UNIFORM AND SUBUNIFORM POSTERIOR ROBUSTNESS:
THE SAMPLE SIZE PROBLEM*

by
Anirban DasGupta and Saurabh Mukhopadhyay
Purdue University

Technical Report #92-20C

Department of Statistics
Purdue University

May 1992

* Research was supported by NSF grant DMS-89-230-71 at Purdue University



UNIFORM AND SUBUNIFORM POSTERIOR ROBUSTNESS:

THE SAMPLE SIZE PROBLEM

Anirban DasGupta and Saurabh Mukhopadhyay

Purdue University

Abstract

The following general question is addressed: given iid realizations X;, X,,..., X,
from a distribution Py with parameter @, where 6 has a prior distribution 7 belonging
to some family T, is it possible to prescribe a sample size ng such that for n > nyg,
posterior robustness is guaranteed to obtain for any actual data we are likely to see
or even for all possible data. Formally, we identify a “natural” set C such that
P(The observation vector X ¢ C) < ¢, for all possible marginal distributions im-
plied by T, and protect ourselves for all X in the set C. Such a set C typically exists
if T is tight. The plausibility of such a preposterior guarantee of postexperimental
robustness depends on many things: the actual decision problem, the nature of the
loss, whether the loss function is known, the variety of priors in I', whether the model
is regular or nonregular, the dimension of the parameter 8, etc. We explore a variety
of these questions.

There are two aspects in these results: one of them is to establish the plausibil-

ity itself; this is done by showing uniform convergence to zero of ranges of posterior
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quantities. This part forms the mathematical foundation of the program. The second
aspect is to provide actual sample size prescriptions for a specific goal to be attained.
This forms the application part of the program.

For instance, for testing that the mean of a multinormal distribution belongs to
some (measurable) set B, the range of the posterior probability of the hypothesis
converges to 0, uniformly for all likely X and uniformly in B, at a rate 71—7-; In the
one dimensional case, the range of the posterior mean converges to 0 uniformly for all
likely X, uniformly over the class of all Lipschitz functions, at a rate % These assume
conjugate priors.

If logm has a bounded gradient, then in any arbitrary dimension, a remarkably
strong robustness obtains. For instance, any pair of HPD credible sets of a given level
are guaranteed to be visually identical for large n. This is proved by showing that
uniformly in X, the Hausdorff distance between the two sets goes to 0 at a rate ﬁ

It is demonstrated that much as in classical theory, the rates and the calculations
are different in nonregular models. In particular, the classical rate for the regular case

can be maintained uniformly over a broad class of loss functions. These results are for

the uniform case.

Key words: Prior, Posterior, Uniform robustness, Confidence sets, Risks, Hypothesis

tests, Nonregular, Nonconjugate.

AMS Clasification: 62F15, 62C10.



1 Introduction

1.1 The general goal

In finite dimensional parametric problems, considerable evidence has now accumulated that
if the observed data are such that the likelihood function is moderately concentrated near a
common center of the priors, then posterior robustness is obtained in a broad and general
sense. There are things which are not well understood here; for instance, the role of skew-
ness in the priors or the effect of the dimension. It is also expected that in regular statistical
problems, the quality of posterior robustness will improve with an increase in sample size.
Loosely speaking, the central reason for such an expectation is the convergence to normality
(independent of the prior) of the posterior distribution under frequently satisfied conditions.
Thus posterior robustness may obtain by virtue of a secondary phenomenon, namely, close-
ness to classical inference. These are broad and vague statements. Mathematics should be
much more precise: on grounds of aesthetics, as also for actual practical utility. The general
goal of this article is to address and answer the following general question:

Suppose an observable X (let us say a sufficient statistic arising out of n iid realizations
Xi,..., X, from some model) has distribution Py, and the parameter  has a prior (proba-
bility) distribution 7 belonging to a specified family I'. Can we demonstrate the existence
of an explicit sample size ngy such that posterior robustness is guaranteed to obtain for this
sample size (or larger) if the actual observed z when the experiment is conducted happens
to be any of the z’s we at all expect to see. In other words, we will protect ourselves against
all plausible z that may occur once the experiment is conducted and this we attempt to do
by only selecting the sample size. The hope, of course, is that the required sample size ng is
realistic. We will try to show some general structure in these problems; no doubt, the an-

swers will depend on the nature of the problem. But an explicit prescribed sample size for a



specific goal and some concrete mathematical structure in the general problem are our main
objectives. We call this the problem of subuniform posterior robustness. If the observed
data r are one against which we are not preprotected, we have reasons to worry about the
model assumptions we have made, for such data z were not surmised at the design stage.
In some cases, we will actually go all the way and demonstrate the presense of posterior
robustness for all possible z provided only the sample size is sufficiently large. We will call
this uniform posterior robustness. We will solve the simpler problems in this article since
this is our first excursion into this area. Some of these problems relate to the concept of
stable estimation; see Kadane and Chuang (1978). Also see Meeden and Isaacson (1977)
and Lehmann (1986). For a general exposition to Bayesian robustness, see Berger (1985).
We suspect some others may have toyed with some of the ideas presented here, and may
have even been surreptitiously aware of the plausibility of some of the results, particularly

notable among them Herman Rubin.

1.2 An illustrative example

Let Xi,...,X, be iid N(8,1), so that the sufficient statistic X ~ N (6, 1). Interest lies in
testing Ho : 6 < 0. Elicitation has produced a family of conjugate normal priors N(0,72),
where 0 < 72 < 72 < 72 < 0o. Robustness goals may be quite different. Suppose we will
like to have the posterior probability of Hy to vary in a range of at most ¢, where ¢ is a
prespecified (small) positive number (¢ may even depend on n). The question then is what
is the smallest sample size for which the goal is realized provided z is any of the values we
expect to observe. Formally, let £ > 0 be fixed; suppose C is such that P(X ¢ C) < ¢ for
all possible marginal distributions of X under the specified priors on §. We like to know if

there exists ng such that n > ng implies

sup P(Ho|z) — inf P(Hylz) < ¢; Vz € C,



where the sup and inf above are naturally with respect to the specified priors. From a
practical point of view, it is crucial that we can identify an explicit no. Notice a set C with
the given property is clearly not unique. In fact in some problems such a set C' does not
even exist (for instance, when the set of priors is such that the marginals do not form a tight
family). But often such C does exist and furthermore there is a unique natural choice of C.
For instance, if 0 is a location vector and the family of priors I' is tight, then C exists and can
be assumed compact. If T' is not tight, existence of C is severely geopardized. For instance,
if 0 is the mean of a normal distribution on the line, and T is the class of all symmetric
unimodal distributions, then no such C exists.

The level sets of each marginal distribution are symmetric intervals [—a, a] and a natural
choice of C' is therefore C' = [—a(e), a(e)], where a(e) = 2503, with o} = % + 75 and z¢ the
100(1— %)th percentile of the N(0,1) distribution (notice this is the set of smallest Lebesgue
measure among all C' with the desired property). The family of posterior distributions is

2
r . T;
N(rz,—) with ry <r <7y, where r; = +— We thus need:
n

2
n i

(1) sup |®(y/nryz) — ®(\/nriz)] < e

|z|<a(e)

By symmetry, it is sufficient to have
(2) ®(v/nryz) — ®(y/nriz) < ¢ for 0 <z < a(e)

By elementary methods, the LHS of (2) is maximized on the interval [0, a(¢)] at

( log 2 )% i 20 < ale)
—_—T if z a(e
n(re — 1) 0=

= a(e) if zo > a(e)

=29 =

The condition z¢ < a(e) is equivalent to

=) 5 Loy (0 to))

1+ n7 z% 2((1 + n7d)

(3)



Since the LHS of (3) is monotone increasing and the RHS monotone decreasing in n, and
opposite inequalities between the two sides hold at n = 0,00 respectively, inequality (3)

holds for all sufficiently large n. Hence, for large n,

(4) sup (®(y/nrez) — 8(ynriz)) = O(Vnryz0) — O(VnT120).

0<z<a(e)
A patient but easy calculation shows that \/nr;zo — 1 as n — oo for each ¢ = 1,2, and
hence for any ¢ > 0, (1) is guaranteed to hold for large n. We now go one step further and
establish the precise rate at which (4) converges to zero.

By the fundamental theorem of calculus,

(5) ®(y/nraz0) — B(y/nrize) = O((VnT220 — V/nT120) (1)),
BT @)

where ¢(.) denotes standard normal density. However, (5) is easily seen to be O ( )
213 n

implying that the maximum possible range of the posterior probability of Hy : 8 < 0 con-

verges to zero at the rate of 1 and indeed,

2 _ .2
(6) n sup(sup P(Ho|z) — inf P(Hy|z)) — 2n $(1)
o0 277}

Formally, (6) is valid even if 72 = 0 or 7} = oo; notice the interesting fact that (1) cannot

hold for large n if the degenerate normal distribution is a possible prior. In this case, one
has the amusing fact that (1) holds only for sufficiently small n!

The smallest sample size ng for which (1) holds is reported in Table 1 for various 72,72, ¢
and e. Two features immediately stand out: if 71,7, are are both small or both large, the
required sample size ng is astonishingly small. If 7y is small and 7, is large, as expected, ng
is large. For instance, if € = 0.1, ¢ = 0.01, 7y, = 1 and 7, = 5, then one only needs a sample
of size 12 for (1) to hold. This example is an elementary illustration of the problems we

address in the rest of the article.



1.3

Overview

As commented before, the plausibility of a preposterior guarantee of subuniform or uniform

posterior robustness will depend on many features of the problem:

a.

h.

the nature of the priors: are they all concentrated, or all flat, or some concentrated
and some flat? It will be seen that in the latest case a preposterior guarantee is the

hardest to provide.

the nature of the decision problem: for instance, estimation or testing? It will be seen

that a guarantee is easier in testing problems than in estimation problems.

the nature of the loss function: the effect of the loss is particularly prominent on the
rate of convergence to zero of ranges of posterior quantities. For some losses, the
rate can be frustratingly slow, especially in high dimensional problems, making the

guarantee largely ornamental.

is the loss function fully known: if it is not (indeed many think a loss is more difficult
to ascertain than a prior), then one needs a guarantee simultaneously over a broad

class of loss functions.

is the prescribed sample size for the use of one individual or many or the community
as a whole? The larger the client group, the larger is the potential family of problems
we need to be protected for and the harder it is to provide a preposterior guarantee.

This is related to the point made in part d above.

is the model regular or nonregular: from our training in classical inference, we should

certainly expect to confront quite different calculations in the two cases.

are we content with subuniform robustness or have the ambition of uniform robustness.

All of these issues will be addressed to the extent that it is possible to do so in this article.
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1.4 Outline

Section 2.1 treats the one dimensional normal problem with conjugate priors. The mul-
tivariate normal case with conjugate priors is considered in section 2.2. In section 3, we
consider a natural nonregular problem, namely the U[0, 8] case. Section 4 describes a family
of problems with nonconjugate priors where full ledged uniform robustness can be guaran-
teed. Section 5 gives a concise summary and discussion. Within each individual section, a
variety of problems is addressed. Our principal goal is to give the reader an initial but broad
insight into this general problem. The specific problems are discussed in more detail within

the individual sections.

2 Normal likelihood

2.1 The univariate case

The illustrative example in subsection 1.2 deals with a common testing problem. We will
treat the point estimation problem here. The problem of estimating the mean is of primary
importance. We will consider more general functions including the mean as a special case.
The main mathematical goal is to establish the possibility of a preposterior guarantee and
the appropriate rate of convergence. The main practical goal is to provide an explicit sample

size prescription for the benefit of the user.

1
Theorem 1 Let X ~ N (0, ;) and let 6 have a prior m belonging to the collection T' of

N(0,72) distributions, with 0 < 72 < 72 < 12 < 0co. Let h(.) be any function such that
i. h(—0) = h(6),
i. h(0) is nondecreasing for 6 > 0,

ii. h(0) is everywhere twice continuously differentiable with h'(6) # 0 if § # 0.

8



1
Let C be the interval [—2%0'2,2’%0'2] where 0 = = + 12. Then for squared error loss,
n

2 2
T9 — T4

25Ty lh' (Z§UZ)| asn — oo

(7) nsup [sup E(h(0)|z) — inf E(h(0)|:c)] - =
reC T ™ Tl 'T2
In particular, subuniform posterior robustness obtains with the mazimum range of posterior

1
expectation of h(.) converging to 0 at a rate of e

Discussion: Again notice that if a point prior is entertained, a preposterior guarantee can
not be given. The result stated above automatically handles all functions of the form §%+1
for nonnegative integers k. For even moments, the rate is the same, but a different proof is
required.

The following general notation will be used repeatedly: for 77 < 7% < 72, define

1 2
- +77 = o},

2

= 7‘1',

L, 2
w7

2
T > = r, and
nt T

(8) zs0y = afe)

Proof of Theorem 1: If 6 has the prior N(0,7?), then it has the posterior N(rz, ), with
r1 < r < r2. By virtue of property (%) of h(0), it is enough to consider only 0 < z < a(¢).

For any given 0 < z < a(e),

V27
_ /{e-%(o-m)z _ e-%(‘“”)"’}h(a) do,
0

E(h(9)|z,7) = v 76-%(0-m>2h(0)d0

B Varr

which because of property (i) of h is monotone nondecreasing in r for given z by standard

monotone likelihood ratio arguments. Hence, for given 0 < z < a(¢),

sup E(h(0)|z) — inf E(k(0)|z) = ‘;fr / L YO
g ™ 2



0—r1z)?
(9) \/271._7‘1 / e -5 (0-m12) h(a)

Another monotone likelihood ratio argument treating 0 < z < a(e) as the parameter estab-

lishes (9) as monotone nondecreasing in x, implying that
sup [sup E(h(6)]) — inf E(h(0)|:v)]
(10) [(h(a 10 ~ N(rsa(e), 2 ] [(h(o )10 ~ N(ria(e) )]

The assertion of the theorem now follows on a two term Taylor expansion of h around z¢7,
2 _ .2

T2~ T
TiTd

and using the fact that r; — 1 and n(ry — ry) — as n — 0o.

Corollary 1 For any given ¢ > 0,and © as in Theorem 1,
sup [sup E((0)|z) - infE(h(0)|:c)] < e
z€eC L m L

for all large n.

For h(6) = 0, the actual prescribed sample sizes ng are given in Table 1 for various combi-
nations of 71,72, and ¢. The result above shows that for a broad class of skew—symmetric
functions, the range of the posterior mean converges to zero at the rate of ;12- The result,
however, is not uniform over the functions h. We will now show that - is in fact the rate of

convergence uniformly over another broad class of functions, the function A(f) = 0 being a

particular member of this class.

Theorem 2 Let F be the class of all functions with Lipschitz norm < M, i.e.,
|h(u) — R(v)] < Ml|u —v|,
where M < oo is fired. Then,

sup sup [sup E(h(0)|z) — inf E(h(0)|:1:)] =0 (%) .

z€C heF L «
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Remark. In analysis, consideration of the Lipschitz class allows looking at functions with
many zigzags. The function h(f) = |0|, which is of statistical interest, is one example. See
Hewitt and Stromberg (1978).

For the proof of Theorem 2, we need the following facts. We will let M = 1 without loss

of generality.

Lemma 1 Given two probability measures P, and P;,

/hdpl—/hdp2

=inf{E|X-Y|: X~ P,Y ~PR}.

sup
heF

Proof: See Kantorovich and Rubinstein (1958).

Remark. The infimum on the RHS of the above lemma is with respect to all joint distri-

butions having P; and P, as marginals.

Lemma 2 If P, P, are distributions on the real line with corresponding CDF’s Fy and F;,

then

inf{E)X ~Y|: X ~P,Y ~ P} = / |Fi(z) — Fy(z)|da.

—0o0

Proof: See Dall’Aglio (1956). Also see Dudley (1968) and Rachev (1984).

Combining the two Lemmas, one gets that
[P~ [hap,

Proof of Theorem 2: For a fixed pair of posterior distributions, say, P, = N(rz, £) and

/thT —/ths is O (-71;) Even

sup
heF

- / |Fi(z) — Fy(z)| do.

P, = N(sz, %), and for a fixed z, we will prove that sup
heF
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though r,s and z all vary in compact sets, this is not enough to establish the assertion

1
of the theorem. However, the — rate for fixed r,s and z will be proved by demonstrating
an expansion for sup

hef/th /th

coeflicients that can be universally bounded. This is enough for proving the theorem in its

1 1
in powers of — 1 , with the leading term as — and
n

full strength. The following are the main steps.

Step 1. If F,, F; denote the CDF’s of P,, P; respectively, then

_7 |F.(0) - F.(0)|d0 = _7 2 (20 -ro) - @ (/20 - s2)| @
iy

-/ (q> (\E(o - 3.7:)) _9 (\/g(a - r:z:))) do

+ 7 (2 (20 -r)) -2 (/200 - s2))) do

—I\/TS

Step 2. On the first of the two integrals, separate and write as

(\/-(H—S:c)dﬂ— (\/—(O—rm)>d6

(both are finite). On the first of these, make the change of variable \/E(H — sz) = u, write
s

®(u) as / #(t)dt and use Fubini’s theorem to obtain the integral as

(~evFs +52) 8 (VF = VaWAE) +1[26 (V= Va)Wz) = T+ Ty (say)

The second integral similarly gives

(~2vFs +72) @ (V5 = VRVR) + /=8 (Vo ~ VAIWAz) = Ty 4 Ty (sa)

1
Step 3. T,—T,gives an expansion with terms gy k > 1, since ¢ ((\/_ — \/_)\/—a:)

1
#(0) = ors and the multiplier \/— \/— has the stated expansion. All coefficients can be

bounded independent of r, s and z.
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Step 4. T; — T3 similarly admits an expansion with terms %, k > 1. This is because
+(\/r—+/3)v/nz — 0 and the outside multiplier (s—r)z admits the stated expansion. Again,
all coefficients can be bounded.

Step 5. The second integral

[ (o (Z0-ra) -0 (,[Z0-5)) ao

can be handled by the same argument on transforming § to —6 so that the interval of inte-
gration is again a neighborhood of —oco and thus the integrals can be separated. Combining

steps 4 and 5, the theorem is obtained.

2.2 The multivariate case

In this section we will look at the so called symmetric normal problem, i.e., we let X ~
Ny(8,%1) and @ ~ Np(0,7%I), with 77 < 72 < 72. Then, using the notation of (8), the

posterior distributions are Ny(rz, =1 ), with r; <7 < ry. The set C is now the sphere

(11) C = {z:||z]l: < o2xc(p)} »

where x%(p) is the 100(1 — &)th percentile of the chi-square distribution with p degrees of
freedom. We consider the question of a preposterior guarantee in four different problems.
This are now addressed one at a time. The results are all valid, with modifications, if the

covariance matrix ¥ of @ satisfies ¥y < ¥ < ¥,, X;,%; p.d.

2.2.1 Point estimation of the mean

The result stated in this section is entirely trivial and is stated merely for the purpose of
direct reference. The theorem stated below shows that the diameter of the set of posterior

1.
means converges to zero at the rate of — irrespective of the dimension p.
n

13



Theorem 3 Under the structure assumed above,

2_ .2
(12) n sup diam(S(z)) — Zy—tmx.(p) asn — oo,
z€C Ty T

where diam(S(z)) denotes the diameter in Euclidean distance of the set of posterior means

for given z.

Proof: Trivial.

Discussion. Thus again we can give a guarantee of the posterior means being very close
together for all large samples simultaneously for all data likely to be observed. Notice also
that Theorem 3 implies that in very high dimensional problems, the sample size needs to
grow only at the rate of ,/p to ensure subuniform posterior robustness. Again, the actual
prescribed sample sizes are given in Table 2. The sample sizes make the diameter of S(x)
less than or equal to 2 \/g uniformly in ¢ € C. The accuracy index 2 \/—g comes from the

standard error of the classical estimate, since 2 \/g is the distance between —ﬁl and -\}—;1.

2.3 Range of risks

Apart from keeping the posterior means close together, it may be important to keep the range
of the posterior risks small. Indeed, some have argued that only the posterior risk needs to
be robust. Here we state and prove a theorem on the maximum range of the posterior risk
for general power losses of the form || — a”l;, k > 0. We will explicitly demonstrate the effect

of the actual value of k on the problem at hand.

Theorem 4 Let the likelihood and the priors be as in Theorem 3. For estimating the mean 0

using the loss ||0 — a||s, k > 0, let r(x,z) denote the posterior risk for a fized prior . Then,

E . k25-1D(kt2) (12 — 72
(13) nzt! ms;ls%)p[s:p r(m, ) — inf r(m,z)] — F((g 7'12(7'222 1), asn — oo

14



Discussion. Several points, although elementary, are worth noting. First, the posterior
robustness in risk is fully uniform, a gift of the conjugate structure (although, also see
Section 4). Second, the rate of convergence to zero is # Thus the faster the loss goes
to zero at zero, the easier it is to provide a guarantee of posterior robustness — an expected
phenomenon. Finally, for very high dimensional problems, a straightforward calculation
using Stirling’s formula and (13) gives the fact that as p — oo, the maximum range of the
posterior risks is O(j%), so that n needs to grow at the rate of pHLk to ensure uniform
robustness of posterior risks.

Proof of Theorem 4: Under the N(rz, ZI) posterior, the posterior risk equals
NGw)
I'(%)

(14) is maximized at r = r, and minimized at r = r;. From here, the theorem follows on

o
Nl

(14) E(|l0 ~ra|l* | 0 ~ N(ra, 1)) = (=)% 2

elementary calculations.

2.4 Hypothesis testing

The example in Section 1.2 demonstrates that for the common one sided testing problem
in one dimension, the range of the posterior probability converges to zero uniformly over z
in C at the rate of % However, keeping in mind the point we made in section 1.3 (point
e), if the prescribed sample size is for the use of many individuals or the community as a
whole, we cannot reasonably assume that all clients would want to test the same hypothesis.
Indeed, in such a case, we have little control on which hypotheses may be tested. In this
section we prove the surprising result that for testing an arbitrary hypothesis Hy : € B,
uniformly over all measurable B, it is possible to give a preposterior guarantee of robustness
in the posterior probability of Hy. The price to pay is a slower rate of convergence. But we
show that irrespective of the dimension p, the rate of the convergence is ﬁ Thus a common

sample size can be prescribed for all arbitrary hypothesis testing problems that guarantees a

15



range of posterior probability smaller than any prespecified (small) number simultaneously
for all z we are likely to see. While this result is mathematicaly attractive, the actual sample
size prescriptions in Table 1 show that the price to pay for such an ambitious all engulfing

posterior robustness is indeed high.

Theorem 5 Let the likelihood and the prior be as in Theorem 3. Consider the hypothesis

testing problem Hy : 0 € B, where B is any measurable subset of R?. Then,

sup sup[sup P(0 € Blz) —inf P(0 € B|z)]

(15) < (722 = m)xe(p) PP ) 1
= V2 (1+ n7'12)(1 + n7'22) T2 1+nrd

Discussion. From Theorem 5, it is clear that the LHS of (15) converges to zero at least as

fast as T We will later prove that it can not go to zero faster than \/—, which will establish
ﬁ as the correct rate of convergence. Thus, specializing to specific hypotheses (such as
Hy : 6 <0 as in section 1.2) may lead to a faster rate of convergence. The following two

fundamental lemmas are useful for proving Theorem 5.

Lemma 3 Let Q)1 and Q; denote the Np(p1,I) and Np(p2,I) distributions respectively.

Then,
sup [Q1(B) — Qa(B)| < 27% i — |
Proof: Easy on using the well known fact that
up [Qx(B) - Qa(B)| = 5 [ 10(0) - aselde,

where ¢; is the density of @;.
Lemma 4 Let Q); and Q, denote the Ny(0,1) and N,(0,%) distributions respectively. Then,

sup [Q1(B) — Qx(B)| < p 27| — 1,
where || Apxpl||3 denotes trA’A.

16



Proof: See Pfanzagl (1973).

Proof of Theorem 5:

We will first prove that for any fixed pair of posteriors P; and

P; (each normal), sup ¢ supg |Pi(B) — P,(B)| satisfies the bound given in (15). This will

imply that uniformly in = belonging to C, and for any fixed B, any two members of the set

of numbers {P,(B)} are at a distance equal to at most the RHS of (15), where {P,} denotes

the total collection of posteriors. Since the RHS of (15) is a universal constant, the required

assertion will follow from this.

Towards this end, let P; be the Ny(rz,%I) distribution and let P; be the Np(sz,2T)

distribution; here z is now fixed, and assume without loss of generality that r; < s <r < r,.

For notational convenience, we also denote the variational distance supg |P;(B) — Py(B)| by

|1 — Po|-
Hence,
1P — Pl

r S
IIN(rx’ ;I) - N(3$7 ;I)”
IN(rz, =) — N(sz, =I)|| + |\N(sz, —I) — N(sz, > 1)

Tz, - sz, - sz, - ST, -
(triangular inequality)
sup | P(Y; € BIY; ~ N(ra, ~1)) — P(¥; € B|Y; ~ N(sz, -]))|
sup | P(Y; € B|Y, ~ N(sz, ~1)) - P(Y; € B|Y; ~ N(sz, ~1))
sup|P(: € By["|2, ~ N(\/Em',l)) —P(Z € B\/Zz2 ~ N(\/Zz,fm
B r r r r

sup|P(Y; € BIY; ~ N(0, %1)) — P(Y; € B|Y, ~ N(0, %1))|

(change of variables)

sup |P(Z, € B|Zy ~ N( %rz,[)) — P(2, € B|Z, ~ N( §sx,1))|
B

sup |P(2 € B\/?z1 ~ N(0,1)) - P(Z, € B\/?z2 ~ N(O,21))]

(B \/g and B form the same collection of sets plus change of variable)
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= IN(/Zre, 1) = N(y[=sa, DI+ [IN(0, I) = N(0, 21}

< 2 Tre = [Lsell 2 20 = 20,
r r r

(Lemmas 3 and 4)

= el +pt 2P I
r
Vo

(16) < \/271(7‘2 — 71)o2xe(p) + p* 2°

+172— 71

r1
(15) now follows from (16) on using the definitions of r1,r; and o5 given in (8). This
proves Theorem 5.

We will now show that the rate of convergence of the LHS of (15) cannot be faster than

1

7

Theorem 6 Forr > s,

INirz, =) = Mafsz, ) = 8(/2(a — 52)) + 8(y/>(a + s2)
(1) ~ (/2 (a—re)) - 8(/(a +r2),
where a? = sy log L + rsz?.

Proof: It is well known that

S
|Ma(ra, =) — Na(sa, )]

nr s

(18) = 5 [ 16O~ 1010 (say).

;From (18), the Theorem follows on straightforward integration on using the fact that f,.(4) >
f+(0) iff |6} > a.

Corollary 2 The LHS of (15) cannot converge to zero at a rate faster than ﬁ
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Proof: Since the LHS of (15) for p = 1 is greater than or equal to || N:(rz, £) — Ny(sz, £)||
for any fixed r,s, and z € C, the corollary will follow for p = 1 if it can be proved that
(17) converges to 0 at the rate —\/l—ﬁ- This, however, follows on noting that <I)(\/§ (a — sz)) —
tI’(\/-%_(a — rz)) determines the rate of convergence of (17) and a two term Taylor expansion
around zero estabilishes this rate to be ﬁ Since the variational distance cannot go to zero
faster than ﬁ in one dimension, the same is true on considering rectangles Bx R x ... x ®
in any dimension.

Remark. Inequality (15) is used in Table 1 to provide prescribed sample sizes for making

the LHS of (15) smaller than ¢ for various choices of 11,72, and c.

2.5 Construction of robust confidence sets

For estimating a multivariate normal mean, the classical confidence set

(19) 1102 < X;%”}

covers (in the frequentist sense) § with a probability of 1 — « for all # and has the property

that its volume converges to zero at the rate of ;15' In order to be competitive, it may
therefore be desirable to construct a confidence set for  which has a posterior probability of
1 —a for all priors 7 under consideration and whose volume goes to zero at the classical rate.
We will prove that this is indeed possible and demonstrate such a set. We will also provide

the usual preposterior guarantee for the volume to be smaller than a specified number for

all z we are likely to see.

Theorem 7 Let the likelihood and the prior be as in Theorem 8. Consider the confidence

set

S(z)={0:]10 — roz| < c}
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with rg = /113 and ¢ = Q-E_jnl;al, where F(.) denotes the CDF of a noncentral chi-square

distribution with p degrees of freedom and noncentrality parameter

)2
(20) § = notl(p) =T

T2
Then, P(0 € S(z)|z) > 1—a for all priors 7 under consideration and furthemore, sup,¢c vol(S(z))

goes to zero at the rate —15_-

Discussion: The problem of determining the confidence set that actually minimizes vol(S(z))
under the restriction that inf, P( € S(z)|z) > 1 — a is hard. Some results of this type are
known for suitable prior families. See DasGupta (1991). Notice the curious fact that instead
of centering the suggested set at 1112'—’-13:, we are centering at |/ri72z. This has a mathematical
advantage. Any statistical benefit is unknown.

Proof of Theorem 7: For notational convenience, a random variable with a noncentral
chi-square distribution with p degrees of freedom and noncentrality parameter § will itself
be denoted by NCx?(p, 6). Also, let Ny(sz,2I) be a typical posterior distribution and cor-

responding probabilities are denoted as Ps(.). Then,
, n , ne
Py((0 — roz)'(0 —roz) <¢) = Ps(;(a —roz)'(6 — roz) £ —)
3
= P(NCx*(p,)) < %)

(where A = Z(s — ro)?||z||?)

v

P(NCx*(p,)) < -TEE) since s < ry
2

n\rq —7r 2 nc
PV, LI g < 26

A%

(since noncentral chi-square distributions are stochastically

increasing in A and (3_:")2 < (72;2"’)2 by calculus)

v

ne
(21) P(NCx*(p,6) < -)
(since W”xw <éfor z € C)
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The first assertion in the Theorem now follows from (21).

To prove the second assertion, it is enough to show that F~'(1 — a) = O(1) for any
0 < a < 1, since r, = O(1). This will follow if we can exhibit M > F~'(1 — &) such
that M = O(1). However, this follows immediately on choosing M = 2 from Chebyshev’s

inequality

5
(22) P>y < LS

since an easy calculation shows that § = O(2). This completes the proof of the Theorem.

Remark. Again, for practical utility, an explicit prescribed sample size ng is necessary. This

is provided in Table 1.

3 Nonregular cases

The classical asymptotic theory for nonregular distributions provides interesting departures
from the regular case. For instance, for n iid observations from the U[0, ] distribution, the
MLE of 6, when normalized, converges to an exponential distribution (this is not surprising
in view of the well known extreme value theory: see Galambos (1987)). Furthermore, the
normalizing constant is n rather than y/n. This departure from the regular case permeates
into the present family of problems. We will demonstrate this by considering the UJ0, 6]
case. Again, we look at a number of problems.

The results in this section assume the following common structure:
Xi,..., X, YWy, 0,
6 has a Pareto distribution with density

aa®

7T(0)=W, 02@
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We assume a is known and let a3 < a < az < oo. Without loss of generality, we will work

with the likelihood function

n mn—l

f(elf)="%— 0<z<o.

The posterior distribution of 8 is then another Pareto with density

(n+a)(z Va)"te
gnt+o+l ’

dve(0) = 6> zVa.

3.1 Hypothesis testing and variational distance

As in the regular normal case, we will consider the possibility of a preposterior guarantee of

posterior robustness simultaneously for all possible null hypotheses.
Theorem 8 Let the likelihood and the priors be as above. Then,

sup sup [sup P(6 € Blz) — inf P(0 € B|x)]

z>0 B
(23) _ (aﬁn):‘é%_(aﬁn)%—*—&
“\og+n a+n

Discussion. There are two principal features worth noting. First, the uniform posterior

robustness. In fact, the proof of the Theorem will reveal that for any fixed z, the variational
diameter of the posteriors is the RHS of (23). Secondly, the RHS of (23) is O(2). There is

thus a difference in the rate of convergence as compared to the regular normal case.

Proof of Theorem 8: As before, we will evaluate
(24) % / |dva(8) — dvs(6)|d8 for on <A< a<as

and then evaluate its supremum over o, # and £ > 0. The maximization over z will be seen

to be redundant.
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(24) equals, for fixed ,

1 o (n+a)(zVa)"t™ (n+pB)(zVa)tP
5 | gnta+l - Pn+B+1

|d6

2 zVa

1 f° n+a n+p

“2h | antatl  omtB4l

1 fRfn+a n+pf d © (n+ n+a d
T 9 )i \ntet1 T nish z+ /R B+l yntatl s
1

(where R = (m)a_—ﬁ),

|dz

B+n
B+n = B+n)\=P
(25) = —~
oa+n a+n

Notice (25) is free of z.
To see that (25) is maximized when § = «a; and a = ay, first hold «a fixed and let
u = 22=. Then (25) equals (1 - u)x. 7= on algebra. Since u cannot go outside of [0, 1], and

(1—u)%. T is monotone nondecreasing on [0, 1], it follows that given «, (25) is maximized

when 8 = oy (recall 8 < a). Symmetry gives that given 3, (25) is maximized when o = a;.

The two statements now give (23).

Corollary 3 Under the assumed model,
sup sup[sup P(0 € Blz) — inf P(6 € B|z)] = O(2).
z>0 B =« g n

Proof: Simple on using (23).

3.2 Point estimation with an uncertain loss function

As we commented in section 1, it is important to keep in mind that the loss function is as
hard to elicit as a prior, perhaps even more. Theory of utility implies a bounded utility
function. With this as the motivation, we will assume that we only know that we have an
invariant loss L(6,6) = W (%) where 0 < W(t) < 1 is a nondecreasing function of |t — 1|.

The truncated invariant quadratic loss (and many others) satisfies this requirement. Thus
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there is little that is assumed about the functional form of the loss function. The following
problem is addressed here: take a reasonable and common point estimator. Can one then
prescribe an explicit sample size which will guarantee a small range of posterior risks for this
estimate simultaneously for all priors, all losses, and all = one is likely to see? We will take
the MLE of @ as the procedure and demonstrate that even this towering goal is attainable.

First we need to identify a set of x one is likely to observe.
Theorem 9 Under the assumed structure,

a. Fach marginal distribution of X is unimodal about a.
b. P(X < a) — 0 as n — oo uniformly over all marginals.

c. Givene >0, P(a < X <ka) > 1 — ¢ uniformly over all marginals, where

1

provided n > 15;"' cQ.

Discussion. We will take the interval C' = [a, ka] to be our set of X. Notice the very
curious fact that the marginals all have a common mode but the probability of being smaller
than the mode is uniformly small! The interval [a, ka] is thus not a level set of any of the
marginals. But taking the set of  to be on one side of a saves an enormous amount of

unnecessary technical warfare.

Proof of Theorem 9:

a. On direct calculation, the marginal distributions have densities of the form

ana® z™ 1

n+ta (zVayrte’

(27) m(z|a) = z >0,

which are unimodal with mode at a.
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b. ;From (27), P(X < a) = =2, which converges to zero uniformly in a, for a¢; < a <

n+a’?
Qg < 00.
c. (From (27),
(28) Pa<X<ka)=1- 2Tk
n+ao

1
Thus it is sufficient to have k > (ﬁ) ®. This holds by construction of k.

The following well known fact is needed due to the multiplicity of loss functions.

Lemma 5 Let Py, P; be any two probability measures on a measurable space [S,B]. Let
2 be a family of measurable functions W(-) on S. Define the family of measurable sets
F={B:B=Wz,1:0< z <1,W in Q}. Then,

sup | | WdP, — /WdP2| = sup |P(B) — P2(B)].
WeQ BeF

Theorem 10 Let the likelihood, prior and the loss be as described before. Consider the MLE

of 8, namely, 6(X) = X. Then,

sup sup |sup r(w, W, ) — inf r(7, W, 6)]
z€C W T &

(29) B (a1+n)£’-+7'§ _ (a1+n)a—‘2-+%
T \agtn az+n

where r(m, W, 6) denotes the posterior expected loss of §(x) when the prior is m and the loss

function is W,

Discussion. Notice the remarkable fact that (29) simply equals the maximum range of
posterior probability of a null hypothesis as given in (23)! This connects the point estima-
tion problem with an uncertain loss with a hypothesis testing problem with an unspecified
hypothesis. The added mystery is that the coincidence occurs only for the MLE. Note that

we already know that (29) converges to zero (at a rate of 1) and thus we can provide a
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preexperimental guarantee of posterior robustness for all likely z even when little is assumed
about the form of the loss function.
Proof of Theorem 10: Fix any two posteriors v, and vg.

Then the difference in the posterior risk of the MLE under v, and v equals

| [W(S)dva(6) = [ W(E)dva(O));

recall 8 > z > 0.

Using the notation of Lemma 5, the family F consists of sets

B = {6:]5-121)

[1it’°°)

since @ > z. Here 0 <t < 1. Thus, by virtue of Lemma 5, it is enough to evaluate

T

(30) sup sup sup |Pn(0 >
z€C a1 <P<aas 0<tL1 1-—1¢

[2) = Po(6 > 7o)

Since z > a for z € C,

(31) [Pa(0 2 —— ) — Po(0 2 7= la)| = |(1 — )" = (1 - 1)+,

1

For given a, 3, (31) is maximized at

(32) t:l—(ﬂ+n);l_§.

Substitution into (31) and a repetition of the argument following (25) establishes the Theo-

rem.

3.3 Construction of robust confidence intervals

The purpose here is to construct an interval I in analogy with the regular normal case such

that inf P(0 € Ilz) 2 1 — v where 0 < v < 1 is specified and such that the length of I goes
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to zero (uniformly in z belonging to C') at the classically attainable rate. The classically

1

attainable rate is :- since the standard classical interval [z, 2y~ =] has a length converging to

zero at the rate 2 if  is in a compact set independent of n (which the interval C' = [a, ka]
is).
Theorem 11 Let the likelihood and the prior be as in Theorem 10. Define the interval

I= [a:,z'y‘(”"'“l)] .

Then inf P[0 € I|z} > 1 -, and

supyec Length (I) S ppr p

i
( n )01 ) (7_(n+a1) _ 1) - a

= 0(>).

Proof of the Theorem 11: Straightforward calculation gives everything except the rate of
convergence. The O(2) rate is proved by using that (;—('—rt++1)—a_1) ar is O(1) and (y~(rte) 1)
is O(2).

Remark. Again notice the departure from the corresponding problem in the regular case,

where the rate of convergence was 71—;

4 Nonconjugate priors

The material in sections 2 and 3 assumed conjugate priors. This made explicit calculations
possible and easier. Very often, however, protection against nonconjugate priors consistent
with elicited information is desirable. Many results with nonconjugate priors are available in
Mukhopadhyay and DasGupta (1992). We will only describe two results with nonconjugate
priors here. The robustness obtained in these results is uniform over all z and brings out

a novel connection between the earlier classical works of Strawderman and Cohen (1971),
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Brown and Hwang (1982) etc. and the issues of posterior robustness presented here. We

discuss this at more depth after the following results.

Theorem 12 Let Xi,..., X, be iid N(0,I) and let § have a prior density w(8) belonging to

some family T'. Assume that

|[V=(6)]]
—_— KL .
(33) ilégs%p w0 S K <o

Then

a. There ezists a universal constant M; such that

My
VoS

(34) sup sup |sup P(0 € Blz) —inf P(0 € B|a:)] <
zeRP B s 1r

b. For any two priors m; and w2 belonging to T', if S1(z) and S2(z) denote the correspond-
ing HPD credible sets for 0 of level 1 — a, then there exists a universal constant M,
such that

(35) sup sup d(Si(z),S2(z)) < %,

zERP T, €

where d(S1,S2) denotes Hausdorff distance between Sy and S; (see Dugundgi (1975)).

Discussion. Notice how only uniform boundedness of the gradient of the logarithm of the
prior results in two extremely broad posterior robustness results. The first result says that
irrespective of which data may be observed, posterior robustness in any testing problem
can be preexperimentally guaranteed by simply choosing the sample size large. The second
result says that irrespective of which data may be observed, any two credible sets will be
visually near identical. A small Lebesgue measure of the symmetric difference of S;(z) and
Sa(z) does not guarantee visual similarity. A small Hausdorff distance, however, does. The
central assumption (33) is essentially a flatness condition. Normal priors do not satisfy it. In

one dimension, double exponential or flatter priors satisfy (33). The importance of (33) in
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frequentist decision theory, e.g., admissibility results, has been emphasized by many workers
in the area.
Proof of Theorem 12: Both results follow, on a clever transformation, from earlier results
in Mukhopadhyay and DasGupta (1992).

For part a., we use the result that if n = 1, 7(6) satisfies (33), and we define a scaled

prior 7,(6) = 1r(£), then

(36) sup | [ (8lz) — 4(116 — 2l}do < =2
rzeRP T

for some universal constant M. (34) follows from (36) on using the fact that for probability
measures P, P, the variational distance sup |P1(B) — Py(B)| equals 3 [ |dP1(6) — dP;(0)|df,
where dF; denotes the density of P;, and on using the transformation § — 6./n in our
problem. Then, formally, /n can be identified with 7 in the result given in (36) and n can
be taken as 1 (loosely, 7 and \/n are switchable). Finally use triangular inequality after
using (36) once for P, and once for P,.

For part b., again use the same transformation in the result that if S;(z) is HPD for the

scaled prior 7,(8), then there exist two positive universal constants N; and N, such that

Sofe) = {0:110 ~ = < xap) ~ -2}
C (@)
N2 0
(31) S {0:110— 2l < xalp) + 2} = 5%)

uniformly in z € R?.

Interchanging 7 and \/n as before (which is valid), it follows from (37) that d(Sp,S°)
converges to zero at the rate of ﬁ uniformly in z. Hence d(5;, S3) must go to zero uniformly
in z at the same rate since S1,.5; both satisfy the inclusion property So C Si, S C S°. This

proves the Theorem.
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5 Summary

The main goal of this article was to demonstrate that much as we have always done in
classical statistics, for example in power calculations, it is possible to prescribe a sample
size which will guarantee a prespecified level of posterior robustness for any data we are
likely to see. We have discussed a large variety of problems and have given evidence that the
answer will depend on the problem. Many of the results indicate that such a preexperimental
guarantee may be possible under broad flexibility, for instance, even when the loss and the
prior are simultaneously uncertain. We are continuing our work in this particular area for

semi and nonparametric priors.

Acknowledgement. Qur deepest appreciation goes to Teena Seele and Brani Vidakovic for
their magnanimous effort in helping finish this article in a very short time. Herman Rubin

was a helpful listener on a number of occasions and we are glad to thank him.

30



6 Appendix

Table 1
P || c| a|nn|noe|ns
1 S121.3[.05( 25
1 S12]1.1(.05) 59
1 115]1.3]1.06] 21
1 1{5([.1]1.05} 50
3 S5121.3[1.06]41
3 S5121.11.05] 99
3 115].3].06] 35
3 1{5(.1].05{ 89
10 S121.3[1.06) 77
10 S512(.11.05]203
10 1(5(.3].05( 68
10 115 ).1].05(192
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Table 1 (continued)

P 3 T1 | T2 [+ a | o1 | Ro2 o3
1{o]5]2]a 3
1{o]5|2].05 8
1lof|s5|2].01] 44
1lo]1]5].1 1
1{o|1]5].05 2
1lo|5[2].0 12
1{1]|5)2].15 3576
1{1]5|2].1 7903
1(2|5]2].15 2245
12521 4911
1{1]1]5].15 1435
1la]1]s5].1 3193
1(2(1]5].15 891
1{2]1]5].1 1968
3(.11.5]2](.15 11596
3|1ls5)2]|.1 23399
3|12(5]2].15 9502
3l2|5|2].1 18770

ne1 = sample size needed for existence of 100(1 — a)% robust confidence set with radius
<e

noz = sample size needed for range of P(6 < 0|z) < c.

nos = sample size needed for range of P(6 € B|z) < ¢ uniformly in B.
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Table 2

P LE|T1 | T2| Noa

2 1.1]158(2]25

2112|5214

31118222

3 12|]5(2]14

10).11.5)2 (15

01215211

1011251

1012251

nos = sample size needed to make diameter of set of posterior means < 2 \/E.
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