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1 Introduction

Recently a considerable amount of research has been devoted to the numerical solution of at
worst difficult and at best tedious integration problems arising from Bayesian analysis to multiple
parameter model. Various methods with corresponding optimality criteria have been introduced
including the seemingly most popular methods, the Gibbs sampler as named by Geman and Geman
[1984]. Numerous articles have appeared describing the theory and applications of this method ( see,
for example, Gelfand and Smith [1990], Tierney [1991] ) along with articles describing competing
methods such as importance sampling ( see, for example, Geweke [1989] ) and the Hit-and-Run
sampler ( see Belisle, Romeijn and Smith [1990], Schmeiser and Chen [1991] ).

Because the specific problem being modeled has great influence on which method is “best”
and because there is no universally accepted definition of “best”, it is difficult to obtain quite
general results. Instead specific problems are modeled and the performance of a particular method
is documented. Some recent work has been devoted to comparing various methods applied to the
same problem ( see Chen and Schmeiser [1992] ).

Coming out of these papers, there is some evidence to suggest that when the parameter space
is constrained, the Gibbs sampler does not perform well in the sense that it requires extremely
large numbers of samples to obtain a reasonably small sampling error due to the correlations of the
Gibbs observations and more computing time to sample from the conditional distributions due to
theirs complexities. Constrained parameter space models arise frequently and naturally in many
applied problems and hence it is important to obtain accessible methods to solve the corresponding
integration problems associated with Bayesian inferences. Some work in this area has been started;
Gelfand, Smith and Lee [1990] and Geyer and Thompson, both of whom use the Gibbs sampler.

It is the purpose of this paper to show how a new Gibbs Hit-and-Run ( GH&R ) sampler
can be used effectively to provide accessible and easily implemented solutions required by the
associated Bayesian analysis of a constrained linear multiple regression problem arising naturally
in an applied context. We describe the practical problem motivating this study in Section 2 and
the Bayesian model used for analysis in Section 3. In Section 4 we propose a new GH&R sampler
which generically combines the Gibbs sampler and the Hit-and-Run ( H&R ) sampler and then prove
that the same asymptotic convergence results as given in Schmeiser and Chen [1991] still obtain
here. We further demonstrate that the GH&R sampler is well suited for generating a dependent
Markov chain of observations from the full joint posterior distribution under the constrained linear
multiple regression model. In Section 5 the results of the computations are reported, robustness and
predictions are discussed, the marginal posterior densities are estimated by the importance weighted
marginal density estimation method and comparisons with ordinary least square estimation method
are made.

2 Data and Model

The New Zealand Apple and Pear Marketing Board is a statutory body which amongst other re-
sponsibilities negotiates and arranges contracts for all exporting of the New Zealand apples through-
out the world. In effect this means that all of the more than 1500 apple growers in the New Zealand
are joined together as one grower when dealing with the international export market. The justifi-
cation or lack thereof for such a board is not our concern here. Rather it is to derive a model for
forecasting one year ahead the total crop of apples of any particular variety that will be available



for both export and local market consumption. The Board has a rich data base consisting of the
historical record of more than thirty years for the total submissions from each individual grower
for each variety, but more importantly, for the last five years, the total number of trees each grower
has at each age for each variety. Ordinary time series modeling of the total submissions record
does not provide a reasonable error bound. Hence a realistic data base that can be readily used for
forecasting purposes consists of the tree numbers over the last four years and the total submissions
for a grower during that time. By tree numbers we mean that the number of trees at each age is
known and tabulated for a particular variety of apple and for an individual grower.

The forecasting model that has been evolved so far uses this data base to assign each grower
for a particular year into a quality category. This quality category is determined on the basis of
a computable QC index which is defined to be the average amount of fruit per average year of
age; that is, it is the ratio of the average fruit per tree to the average age of the orchard. Further
investigation indicated that seven categories of quality would be adequate. No grower is assigned to
one category for all time; rather, in each year a grower can be in any category such an assignment
being dependent upon many factors, such as weather, soil condition and farming practices. Instead
of trying to unravel all the complexities involved with these factors, we simply compute a quality
index for that year and thus assign a grower to a category on the basis of the individual year’s
data.

For illustrative purposes here we will report only a subset of data arising from one geographical
region of growers within one category and for one variety. This region provided over 1500 grower
years of data for the last four years, but we will use here only the 207 which fell in one particular
category. Thus for each grower in that category the model developed suggests quite naturally that
the average number of apples ( in cartons ) is given by a linear multiple regression model where
the dependent variable is a ten dimensional vector consisting of the numbers of trees at each age
and the regression coefficients are the prediction averages for each age, that is

y=E(Y|z)+e¢ (2.1)
and
10
E(Y|z) =) B;zj, (2.2)
i=1

where € ~ N(0,0?%), z; = number of trees at age j and 3; = average number of cartons produced by
trees at age j for j = 1,2,-..,10. Furthermore it is easy to see that this model must be constrained
by

0< b <P L+ < bros (2.3)

since growers do not allow poor trees to persist on average. So the problem then is to find the
appropriate regression equation for this data and subsequently to use it to predict for the coming
year what fruit is to be produced by any grower who is deemed to be in this category which in this
paper we call category one. It is also of interest to obtain bounds for the beta coefficients.

The problem of assigning growers for the coming year to a category is a separate issue and will
not be discussed here. The main problem that is of concern here is to find the best set of coefficients
in (2.2) satisfying the constraints of (2.3) and to obtain the best error bounds that can be derived
from the information provided.

It may be the case that one grower provides data for more than one year if that grower happened
to be in the same category for more than just one year. Whereas there is considerable dependence



between the category of a grower from year to year, the prediction of a grower’s submissions con-
ditioned on a category is assumed to be independent from year to year and from other submissions
from growers in the same category for the same year.

We will denote the data set arising from these 207 growers by (y;, z;), where z; = (21,4, %26, -+, Z10,4),
t=1,2,---,n, and n = 207 in this case.

In the next section, we will use the Bayesian method to analyze Model (2.1) and (2.2) with
constraints (2.3) based on the above data.

3 Bayesian Analysis of the Constrained Linear Multiple Regres-
sion Model

For the constrained linear multiple regression model, which is described in Equations (2.1) and
(2.2), we choose independent noninformative priors for 8 and o2, Let

S = {(ﬂl) ﬂ27 vt ,;310)’ :0 S ;31 _<.. 182 < ,310, S Rlo} (31)
Then the noninformative prior for 8 is proportional to
T1(8) = 1-Is(B), (3.2)

where Is(8) = 1if 8 € S and 0 otherwise. The noninformative prior for o2 is proportional to
2 1
ma(o )— ,o >0 (3.3)
So, the prior for 8 and a? is proportional to

7(8,6%) = m(B)ma(0?) = —T5(8). (34)

According to Equations (2.1) & (2.2) and the data set described in Section 2, the likelihood
function, ignoring the constant, is

207 2
L(B,0?, data) = ;m — Z (y., Zﬂ]z,, ) , BES,a*>0. (3.5)
(0?)%2 20% 5

From Equation (3.4) and (3.5), the posterior density function is given as follows:

©(B, 0%|data) = ¢(z)L(B,0?, data)r(B,0?)
207

2
1
- C(Q)(ai’)mexl’ T 952 Z (:‘/z Zﬂﬂ%) Is, o*>0, (3.6)

=1
where c(z) is the normalization constant. The respective posterior means of § and o2 will be

denoted by
B = posterior mean of 3 = ET(8o%\data) (ﬁ) , (3.7)
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and
&2 = posterior mean of o2 = E"(&:"Idate) (‘72) (3.8)

and the posterior covariances of § by

V;j = posterior covariance of 3;, 8;
= Er@itate) (g,5y  pri@etiete) gy pr(gotidete) (g,y | for i,j=1,---,10. (3.9)

Let @__j = (ﬂlv' ",ﬂj-—lvﬂj+17"°,ﬂ10)’ and

5_;(B8;) ={(Brs-- -, Bi-1,B541,---,P10) : 0<B1 <---< By <B; < Bjpr £ -+ £ Po,
B € R, for prefixed B;}. (3.10)

Then the marginal posterior density for 3; is

207 2
7r.?(ﬂ]lda’ta’) / L_ (35 (0,2)1345 { % 92 Z (yz Zﬂlwh) }dﬁ_].do‘z. (3.11)

In order to predict fruit to be produced by any grower deemed to be in category one for the
coming year, we need to derive the predictive distribution for an individual grower. Let (y,,z,)
denote respectively the total number of cartons of fruit produced by the tree numbers vector in the
coming year. Then

(y—B'z,)

1
f(y1B, 0% z,) = Wors exp{ "_'2'0_2'_} (3.12)

Then the predictive density of Y, is

f(y) = fs /0 oofu(ylg,az,g,,)w(g,aﬂ data )do*dp

© 1 (y—f'z,)?
- /S/ V2ro? exp{~ 202 }
(:1:) 207
T 2)?045 exp{— % 22(.% Zﬁﬂin) }do?dg. (3.13)
j=1

Therefore, the predictive mean and variance of Y, are
py, = predictive mean of ¥, = E¥(Y,) = E(B.0%|data) (g’g,,) (3.14)
and

W, = predictive variance of Y, = EM (Y, — uy,)?
E'lr(ﬁ,a' Idata) [Er(ﬁ, o2 |data) {(,B )2} {Ew(ﬁ, o2 |data) (ﬂ P )} ] ) (315)

Equation (3.15) says that the predictive variance of Y, is the sum of the posterior mean of o2
and the posterior variance of §'z,. This illustrates the intuitive appealing fact that there are two
sources of error for predicting y,, one is the random error, and another is the method error.



In order to explore the Bayesian properties of this constrained linear multiple regression model,
we have to compute the quantities of interest, e.g., posterior means, marginal posterior densities,
and predictive distribution. However, it is nearly impossible to get the analytic results for those
quantities because of the constraints. So we will develop a new Markov chain sampling scheme to
evaluate them numerically. We also use a new importance weighted marginal density estimation
method ( see, Chen [1992] ) to obtain estimators of the marginal posterior densities.

4 Sampling Approaches

To determine the properties of relevant Bayesian distributions, three Markov chain sampling
approaches have been developed recently. These are the Gibbs sampler ( Geman and Geman [1984],
Gelfand and Smith [1990] ), the Hit-and-Run ( H&R ) sampler ( Belisle, Romeijn and Smith [1990],
Schmeiser and Chen [1991], Chen and Schmeiser [1992] ), and the Metropolis sampler ( Hastings
[1970], Tierney [1991], Miiller [1991] ). As discussed in Chen and Schmeiher [1992], the Gibbs
sampler works well when the components of a random vector are nearly independent, and are
easily sampled from the conditional distribution. They also point out that if the components of a
random vector are highly correlated, the H&R sampler performs better than the Gibbs sampler.
These facts indicate that there may exist a Markov chain sampler, which generically combines the
Gibbs sampler and the H&R sampler.

In this section, we propose such a new Markov chain sampler named the Gibbs Hit-and-Run (
GH&R ) sampler for sampling (02, 8) from the posterior distribution 7(8, 02|data) without knowing
the normalization constant ¢(z). Intuitively the GH&R sampler operates as follows. Firstly given
any starting point (03, 3,) such that of > 0 and g, € §, we generate o} from the conditional

distribution 7(0?|8,, data), which is an Inverse Gamma

2
Z6 [ 104.5 (4.1)
( R - i ﬂo,jwj,i)2)

( e.g., see Berger [1985], p. 561 ), where 8, = (B1,0," - ,B10,0)". Secondly we use the H&R sampler
to generate 3, from w(B|o?, data), which is a truncated multi-variate normal distribution and finish
one whole cycle with a new point (o2, él) The technical details of the GH&R sampler for sampling
from the posterior distribution x(8, 0?|data) are given in Algorithm 1.

Algorithm 1

step 0. Choose a starting point at >0, B, € 5, and set i=0.

step 1. Generate 0',-2_|_1 from 7G (104.5, 21207(1”_221.0 5 'Ejl)2) .
=1 i=1 Elaad It

step 2. Generate a uniformly distributed unit-length direction d; déf(dl,,-, day-++,d104)

step 3. Find the set S; = (R}, R}), where

Rjdéfigf{A:gi+A¢£es}, and R;d-i-fsgp{)\:gi+/\d_,- € 5}.



step 4. Generate a signed distance A; from density

7(8, + M;lo?,,, data)

= : . N (RE,E). (42)
fR; ©(B, + ud;lof,,, data)du

m(A) =

step 5. Set Q_H_l = B, + Aid; and set i=i+1. Go to step 1.

A random unit-length direction d; can be generated in Step 2 by independently generating
-1
z~N(0,1) and setting d} = z ( }°=1 212) *,1=1,2,...,10 ( e.g., see Devroye [1986, Section 4.2] ).

Notice that since R} and R} can not both be infinity, 7;(A) in Equation (4.2) is a probability
density function of the truncated normal TN (y;, (cN)?, R}, Rb) with

207 10 o, ... 10 g, 2.
I=1 [(yl - Y= ﬂmzz,l) Lj=1d ,z"’a,l]
2
207 (5~10
=1 (Ej:l dj,imj,l)

mean = j; = , , (4.3)

and
. Ny2 ok
variance = (0;' )* = po : 5 (4.4)
10
i=1 (Zj=1 d -,,-a:j,z)

A random variable ); of the truncated univariate normal TN (u;, (oN)?, RS,

by generating U ~ U(0,1) and setting

%) can be generated

de - Ri — pi Rj — pi Ri — p;
X i+ oo 1(@(;—#“0(@( L) - a(Eh )) (4.5)
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where ® is the N(0,1) cdf, and ®~! is the inverse N(0,1) cdf ( e.g., see Devroye [1986, p.39]
). Another way to generate A; is the mixed rejection algorithm for truncated univariate normal
sampling ( see Geweke [1991, Section 2] ).

The advantage of Algorithm I is that only one univariate truncated normal random variate,
which it is expensive to generate, is needed for getting a new Markov chain state. For the primary
Gibbs sampler, 10 univariate truncated normal random variates are needed for completing one
Gibbs sampling cycle. Since f; is the average number of cartons produced by trees at age j,
j=1,2,..-,10, it is likely that they would be correlated. Thus to obtain the same standard errors
in the estimates when sampling 8 from its conditional posterior distribution given o2, the H&R
sampler will require fewer iterations than the Gibbs sampler and it is in this sense that the H&R
sampler performs better.

Now, we consider the asymptotic properties of the homogeneous Markov chain {(o?, ﬁ;)” > 0}
generated by Algorithm 1. Since Algorithm 1 combines the Gibbs sampler and the H&R sam-
pler, we can not obtain a time reversible Markov chain which would easily assure the asymptotic
convergence results. However, it is shown in Schmeiser and Chen [1991] that if the probability
measure induced by 7(8, 0%|data) has the certain invariant property ( see Lemma 4.2 below ), the
asymptotic convergence results then obtain. Hence we now prove that m(8,0?%|data) does process
this property.



Firstly, we derive the one-step transition probability density since the Markov chain {(o?, i), i2>
0} always moves to a new state from the current state. This transition probability density at
o1 =0%and B, | = p given of = o*? and B, = * is
m(8*, 0%|data)
7(f*|data)
2 7(B|o?, data)

CrollB - £7II° fgf (8" + un'g%:-nh?, data)du,

p(0?,Blo*?, B)

(4. 6)

for all 02 # 0*? > 0, B # B* € S, where Cyo = 27 is the surface area of the 10-dimensional unit
T(5)

hypersphere, || - 8*|| = \/Z =1(8; — B})?, n(B*|data) is the marginal posterior density of 3 at
B = %, and

g-pg* def Bg-p
* ,\_— = d = A—m— . .
R1 mf{/\ B+ 1= 5] } and R, sgp{)\ B+ 18=6 € S} (4.7)

A requirement of Schmeiser and Chen [1991]is that the transition probability density p(c?, 8o*2, )
> 0. It is apparent from the above that p(az,g|a*2,§_*) > 0 for 0% # 0*% > 0,8# B* €S and we
can define p(a*?, 8*|0*2, 8*) > 0 since the Lebesgue measure of one single point (0*2, B*) is zero.

Secondly we will prove that if we start (¢2,8) from the joint density m(8,0?%|data), the joint
distribution of the observation at the next iteration generated by Algorithm I is still 7 (-, |data),
that is,

Lemma 4.1
o0
/ / x(8*,0*%|data)p(o?, B2, B*)do*2dp* = (B3, o°|data). (4.8)
sJo = - = = =
Proof: From Equation (4.6),

/ /oo (8%, a*2|data)p(a2, ,6|a*2, ﬂ*)da“dﬂ*
. w2 m(§", 0% data)
Sy o) =
7r(,3|a2 data) ap*
010||ﬁ" g I 2r(B* + u”ﬁ ﬁ.”|a ,data)du —
27 (B|o?, data) N
o [y 44
CiolIB - B*II° Jr2 m(B" + unE:Ez—”kf?, data)du
7r(02|data)/ 7r(g_w:la.z’ data) - 27!'(:6'0'2 data)
s Chol|B — ﬂ*l[gf (8" + unmh data)du

Since the H&R sampler is used to generate a new 8 from the conditional distribution 7(-|o?, data),
thus Lemma 2.2 in Chen and Schmeiser [1992] yields

[ (8 1o*, data)- 2r(glo, date)
’ Clo”é— ﬁ*ugf 7"(,3* + “ﬂﬁ‘ﬁ"ﬂla? data)du

/ ©(B*, 0%|data) -
S

dg*. (4. 9)

= n(B|o?, data).  (4.10)
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Therefore,
/ /oo ©(8*,0*%|data)p(c?, Blo*?, *)do**dB*
SJo - - - -
= w(o®|data)r(B|o?, data) = n(B,o°|data). (4. 11)

|
Let Rt déf{az : 02 > 0}, let BY! denote the Borel sets of R* x §. For every A € BY!, let the
probability measure II, defined by 7(8, 0?|data), be

1(A) = / (8, 0%|data)do?dp. (4.12)
T\ (=
Then (R* X §) = [g+ s 7(8,0%|data)do?dp = 1. Finally we have
Lemma 4.2 The Probability measure I is invariant for the Markov chain {(o?,8,),i > 0}, i.e.,
I(A) = / / (0%, Blo*2, B*)x (8", *¥|data)do?dBdo2dp", (4.13)
R+xSJA - - - - -

11
Jor every A € B'.

Proof: By Lemma 4.1 and Fubini’s Theorem, we have
o0
The RHS of Equation (4.13) = / { / / (0%, Blo™2, B*)m (", a*2|data)d0*2dﬂ*} dodp
A UsJo = =0 = = =

/A 7(B, 0%|data)dodg = TI(A). (4. 14)

|
From the above we can see that 7(8, 02|data) does satisfy the requirements given in Schmeiser
and Chen [1991]. Hence we have the following main result.

Proposition 4.1 If h is integrable with respect to =(-,-|data), i.e.,

/R ., 1@, BI(B,o*ldata)dodp < o,

then for every fized 0 < jo < 00

1 L 2
lim ———— Y h(0?,8,) = ETEo ldate)(p, 5., 4.15
n—rnc}on—]0+].]§j:o (UJ -'QJ) ( ) a.s ( )

where ET@0%ldata)(py = Jrt x5 (o2, B)n(B, o0%|data)do?dp.

The conclusion of Proposition 4.1 assures us that the use of the Markov chain sample generated
by Algorithm 1 to obtain the approximations of the unavailable Bayesian estimates is valid.

Although Algorithm 1 is stated specifically for the constrained linear multiple regression model,
it can be stated in general terms. Denote densities by square brackets, so that joint, conditional
and marginal forms for random variables ©,, ©,, appear as [Q;,9,], [©,]|9,] and [©,], respectively.
Let a k-dimensional random variate @ = (01, 03,---,0;) be distributed as w(8) with the support
§*. Set0=4o<j1<je< <o =k, 0, =(0;_,41,--+,9;),0=1,2,---,k*. Then the basic
scheme of the GH&R sampler is as follows.



Algorithm Gibbs Hit-and-Run Sampler
step 0. Choose an arbitrary starting point Q(o) = (01,0,02,0,-+,0x0) € 5*, and set i=0.

step 1. Generate ©Q; ;17 = (01,i+1,02,i41,° -+, 05 ,i41)".

o Generate Oq 441 ~ [01]02,,- -+, Ok ];
o Generate Q241 ~ [02]01,i41,03,,- -+, O i];

o Generate 0, ;11 ~ [0;,[01,i41, 02,41, -, Oy 1,415 Ojy 41,65+ -, O]

step 2. Use the H&R sampler to generate each of -

0ri+1 ~ (94,195 541, Q15+, Qjails -+ Qg it ~ [95,0 1951 i41s -+ O, il

e.g., to generate O, ;11 ~ [0,,10; 11,905+ 9;,. ] as follows:

o Generate a uniformly distributed unit-length direction d;, ; def( d;, d% 5, ,dﬁ:" s
o Find theset §;,; dif{,\ € R|©,, ,+)\¢J2 ; € S, }, where S, is the support of the conditional
distribution [0} 19;, ;4+1,9©j, 4>+ * *» Q. s] With the density function
71-(0]2 I""Jl 11+1,‘0—]312, e ,ij'ri);
o Generate a signed distance Aj, ; from density
P do 10 ii100s iree 0,
7,.]_2’1,(}‘) (-—.12,1 —-.72#'-—.71,1+1’—Js,“ ) S ,1) : e Sjg,i; (4.16)

fS (—J2J + udjz,ilﬂh ,i+1’-0—j3,1" Tt ’ij*vi)du

o Set O, 41 =84 i+ Aipidj -

step 3. Set i =74 1, and go to step 1.

It can thus be seen that the GH&R sampler is a generalization of the Gibbs sampler and the
H&R sampler. If k* = 1 and j; = k, the GH&R sampler is the Gibbs sampler; if k&* = 2, j; = 0, and
j2 = k, the GH&R sampler is the H&R sampler. The choice of ji,j2,- - -, ji+ varies from problem
to problem. In practice, this choice is often quite natural, e.g., in Algorithm 1, k* = 2, j, = 1, and
j2 = 10.

5 Computation Results

In this section, we report the numerical solutions for the posterior means of 8 and a? along with
their associated numerical standard errors. Some comparisons between the Bayesian estimations
and the ordinary least square estimations are also made. We also illustrate how the marginal
posterior densities of the coefficients 3 can be obtained by using a new method proposed by Chen
[1992] called the importance weighted marginal density estimation ( IWMDE ). In particular such
densities are obtained for B8, B2, 85, and f1p. In addition we derive estimators of the predictive
mean and variance and estimate the predictive density. In conclusion robustness of the prior and
the implementation of the GH&R sampler are also discussed.
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5.1 Bayesian Estimation Versus Ordinary Least Square Estimation

The Bayesian posterior means 3 and 2 are given in Equations (3.7) and (3.8). Because of the
constrained parameter space §, closed form solutions for posterior means and variances are not
possible. Hence the true values of the desired estimators é and 42 are unavailable. To estimate
them numerically, we used the Markov chain sample, {(d?, B;),0 < i < n}, generated by Algorithm
1. The estimates of ,Bj and 62 so obtained will be denoted by ﬁj and &2 respectively and s(ﬁj) and
s(8%) will denote the respective numerical standard errors. Since {(d7,4,),0 < ¢ < n}, which was
obtained using the GH&R sampler, is a dependent sample, we used the batch statistics method
suggested by Schmeiser, Avramidis and Hashem [1990], to obtain s(8;) and s(52).

In Table 5.1, we used 50 iterations to “warm up” the Markov chain, then used one single long
run with 5 batches of size 10° to get J3;, 32, s(8;) and s(52%). In Table 5.1, the ordinary least square
estimators 3; and 52 are reported along with the standard error s(f3;). B; ( noninformative ) and
f3; are also displayed in Figure 1.

Table 5.1: Bayesian and Ordinary Least Square Estimations

Bayesian Estimation Ordinary Least Bayesian Estimation
( noninformative ) | Square Estimation ( informative )
parameter | f; 8(5;) Bi s(Bi) | B s(8;)
B 0.01315 | 0.00003 0.09478 | 0.03229 | 0.01315 | 0.00003
B2 0.02487 | 0.00003 -0.0240 | 0.01929 | 0.02486 | 0.00004
B3 0.17759 | 0.00006 0.19386 | 0.01211 | 0.17761 | 0.00006
B 0.30960 | 0.00049 0.29421 | 0.04208 | 0.30967 | 0.00045
Bs 0.55468 | 0.00113 0.53179 | 0.07831 | 0.55501 | 0.00203
Be 0.78141 | 0.00073 0.83362 | 0.03922 | 0.78172 | 0.00080
B7 0.81938 | 0.00097 0.74456 | 0.06559 | 0.82001 | 0.00103
Bs 0.98997 | 0.01006 1.23486 | 0.44459 | 0.99104 | 0.01102
Bo 1.13842 | 0.01261 0.52651 | 0.35547 | 1.13697 | 0.01327
B1o 1.84827 | 0.10287 1.00188 | 0.89903 | 1.78973 | 0.08232
G s(d%) a* s(3%) G* s(6%)
o? 53909.1 | 79.3574 5117045 | - 53860.0 | 66.5492

From Table 5.1 it can be seen that the ordinary least square estimators of § are not in the
constrained parameter space S while the Bayesian estimators E are. Further it is clear that for
several coeflicients, namely 83, --, 87, the Bayesian estimators are very close to the ordinary least
square estimators. Histograms of the residuals of the Bayesian and ordinary least square estimated
regression were obtained but are not reported here. Both histograms were very similar. The
respective mean square errors were very close as well being 226.2 and 233.6.
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Figure 1: The Bayesian and ordinary least square estimations for 3.

5.2 Marginal Posterior Density Estimation

An interesting outcome of this study is to display the marginal posterior densities of 3;. Because
of the constrained parameter space S;(3;), closed forms for 7;(3;|data) given in Equation (3.11)
are not available. Therefore the IWMDE method was applied to obtain the estimators of the
marginal posterior densities for 3;. Based on the GH&R sample {(o?, B,;),0 < i < n}, the IWMDE
of 7(87|data) is of form

ﬁj(ﬂ;ldata)
def li‘: w(B;,lBui, L # 37 (B -+ » Bi—1,is BF, Bisr,ir- - - » Br0,i, 97| data)
n i T(Bris -+ 2 Biir Bit1,ir -+ Projildata) ’

(5. 1)

for any given point 37, where w(8;|61,+,Bj-1, Bj+1, -+, B10) is a conditional density playing the
role of a weight function. A full description of this method along with technical details are given in
Chen [1992]. In that paper it is shown that the choice of w greatly influences the rate of convergence
and in particular that the rate is accelerated if w is chosen as close to the true conditional density
as possible. Here for illustrative purposes we report the results for the marginal posterior densities
for-only 81, B2, Bs, and Bo.

In Figure 2 we used 50 GH&R iterations to “warm up” the Markov chain {(¢?, §,),% > 0}, then
used 50,000 GH&R iterations to get the marginal posterior densities for £;, (2, 85, and B10. We
evaluated the values of the IWMDEs at 101 griddy points for 81, 3s, 810 and 201 griddy points for
B2. We chose w for B; as w(B1|B;,5 > 2) = 1/B2, for 0 < 1 < B2. Partial justification for this
choice is the fact that 5 is roughly half of Bs.
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The support of the true conditional density of 3, given §;,j # 2 is

{B2: 51 < B2 < B3, for any given 0< 5 < f3}. (5.2)

The posterior mean J3 = 0.1776 is relatively far away from B1 and f,, and B, is relatively close
to B;. Therefore, the true conditional distribution might be skewed to 3;. We have to put more
conditional mass near ;. For this case w was chosen as follows:

10(8s — B2)°

w y B30, = , for < B3 < PBs. 5.3
(B21B1, B2 Bro) (s — B)10 B < B2 < P (5.3)

For (35, the support of the true conditional density is
{Bs : B4 < B5 < Bg, for any given 0 < B4 < f6}. (5.4)

The posterior means of 34, 85 and (g are
B4 = 0.3096, 35 = 0.5547, and f = 0.7814.

So, s is roughly in the middle of 34 and Bs. Thus, w was chosen as

1
w(Bs|B1, -+, B4, 86+, P10) = 77—, for [4 < B5 < fe. (5.5)
Be — Ba
For (3,0, the support of the true conditional density is
{B10: B < P10, for any given 0 < Bo}. (5.6)

The posterior means of 89 and 31 are ,Bg = 1.1384 and ,310 = 1.8483. In this case the set given in
Equation (5.8) is unbounded. We chose w as

1

= —|B0—Be—0.7|
T5030147° , for Bg < P10 < oo. (5.7)

w(ﬂlOlﬂh tt %y ﬂ9) =

Figure 2 shows that all the above choices for w gave the good convergence results of the
IWMDEs.
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Figure 2: The IWM estimated marginal posterior deﬁsity curves for 8y, B2, Bs, and Bqp.

5.3 Bayesian Prediction

The predictive mean and variance of y, at z, and the predictive density of Y, are given in
Equations (3.14), (3.15) and (3.13) respectively. As an example, we used

z, = (3654,5373,13204, 23859, 962, 580, 1787, 5443, 598, 371)’ (5.8)

as a point for prediction.
Let jiy, and Vy, denote the estimated predictive mean uy, and variance Vy, by simulation, and
s(fiy,) and s(Vy,) denote the corresponding numerical standard errors. We used 50 iterations to
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e

“warm up” the Markov chain, generated the GH&R Markov chain with n = 10* iterations and
m = 20 i.i.d. macro replications and obtained

iy, = 19296.9, s(jiy,) = 138.488 (5. 9)
Vy, = 1597690, s(Vy,) = 77260.9. (5. 10)

We used 10° GH&R iterations to evaluate the values of f,(y) in Equation (3.13) at 391 griddy
points in Figure 3. '
From Figure 3, the predictive density f,(y) is quite symmetric and unimodal. Therefore, we

can use 3-o limits confidence interval to predict y, at z,. This confidence interval is
(15504.9,23088.9).
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Figure 3: The predictive density of f,(y).

5.4 Robustness of the Prior

In Section 3, the flat noninformative prior on § was chosen, i.e.,

Wl(ﬁ) =1 IS(Q))

where S = {(B1,--+,510) : 0 < B1 < B2 £ -++ < P10, B € R%}. In practice, upper bounds ( ¢ ) on
the average number of cartons produced by trees at age j ( 7 = 1,2,---,10 ) may be known, at
least approximately. For category one the following values were suggested:

(1) =1,¢(2) = 1.22,¢(3) = 1.44,¢(4) = 1.67,¢(5) = 1.89,

¢(6) = 2.11,¢(7) = 2.33,¢(8) = 2.56,¢(9) = 2.78,¢(10) = 3, (5. 11)
and f3; < ¢(j), for j =1,2,--.,10. A reasonable prior that accommodates this information is
m1(8) = 1-Is+(B), (5.12)
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where
S*={é:ﬂj_<_C(j),j=1,2,"',10,_,3_€ S}a (513)

which we call the flat informative prior. The simulated estimates obtained with this prior are
reported in Table 5.1. It can be seen that there is very little difference in the estimates from the
two different priors.

5.5 Comments on the Implementation of the GH&R Sampler

Algorithm 1, a special case of the GH&R sampler, was programmed in single precision Fortran-
77 using the IMSL library. Computation times for the Bayesian estimators reported in Table 5.1
were in the order of 1.6 hours on Sun Sparc-station 1 and were based on 500,050 GH&R iterations.
It is clear from examining the standard errors thus obtained that considerably fewer iterations are
necessary to obtain modest standard errors.

It should be noted that it was not possible to generate all A; directly from Equation (4.5).
When the absolute values of both arguments (R} — p;)/oY and (Rb — p;)/olN of ® are suitably
large, the computer returns 0 or 1 for the argument of ®~! in Equation (4.5). Therefore the true
signed distance A; in this case could not be directly generated. For those extreme cases, we used
the uniform rejection/acceptance sampling instead of Equation (4.5), which yields good results.
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