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ABSTRACT

Let 7 be the time it takes standard d-dimensional Brownian motion, started at a
point inside a cone T in R? which has aperture angle 8, to leave the cone. Burkholder has
determined the smallest p, denoted p(0,d), such that ET? = co. We show that if y € dI'
then the smallest p, such that E(7?|B, = y) = oo, is p = 2p(0,d) + (d — 2)/2.



We will be working with spherical coordinates in R4,d > 2. Let, for a point z =
(21,..-,24) € R4, |z| = (Z27)!/2, and let ¢ be the angle the line through the origin and
= makes with the line through the origin and 1 = (0,0,...,0,1). Let, for 0 < § < x,T" =
I'(d,8) be the cone {¢ < 8}. We use 7p to designate the exit time of a process from
a domain D, and we shorten 7t to 7. P, and E, denote probability and expectation
associated with standard d-dimensional Brownian motion started at z, and if y € 9T, Py
and EY designate probability and expectation of this motion conditioned to exit T at y,
or more formally, the h process, with h the Poisson kernal of T for the boundary point .
We will discuss h-processes in more detail later.

Let p(0,2) = 27/6, and, for d > 2, put p(f, d) = 2sup{z:0 < A, 4}, where Az,d is the

smallest positive zero of the hypergeometric function

h(w) = F(—z,z +d—2,(d — 2)/2;(1 — cosw)/2),

(c)r k!
is shown that for 2 € T, and p > 0, E;7? < oo if and only if p < p(6,d). A different proof

with F(a,b,c;t) = k%:o ()M kg () =r(r +1)...(r + k). In Burkholder (1977) it
=0

was given by Deblassie (1988). Our main result is the following;:

Theorem 1: Let = € T,y € 0T, and p > 0. Then EY7P < oo if and only if p <
2p(6,d) + 452

Our proof of this theorem essentially involves giving a new proof of Burkholder’s result
which, with little alteration, can be used for conditioned Brownian motion, although we
note that this “new” proof rests on a calculation originally made by Burkholder. Let
Fn =T N{|z| £2"},5, =T N{|z| = 2"}, and H, = S, N {p < 6/2} be the middle half
of S,. We first prove Theorem 1 in the case z = 1 and y = 0, and then explain how to

extend the proof to the general case. Let 7, be the first time a process hits S,. Then,

oo
(1) Em? = Z EBi(m? |t < 7 S Tp41)Pi(mn < 7 < Tn+1),
n=0
and
(2) Ei)'rp = Z EE(TPIT,, <7< Tn+1)P10(Tn <7< Tn+1).
n=1

We will show
(3) El (TplTn <T S Tn+1) ~ Eg(TPITn <T S Tn+1) ~ 221’1])’
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where a, ~ b, means that a,/b, is bounded above and below by absolute constants which,
while they may depend on 8,d, and p, do not depend on n > 0. We also show that there
is an o = a(#) > 0 such that both the following hold:

(4) Pi(Th < T < Tpyg1) ~277°,

(5) P)(1p < T < Tpa1) ~ g~ nl2atd=2]

The relationships (1)—(5) imply F17? = oo if and only if %}_ol 227P27"% = oo and E{7P = oo

if and only if ozj 22rpo—nl2a+d~2] — o5 Thus Ey7? = oo if and only if p > a/2, which with
Burkholder’s zgslult gives p(d, 0) = a/2, while E}7? = oo if and only if p > [2a+d—2]/2 =
2p(d, 8) + (d — 2)/2, verifying Theorem 1 in the special case z = 1,y = 0.

To complete the proof of Theorem 1 in this special case we need to prove (3), (4),
and (5). Before we do, we collect some of the tools we will use. We let PP = P} and
E»P = E} denote probability and expectation for the h-process in a domain D with
associated harmonic function h. Here, the only h-processes we will be concerned with are
Brownian motion conditioned to exit a domain at a specified point or set. For a formal
description of h-processes, and proofs of the properties of h-processes stated below, see

Doob (1984). Let G be a subdomain of D,z € G, h harmonic in D. Then the exit

distribution from G under P} is given by

(6) P¥B,, € A) = %sz(B,G = z),A C 8G, A Borel.
A

Furthermore, conditioned on B, the process B;,0 < t < 7g, has the same distribution
under both P, and P}. Especially, the distribution of the exit time of B, from the open
ball B(z,6) C D, of center z and radius §, is the same under both P, and P} since this
distribution conditioned on the exit position from the ball is the same, and by symmetry
does not depend on the exit position.

In the following inequalities, ¢, C, Cyp, etc. stand for generic positive constants, which

may depend on # and d but do not depend on n. Let the harmonic functions % and v be
defined in T'y by u(z) = Pr(Br,, € $1) and v(z) = P,(B,, € Hy).

Lemma 1. u(z) < Cv(z),|z| < 1/2.

Proof. A direct probabilistic proof is not too difficult, but since Lemma 1 follows immedi-

ately from the boundary Harnack principle (6Hp) for Lipschitz domains (see Jerison-Kenig
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(1982)), we take this route. The bHp implies that given z € OT' U {|z| < 1/2}, there is a
6(z) > 0 such that u(y) < Cv(y) if y € I' N B(z,8(x)). Since we can pick a finite number
of z such that the union of the B(z,§(z)) for these = contains {8I'} N {|z| < 1/2}, and
since clearly u(y) < Cv(y) for y in a compact subset of I';, Lemma 1 follows. O

Now let K(z) be the Poisson kernel for I' with respect to the point 0, that is K is the
unique function which is harmonic and positive in T, has limit zero as y € T" approaches
either co or a nonzero boundary point, and satisfies (is normalized so that) K(1) = 1.
Scaling shows there is a positive number # and a positive function ¢ on [0,6) such that
K(z) = #g(cp). The exponent 8 = B(6) > 0 was found in Burkholder (1977). We also
note that M(z) = M%K (IZ%) = |z|#+2=4g(¢) is harmonic in T, see Helms (1969), page
36. Let a =+ 2 —d, so M(z) = |z|*g(p)-

Lemma 2. For each p > 0 there is a constant C}, such that if & is harmonic in I'; and

S Pl,
(7) EMP < C,.

Proof: That sup B}t < oo is a result of M. Cranston (1985), and the argument that
extends this tc?’(l7) is standard, see the end of the introduction to Davis (1988).

Now we prove (3), (4), and (5), starting with (4). Note that A = max{g(p):¢ <
f} < oo and 7 = min{g(p):¢ < 6/2} > 0. The fact that 1 = M(1) = EM(B,,) =
EM(Br,)(tn < T), together with Lemma 1 and scaling gives cPi(m, < 7)(2")* < 1 <
CP(r, < 7)(2")°. Clearly Py(th41 < 7) > C,z € Sy, and this, together with the
preceding inequalities, gives (4).

Next we prove (5). We have, by (6) with k = K, recalling that g(1) = K(1) =1,

(8) P)(Br., € 8,) < A2 Py(Br,, € Sa) < CA27 P9

where the last inequality follows from (4). Furthermore, again by (6), in the second

inequality, and Lemma 1, in the third
P)(By, € Sa) > P)(Br, € H,)
> nPy(Bny, € Ha)2")
> cPy(Br., € S,)27"F

> 2~ nhg—na
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Together with (8), this proves (5).
Next we prove (3). Let Gn = {Tn < 7 < Tpy1}. On Gn,7 = 7, + (7 — 7). That
Ei(r2|mn < 7) < Cp2°"F follows from Lemma 2, with A = u, and scaling, and since

Py(Tp41 > T) > ¢,z € Sy, we have Pp(Gr) > c¢Py(mn < 7), and thus
(9) Ei(12|Gr) < Cp2%72,

The inequality

(10) Ef(r,fh'n <7)< Cp22""

follows from Lemma 2 with b = u and scaling, recalling the first sentence after inequality

(6). Now
(11) P (Tp41 > T) > ¢,z € Hy,

since PJ(Tn41 > T) is a positive continuous function. That ¢ may be chosen independently

of n in (12) follows from scaling. Since

(12) P)(B,, € H,) > cP}(B,, € Sy),

by Lemma 1 and formula (6), we have from (11) that P?(G,) > cP)(. < 7), and thus
(13) E)(1P|Gr) < Cp2?m?,

The inequalities

(14) E)((1 — )P |Gr) < C'p22"”,
and
(15) Ei((7 — ma)P|Gr) < Cp22™?,

follow by very similar reasoning. We just prove (14). Now

(16) E(1 — )P I(Gn) = EYE}[(7 — 70)P I(G1)| Br, ]
= EfE%Tn (TPI(7 < Tag1)) (70 < 7)
= E{)ngn"“T”Pgrn (1 < T4 1)I(Ta < 7)
< Ei’C’,,Zz("'l'l)j”Pjgrn (T < Tap1)I(ta < 7)

= C,p2X VP pl(@,),
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where the function £ is the Poisson kernel for the point 0 for the domain I'4;, and the

inequality follows from Lemma 2 and scaling.
Finally, if X is the distance of H; from OT', then 2" is the distance from H, to 0T,
and, if v, = inf{t: |B; — z| = 2"}, we have, as in (16),
E{rPI(G,) > EX(1 — 10)PI(Gh)
= E{’ngn"“ergrn (T < Tpt1)I(Tn < 7)
> E;’ngn"“vgpgm (r < Top1)(ta < 7, B, € Hy,)
= Epr22"pB(I)3r,. (7 < Tny1)I(7 < Tp, Br, € Hy)
= Cp2°™P)(1 < Tn, By, € Hy)
> Cp2*"?P)(G,),
where we recall the second sentence after (6), and use scaling, to obtain the next to the

last inequality, and use (12) to prove the last inequality. Rephrased this becomes
(17) EY(r7|Gn) > Cp2°7,

and similarly we can prove

(18) Ey(77|Gr) > Cp2%72,

Together, (9), (10), (14), (15), (17), and (18) establish (3), and thus Theorem 1, in
the special case that £ =1 and y = 0, is proved.

Finally, we prove the general case. For y € 0T, that EY7? is either finite for all z € T,
or infinite for all z € T, follows from the same argument that shows the analogous result
for E.7?, and we will not repeat it here. Since, if a is real, the distribution of 7 under
P2Y is the distribution of a?7 under PY, evidently E¥r? is either finite for all z € ' and
non-zero y € OI', or infinite for all these z,y. To finish the proof, it suffices to show that
there is just one y # 0,y € 9T, such that for all p, E97? and EY7? are finite for exactly
the same values of p. Pick y such that |y| < 1/2. Let K’ be the Poisson kernel for I' with
respect to the point y, normalized so that K'(1) = 1. Now it follows easily from Theorem
5.20 of Jerison-Kenig (1982) that ¢cK(z) < K'(z) < CK(z),z € T',|z| > 1, and thus the
proof of the E? case of Theorem 1 works, essentially without change, to show that E}r?

is finite for the same p for which E97? is finite. This finishes our proof of Theorem 1. [
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ABSTRACT

Let 7 be the time it takes standard d-dimensional Brownian motion, started at a point inside
a cone I' in R? which has aperture angle 6, to leave the cone. Burkholder has determined the
smallest p, denoted p(6, d), such that Er? = co. We show that if y € 8T then the smallest p, such
that E(r?|B; = y) = o0, is p = 2p(0,d) + (d — 2)/2.

We will be working with spherical coordinates in R%,d > 2. Let, for a point z =
(21,...,24) € R, |z| = (222)1/2, and let ¢ be the angle the line segment connecting the
origin 0 and z makes with the line segment connecting the origin and 1 = (0,0,...,0,1).
Let, for 0 < 8 < 7,T = I'(d,d) be the cone {¢ < 6}. We use 7p to designate the exit
time of a process from a domain D, and we shorten 7t to 7. Probability and expectation
for standard d-dimensional Brownian motion started at z will be denoted by P, and E,,
and if y € OI' (boundary of I'), PY and EY designate probability and expectation for this

motion conditioned to exit I' at y, or more formally, of the h-process, with A the Poisson

kernal of I" for the boundary point y. We will discuss h-processes in more detail later.

Let p(8,2) = 73, and, for d > 2, put p(d,d) = 2sup{z:6 < A, 4}, where Az,d is the

smallest positive zero of the hypergeometric function
h(w) = F(—z,z +d—2,(d —1)/2; (1 — cosw)/2),

with F(a,b,c;t) = k%]o %E—?T"—tk, and (r)r = r(r +1)...(r + k). In Burkholder (1977) it is
=0 )
shown that for z € T', and p > 0, E;7? < oo if and only if p < p(6, d). This was sharpened

and generalized by DeBlassie (1987). Our main result is the following:

Theorem 1: Let z € I,y € OT', and p > 0. Then EYTP < oo if and only if p <
2p(0,d) + g_;__z_.
Our proof of this theorem essentially involves giving a new proof of Burkholder’s result

which, with little alteration, can be used for conditioned Brownian motion, although we

*Research supported by a National Science Foundation Grant.
AMS (MOS) 1991 Subject classification numbers: 60J65, 60J05
Key words and phrases: Conditioned Brownian motion, h-processes
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note that this “new” proof rests on a calculation originally made by Burkholder. Let
I, =Tn{z| <£2"},5, =T'n {|z| = 2"}, and H, = S, N {p < 6/2} be the middle half
of S,. We first prove Theorem 1 in the case £ = 1 and y = 0, and then explain how to
extend the proof to the general case. Let 7, be the first time a process hits S,,. Then,

(1) ElTp = ZEl(TplTn <T S Tn+1)P1(Tn <T S Tn+1),
n=0

and

(2) E)rP = Z Ef(r”['rn <7< Tn+1)P10(Tn <7 < Tpyr)-
n=0

We will show
(3) By(r7|7a <7 < Tog1) ~ B (77170 < 7 < Togr) ~ 272,

where a, ~ b, means that a,/b, is bounded above and below by absolute constants which,
while they may depend on 6,d, and p, do not depend on n > 0. We also show that there
is an a = a(#) > 0 such that both the following hold:

(4) Pi(mh <7 < Tpyp) ~ 277,

(5) Plo(’f‘n <T S Tn+1) ~ 2—-n[20+d—2].

The relationships (1)—(5) imply E17? = oo if and only if E}o 229" = oo and EV7P = oo
n=1

if and only if E 22np—nl2a+d-2] = o5, Thus E;7P = oo if and only if p > «/2, which with
Burkholder’s result gives p(d,6) = o/2, while E{7P = co if and only if p > [2a+d—2]/2 =
2p(d, 8) + (d — 2)/2, verifying Theorem 1 in the special case z = 1,y = 0.

To complete the proof of Theorem 1 in this special case we need to prove (3), (4),
and (5). Before we do, we collect some of the tools we will use. We let PP = P* and
EMD = EP denote probability and expectation for the h-process in a domain D with
associated harmonic function h. Here, the only h-processes we will be concerned with are
Brownian motion conditioned to exit a domain at a specified point or set. For a formal
description of h-processes, and proofs of the properties of h-processes stated below, see

Doob (1984). Let G be a subdomain of D,z € G, h harmonic in D. Then the exit

distribution from G under P} is given by

(6) PMB., € A) = Zézdpxwm = 2),A C G, A Borel.
A




Furthermore, conditioned on B, the process B;,0 < t < 7, has the same distribution
under both P, and P}. Especially, the distribution of the exit time of B; from the open
ball B(z,6) C D, of center z and radius §, is the same under both P, and P}, since this
distribution conditioned on the exit position from the ball is the same, and by symmetry
does not depend on the exit position, under P;.

In the following inequalities, ¢, C, C)p, etc. stand for generic positive constants, which

may depend on § and d but do not depend on n. Let the harmonic functions u and v be

defined in I'y by u(z) = Px(Br., € S1) and v(z) = P,(B,, € Hy).
Lemma 1. If z € T'; and |z| < 1, then u(z) < Cv(z).

Proof. A direct probabilistic proof is not too difficult, but since Lemma 1 follows im-
mediately from the boundary Harnack principle for Lipschitz domains (see Jerison-Kenig
(1982)), we take this route. This principle implies that given 2 € 8T'U {|z| < 1}, thereis a
6(z) > 0, such that u(y) < Cv(y) if y € T'N B(z,§(z)). Since we can pick a finite number
of z such that the union of the B(z, §(x)) for these z contains {8T'} N {|z| < 1}, and since
clearly u(y) < Cv(y) for y in a compact subset of I';, Lemma 1 follows. (]

Now let K(z) be the Poisson kernel for T' with respect to the point 0, that is K is
the unique function in I" which is harmonic and positive, has limit zero as either co or
a nonzero boundary point is approached, and satisfies (is normalized so that) K (1) = 1.
Scaling shows there is a positive number 8 and a positive function g on [0,6) such that
K(z) = Tx—1|ffg(90)' The exponent § = f(6) > 0 was found in Burkholder (1977). We also
note that M(z) = mﬁ—_——z—K (Tf—ly) = |2|f*2~4g(,p) is harmonic in T', see Helms (1969), page
36. Let « = B+ 2 —d, so M(z) = |z|%g(¢p).

Lemma 2. For each p > 0 there is a constant C, such that if A is harmonic in I'; and

z eIy,
(7) EtrP < C,,.

Proof: That sup Eft < oo is a result of M. Cranston (1985), and the argument that
z,h

extends this to (7) is standard, see the end of the first section in Davis (1988). O

Now we prove (3), (4), and (5), starting with (4). Note that A = max{g(p):¢ <

6} < co and n = min{g(p):¢ < 6/2} > 0. The fact that 1 = M(1) = EM(B,,) =

3



EM(B;,)I(tn < 7), where I denotes indicator function, together with Lemma 1 and
scaling gives cPi(m, < 7)(2")* < 1 < CPi(mn < 7)(2™)*. Clearly Py(Tp41 > 7) > ¢,z €
Sr, and this, together with the preceding inequalities, gives (4).

Next we prove (5). We have, by (6) with h = K, recalling that g(1) = K(1) =1,

(8) P)(By, € Sn) S M27")PPy(Br., € S,) < CA27 P2 me

where the last inequality follows from (4). Furthermore, again by (6), in the second

inequality, and Lemma 1 in the third,

P)(Br., € Sa) > P)(Bn., € H,)
> UPI(BTI‘,, € Hn)(z_n)ﬁ
> cPy(Byr,, € 5,)27"°

> 2 nfgne

Together with (8), this proves (5).
Next we prove (3). Let Gn = {7, < 7 < Tpy1}. On G, 7 = 7 + (r — ). That
Ei(rRlmn < T) < Cp22"P follows from Lemma 2, with & = u, and scaling, and since

Py(Tat1 > 7) > ¢,z € S, we have P,(Gr) > cPy(7s < 7), and thus
(9) Ei(12|GR) < Cp2%2,

The inequality
(10) EY (72|71, < T) < Cp22"1’

follows from Lemma 2 with k = u and scaling, recalling the first sentence after inequality

(6). Now
(11) PXrpy1 > 7) > ¢,z € Hy,

since PJ(Tp+1 > 7) is a positive continuous function on H,. That ¢ may be chosen

independently of n in (11) follows from scaling. Since

(12) P](.)(B"'n € Hn) > CPIO(BTn € Sn)?
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by Lemma 1 and formula (6), we have from (11) that P}(G,) > c¢PY(r, < 7), and this,
together with (10), gives

(13) EY(12|G,) < Cp2%7P,

The inequalities

(14) E)((r — )P |Gr) < Cp22npa
and
(15) Ey((1 — ma)P|Gr) < Cp2%7?,

follow by very similar reasoning. We just prove (14). Now

(16) EY(1 = )P 1(Gn) = B E}[(7 — 70)P I(G4)| By, ]
= EfE%Tn (TPI(T < Tag1)) (10 < 7)
= EYBS "M rPPY (1 < tay1)(rn < 7)
< E{Cp22MOPPY (7 < 1 1)I(r < )

= G227 PY(Gy),

where the function £ is the Poisson kernel for the point 0 for the domain I'n41, and the
inequality follows from Lemma 2 and scaling, and we use (6), and the sentence after (6),
to justify the third equality.
Now if A is the distance of H; from 9T, then 2" ) is the distance from H,, to oI, and
if v, = inf{t:|B; — z| = 2" A}, we have, as in (16),
EYTPI(Gr) 2 B (7 — ) 1(Gh)

= EfElg’fn"“T”PgT" (T < Tag1)I(mn < 1)

> E?Eg’fn"“vzﬂ%m (1 < Tng1)I(mn < 7,B,, € Hy)

- EfC’,,an”Pgrn (1 < Tng1)(mn < 7,B,, € H,)

= Cp2"""P}(G,, B, € H,)

> Cp22"P P)(@G,),



where we recall the second sentence after (6), and use scaling, to obtain the next to the

last inequality, and use (11) and (12) to prove the last inequality. Rephrased this becomes
(17) E)(P|Gy) > Cp2%mP,
and similarly we can prove
(18) Ey(7P|Gp) > Cp2%72.
Together, (9), (13), (14), (15), (17), and (18) establish (3), and thus Theorem 1, in

the special case that ¢ =1 and y = 0, is proved.

Finally, we prove the general case. For y € 0T, that EY7? is either finite for all z € T,
or infinite for all z € T', follows from the well known argument that shows the analogous
result for £, 77, which we will not repeat. Since, if a is positive, the distribution of  under
P;Y is the distribution of a®7 under PY, evidently E¥7? is either finite for all z € T and
non-zero y € O, or infinite for all these z,y. To finish the proof, it suffices to show that
there is just one y # 0,y € 9T, such that for all p, EY7? and E{7P are finite for exactly
the same values of p. Pick y such that |y| < 1/2. Let K’ be the Poisson kernel for I" for
the point y, normalized so that K'(1) = 1. Now it follows easily from Theorem 5.20 of
Jerison-Kenig (1982) that cK(z) < K'(z) < CK(z),z € T, |z| > 1, and thus the proof of
the EY case of Theorem 1 works, essentially without change, to show that EY7? is finite

for the same p for which E{7? is finite. This finishes our proof of Theorem 1. 0
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