}, and let H(§) = 7(8)1(§),
where 1(0) is the Fisher information matriz for Py.

Then )

r(r) > tr(EI™! — A), (48)
where A = EYEGGEL and (VHY = (5, o) H.
The following result will also be useful.

Theorem 7.5 (Bickel (1981)). Gp uniquely minimizes I,(F) among all spherically sym-
metric distributions F, concentrating on the ball ¥,(Q, m), and furthermore,

4 2
Ip(Gmp) = L .

m?
Corollary 7.1

2

4
T 2 T(Gmp) >p— % (49)

implying

2
< pm

p< I (50)
2+p+m?)(p- %)
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Proof: If X |60 ~ MVN,(6,I), and the prior distribution of 8 is Gp,p, then I(8) = I, trA =
Zp(Gmp), and

rr 2> (Gmp) = P~ Lp(Gmp),s

where Z(F) is defined as in (61). The result now follows from Theorem 7.5. O
The first nonnegative zeros of J; are given in the Table 10, and the implied bounds on
p in Table 11.

Table 10: First nonnegative zeros of Bessel J function

p |t Yt

1 [—0.5 | 1.570796 = Z
2 0 2.404826
3105 (3141592 ="
4 1. 3.831706

51 1.5 4.493409

6 -2 5.135622

71 2.5 5.763459

8 3 6.380162
10| -4 7.588342
12 5 8.771484
15| 6.5 10.512835

Table 11: Bounds on p by use of the Bickel prior

3 5 7

8 1.1676 | 1.2057 | 1.2464
9 1.1246 | 1.1497 § 1.1755
10 1.0967 | 1.1146 | 1.1324
12 1.0636 | 1.0741 | 1.0841
15 1.0390 | 1.0448 | 1.0501
20 1.0213 | 1.0242 | 1.0267
30 1.0092 | 1.0104 | 1.0114
50 1.0033 | 1.0037 { 1.0040

As in the univariate case we give an unified table. The first part contains values and
bounds on p implied by the uniform prior. In the second part of Table 12, bounds on p
obtained by (50) are given. The uniform (in m) bounds on p are 1.1676,1.2057, and 1.2464,
for p = 3,5, and 7, respectively. The given uniform bounds are probably very conservative.
The work on sharpening these is still ongoing.
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Table 12: Unified table

3 5 7
1 1 1.0010 { 1.0002 | 1.00008
2 1.0144 | 1.0067 | 1.0035
3 1.0392 | 1.0225 | 1.0138
4 1.0571 | 1.0382 | 1.0263
5 1.0654 | 1.0483 | 1.0361
6 1.0678 | 1.0567 | 1.0423
7 1.0671 | 1.0551 | 1.0454
8 1.0650 | 1.0475 | 1.0359
2 8 1.1676 | 1.2057 | 1.2464
9 1.1246 | 1.1497 | 1.1755

10 1.0967 | 1.1146 | 1.1324
12 1.0636 | 1.0741 | 1.0841
15 1.0390 | 1.0448 | 1.0501
20 1.0213 | 1.0242 | 1.0267
50 1.0033 | 1.0037 | 1.0040

8 Probability constraints on affine rules

As in the univariate case, affine rules may take values outside the parameter space.
Indeed, this may happen with an embarrassingly large probability.

Consider
m2
< . 1
Pol®) = 14 Iz Xl < ) (51)
It is well known (see Anderson (1955)) that Pp,(8) is monotone decreasing in ||4||, and hence
inf P, (0) = Pyn(me), 52
B Pa(8) = P(me) (52)

where e = (1,0,...,0). Table 13 gives values of this infimum for various m and p. As is
apparent from this table, in the worst cases, the probability that the affine I'-minimax rule
takes values outside of the parameter space can approach 50%.

A much harder problem is to derive the rule which is I'-minimax among all affine rules
that have a prescribed probability of being in the p-ball of radius m. Mathematically, the
problem is equivalent to:

find ilf’if(sup r(7,AX)), subject to:
™

P(||AX|| < m)> 1~ (53)
for all 6 with ||6]| < m.

Our conjecture is that the minimizing A in this case is a multiple of the identity matrix, as
in the unconstrained case. We were, however, unable to prove this.
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Table 13: Minimal probabilities for different values p and m

1 2 3 5
1 0.99865 | 0.99993 [ 1 —2 10° 1

2 0.93319 | 0.96587 | 0.98503 | 0.99824
3 0.84135 | 0.88370 | 0.91905 | 0.96688
5 0.72575 | 0.76013 | 0.79295 | 0.85217
10 0.61791 | 0.63717 | 0.65626 [ 0.69371
50 0.52392 | 0.52791 | 0.53189 [ 0.53985

A slightly more restricted class of affine rules allows us to carry the minimization process
in this case. »

Let A be a p X p matrix such that A < AI for fixed A and let A be the class of all
such matrices. Our goal is to find a matrix A in A for which sup, r(r, AX) achieves its
minimum. By repeating the argument from Section 7.1 it follows that the minimizing A is

2
... m ' ’
- - . 4
arg min - 2t7'(A D(A-I) +trAA (54)
If A1, A2,...,A, are the eigenvalues of the matrix A, the above problem is equivalent to
finding
)2+ 2
g mi <Ap+ - L P RPWC I o3t (55)

The solution is

M=Ag=...= A=A 56
1= Az p o " (56)
which gives the minimizing A as
2
m
= (AN ———)I. 7
A (AAm2+p+2)I (57)
For given m, p, and a we would like to find A\g = Ag(m, p, @) such that the rule
2
m
A ————)X 58
(oA ) (58)
is in the p-dimensional ball of radius m with the prescribed probability of at least 1 — a.
Since
x| 1Ix m_x AX
—— < D <
(X1 IO )Xl S m} 2 {31 [AX]| < m,
one has
PAIOA =P )Xl < m) > PORIXIE < m?)
mi+p+2'70 T T -
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Since || X|)? is distributed as a noncentral x? with p degrees of freedom and the parameter
of noncentrality m?, the choice

JFI(i-a)

where F~1(1—a) is the (1—a)th quantile of the above mentioned noncentral x? distribution,
guarantees that the prescribed probability requirement is satisfied.

Table 14 compares the values of and Ag for o = 0.05 and p = 5 for chosen values
of m.

)\0 = (59)

_—mc
m24p+2

Table 14: The values of Ag for affine rules (a = 0.05 and p = 5)

Fill-o) [ X |75

m

1 13.170 0.27555 | 0.125
2 18.626 0.46342 | 0.36364
3

5

26.535 0.58239 | 0.5625
48.763 0.71602 | 0.78125
10 139.920 0.84540 | 0.93460
20 472.662 0.91993 | 0.98280
50 | 2671.250 | 0.96742 | 0.99721

As before, the affine rule (58) satisfies the following theorem:

Theorem 8.1 Let r1,, denote the I'-minimaz risk of the affine rule (58). Then, for any
o, the ratio

TL,a

rr

p =
s bounded, uniformly in m.

Proof: Similar to the proof of Theorem 4.4.
Next, we give Table 15, in which the constrained affine rules cX, the corresponding risks
and bounds on p are calculated for p = 3 and p = 5.

9 Appendix

9.1 The Brown identity

Let X|0 ~ MVN,(8,1), and let II be any prior distribution on § such that m(z) =
J #p(z — 8)dI1(8) < oo.
Let r(7) denote the Bayes risk with respect to the prior 7. Then,

m=p- [ 02l (60
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Table 15: Restricted affine rules: Bounds on p

=3 _ “p=5
m a=01la=005a=001)a=01]a=005|a=0.01
3 c 0.61156 | 0.53868 0.51724
L« 1.93680 | 2.01974 2.83591

p < 1.04364 | 1.08833 1.05989

5 c |0.77424 | 0.73352 | 0.66762 |[ 0.75423 | 0.71602 | 0.65372
TLo | 2.56286 | 2.67933 | 2.99430 §§ 3.92294 | 4.00351 | 4.27800

p < | 107233 | 1.12106 | 1.25285 || 1.05278 | 1.07440 | 1.14263

10 c |0.87909 | 0.85199 [ 0.80542 j 0.87196 [ 0.84540 | 0.79968
TLo | 3.19555 | 3.49208 | 4.21779 | 4.97259 | 5.28073 | 6.06373

p < | 1.22660 | 1.34042 | 1.61898 |} 1.18610 | 1.25960 | 1.44637

20 ¢ 10.93765 | 0.92196 | 0.89391 | 0.93553 | 0.91993 | 0.89203
TLo | 3.57057 | 4.01169 | 5.09845 | 5.56362 { 6.06313 | 7.30931

p < |1.23068 | 1.38272 | 1.75730 ([ 1.15955 | 1.26365 | 1.52338

a0 c |0.97463 | 0.96778 [ 0.95518 |-0.97426 | 0.96741 | 0.95483
TLo | 3.81517 | 4.36699 | 5.75036 { 5.92903 | 6.57603 | 8.20195

p < |1.27845 | 1.46337 | 1.92693 |l 1.19352 | 1.32376 | 1.65106

100 c |0.98725 | 0.98372 | 0.97717 | 0.98715 [ 0.98363 | 0.97708
TLo | 3.89936 | 4.49335 | 5.99184 || 6.05177 | 6.75176 | 8.52567

p < | 1.30150 | 1.49976 | 1.99991 | 1.21231 | 1.35254 | 1.70789

250 c |0.99488 | 0.99345 [ 0.99076 f 0.99487 | 0.99343 | 0.99075
TLo | 3.95240 | 4.56967 | 6.14648 | 6.12369 | 6.86152 | 8.72768

p < | 131774 | 1.52364 | 2.04926 ([ 1.22505 [ 1.37266 | 1.74599

1000 { ¢ | 0.99872 | 0.99836 | 0.99768 | 0.99872 [ 0.99836 | 0.99768
TLo | 3.97536 | 4.60393 | 6.21554 | 6.15749 | 6.90476 | 8.82140

p < | 1.32514 | 1.53466 | 2.07187 | 1.23152 | 1.38097 | 1.76431

30
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The Brown identity has been variously used by many authors, for example, Bickel (1981)
and Donoho, Liu and MacGibbon (1990).

Notice, the function m(z) is exactly the marginal density of X and the integral in (60)
is the Fisher information integral Z,(®,  II), defined as

IRNG i
I,(F) = { Jrr W'_—d@’ if F" has a cont. dlﬁ"er.entla,ble density f (61)
00, otherwise

and where the symbol * denotes convolution. In other words, the Bayes risk r(II) is
the difference of the dimension of the parameter space and the Fisher information of the
marginal distribution.

9.2 Canonical moments

Let P denote the class of all probability measures on [0, 1]. As in Skibinsky (1967), we
define

1
M, = {(c1,cz,- -, ca)| c =/ +'dP(z), P € P).
0

Let
. = min{c| (e1,...,¢n-1,¢) € My},
Hn = Cn,
pt = max{c| (c1,---,Cn-1,¢) € My}

We can speak in terms of min and maz since M, is a convex, bounded and closed set in
R”™. The canonical moments are defined as
P — by
Pn = +—71,
Hn — Hn
whenever uf > u-.

Calculationaly, it is convenient to express p;’s through canonical moments as follows
(Skibinsky (1968)):

pi = S
where
So;j=1, 7=0,1,2,...;
J
Sij = an—i+15i_1,k; ,7=1,2,...;:< 4,
k=i
and

m=q=1, n5=q¢-p; J=12,...; pi+¢ =1
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Explicitly, the first three moments can be expressed as:

H = p1,
p2 = pi(pr+ ap2),
ps = pm{p(pr + @p2) + aupa(pr + @p2 + ¢2p3)).

32

(62)

For nice examples of applications of canonical moments we refer the reader to Studden
(1980), Lau and Studden (1985), DasGupta, Mukhopadhyay and Studden (1991), Skibinsky

(1986), Dette (1990), among others.

9.3 Proof of Theorem 3.1

Let II be an arbitrary distribution from the family I'. Then II is absolutely continuous,

except possibly at the point § = 0.
(i) The density of Il on [—~m, m]\{0} has the representation

m ]
x(6) = / Lar(),
0)= [ 5:47()
where F(z) is the corresponding mixing distribution on [0, m].
(ii) For any z € [-m,m], define “a new” risk function

R(z8) = = [ R(,6)ds,

2z J_»
R(0,6) = R(0,9).

The Bayes risk of 6 under the new risk and with respect to the “z-prior” F is

'(F,6) = EFR(z,6).

Then
Y(F,6) = /Om% /_:R(e,a)dodF(z)
m m 1
= /_ . /|e| —=dF(2)R(6,6)d8
= /_m R(6, §)dII(6)
= r(m,d),
and

. . ’
R P

= su inf 7/(F, 6
F on %()),m] 6€D ( )

(from standard theory, since F is arbitrary)

= sup inf r(x,6).
rE?‘SG’D ( ’)

(63)

(64)
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The least favorable prior Fy in the new game with payoff /(F, §) is discrete. Moreover,
for fixed m, the prior Fy has a finite number of points of support (see Kempthorne (1987)).
Because of the representation (6), the discrete distribution

Fo(z) = apl(z = 0) + Z:ai]-(z > m;),

O<m<...<my=m, a; > 0, Zaizl,

corresponds to the prior distribution (9) from I', and straightforward calculation yields the
rule (11).

We, however, need to check that the new statistical game and the risk R(z,46) satisfy
conditions (Al) to (A5), as in Kempthorne (1987).

(A1) For every distribution F on [0, m] the Bayes procedure éf is unique a.e. for all
z.

The uniqueness of the Bayes procedure 6, in the original problem and the fact that
Bayes solutions in both games are the same, i.e. 6r = 6, gives (A1).

(A2) If {F,i=1,2,...} is any sequence of distributions on [0, m] that converges
weakly to F, then the risk functions {R(z,8F,),i = 1,2,...} of the corresponding Bayes pro-
cedures converge uniformly on compacts to the risk function R(z,6F) of the Bayes procedure
with respect to F.

This property follows from the fact

B (2,85,) — (2, 00)| < 5= [ 1R(6,85,) ~ R(6,8,)]do, (65)

where F,, and F, are the mixing distributions for the densities 7, and 7, respectively. The
fact that parameter space is bounded is crucial. Namely,

(i) By a characteristics function argument, it follows that F,, — F weakly implies that
Il, — II, weakly.

(ii) The weak convergence of II,, to II implies that

brn(2) — bx(z)

uniformly in z (see Rao (1962)).
(iii) Finally, the consequence of (ii) is that

R(0,6x,) — R(0,6,)

uniformly in 8, which together with (65) gives (A2).

(A3) The interval [0,m] is a compact, separable metric space.

(A4) R(z,6) is upper semicontinuous in 6 for any measurable rule §.

(A5) R(z,6) is an analytic function of z, for any measurable decision rule 6.

Both, (A4) and (A5), follow from the fact that R(6, 6) is well behaved, i.e. it is analytic
for any measurable rule §. O
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