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Abstract

We consider the performance of three Monte Carlo Markov chain samplers: the Gibbs sam-
pler, which cycles through coordinate directions; the Hit-and-Run sampler, which randomly
moves in any direction; and the Metropolis sampler, which moves with a probability that is a
ratio of likelihoods.

We obtain several analytical results. We provide a sufficient condition of the geometric
convergence on a bounded region S for the Hit-and-Run sampler. For a general region S, we
overview the sufficient geometric convergence condition for the Gibbs sampler, which is provided
by Schervish and Carlin [1990]. We show that for a bivariate normal distribution this Gibbs
sufficient condition holds, and the Gibbs marginal sample paths are each an AR(1) process, and
we obtain the standard errors of sample means and sample variances, which we later use to
verify empirical Monte Carlo results.

We empirically compare the Gibbs and Hit-and-Run samplers on bivariate normal exam-
ples. For zero correlation, the Gibbs sampler provides independent data, resulting in better
performance than H&R. As the absolute value of the correlation increases, H&R performance
improves, with H&R substantially better for correlations above 0.9.

We also suggest and study methods for choosing the number of replications, and for starting
replications to reduce bias, for estimating the standard error of point estimators, and for reducing
point-estimator variance. We suggest using one single long run instead of using multiple 7.i.d.
separate runs. To reduce the initial-condition bias of the sample mean, we suggest the antithetic
starting idea of Deligonul [1987]. We suggest using overlapping batch statistics (obs) to get the
standard errors of estimates; Additional empirical results show that obs is accurate.

Finally, we review the geometric convergence of the Metropolis algorithm, and develop a
Metropolised Hit-and-Run sampler. This sampler works well for high-dimensional and compli-
cated integrands or Bayesian posterior densities.

Keywords: antithetic variates, AR(1) process, Bayesian posteriors, geometric conver-
gence, Markov chain, Monte Carlo, multidimensional integration, overlapping batch
statistics, simulation.
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1 Introduction

Evaluating the k-dimensional integral [ h(z)f(z)dz, where f is a density function with sup-
port § C R¥, arises in many contexts. For example, if f is a Bayesian posterior distribution, then
choosing h(z) = =; yields the ith marginal posterior mean. Monte Carlo methods estimate the inte-
gral’s value by averaging many observations of h(z), and therefore require a method for generating
pseudo-random points z € § with density f. Classical random-variate methods such as composition
and acceptance/rejection are difficult to implement and/or inefficient in multiple dimensions. An
alternative is Markov chain samplers, which produce an infinite sequence of autocorrelated points
X whose stationary distribution is f.

One such Markov chain sampler is the Hit-and Run (H&R) sampler. In its original form, as
proposed independently by Boneh and Golan [1979], Smith [1980, 1984], the H&R sampler generates
uniformly distributed points on §. Belisle, Romeijn and Smith [1990] proposed a more-general
version that generates a sample of points from an arbitrary continuous probability density function
f over a bounded support S. Kaufman and Smith [1990] show that the H&R sampler converges
geometrically to the stationary distribution f; their proofs restrict the support $ to be an open
bounded set and the density function f to be bounded from above and away from zero. Schmeiser
and Chen [1991] propose a variation of the H&R sampler, and have shown that the distribution of
iterates converge to the target distribution in total variation for any density function f.

Other Markov chain samplers include the Gibbs sampler (Geman and Geman [1984], Gelfand
and Smith [1990]), sometimes called the Successive-Substitution sampler, and the general Metropo-
lis sampler (Hastings [1970], Tierney [1991], Miiller [1991]).

Tierney [1991] and Schervish and Carlin [1990] discuss geometrical convergence for various
algorithms. Schervish and Carlin [1990] show that

[ [ e pPdu)du(y) < oo. (1)

is sufficient to imply geometric convergence for a sampler with positive kernal k applied to any
density f; the measure p is discussed in Section 4.

In Section 2 we review the Hit-and-Run sampler and several existing results from by Schmeiser
and Chen [1991].

In Section 3 we note that the Schervish and Carlin sufficient condition does not hold for H&R.
We then develop another sufficient condition for H&R that does hold.

In Section 4, we review the Gibbs sampler and the Schervish and Carlin [1990] sufficient con-
dition for the geometric convergence. We then verify that this sufficient condition is satisfied for
independent sampling and for any bivariate normal f. We conjecture that the condition holds in
general for the Gibbs sampler.

In Section 5 we compare performance of the Gibbs and H&R samplers. In Section 5.1 we
discuss four types of error: systematic bias, point-estimator bias due to the initial transient, point-
estimator bias due to autocorrelation, and sampling error. We note possible sensitivity of the Gibbs
sampler to bad random-number generators, advocate a single long run to minimize both types of
point-estimator bias, and overlapping batch statistics (obs) for estimating point-estimator standard
errors. In Section 5.2 we consider the general bivariate normal f. We show that the Gibbs sampler
creates two intertwined AR(1) processes. We empirically investigate the Gibbs and H&R samplers,
finding that large bivariate-normal correlation results in large sampler autocorrelations, which in



turn result in point-estimator bias and high sampling error. H&R is less sensitive thans the Gibbs
sampler to high bivariate-normal correlation.

We investigate estimating standard errors with obs in Section 6. We demonstrate that obs
standard-error estimators are accurate for suitable long runs.

In Section 7 we discuss reducing sample-mean bias caused by initial conditions. We advocate
antithetic initial conditions.

In section 8, we discuss the general Metropolis algorithm and the Metropolisized H&R sampler,
which are especially good for sampling from a high-dimensional and complicated density f. For
the general Metropolis algorithm, we discuss its convergence properties and how to accelerate
Metropolis Markov chain.

2 The Hit-and-Run Sampler

Let f be an arbitrary density with any support S C R*. We consider the following Monte Carlo
sampler which is given in Romeijn and Smith [1990] and Schmeiser and Chen [1991].

Algorithm Hit-and-Run Sampler
step 0. Choose a starting point z, € 5, and set i=0.

step 1. Generate a uniformly distributed unit-length direction d; déf(dl dz,...,dF).
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step 2. Find the set S; = S{(d_,-,gc_i)déf{)\ €R|z;+ Md; € S}.

step 3. Generate a signed distance A; from density

f(zi +Ad;)
fS,' f(ﬁz + ud_l)du’

fi(A) = A; € 5. (2.1)

step 4. Set z;17 = z; + Aid; and set i=i+1. Go to step 1.

A random unit-length direction d; can be generated in Step 1 by independently generating
1

z~N(0,1),l = 1,2,...,k, and setting d} = z (Efﬂ zjz)_z 1 =1,2,..,k (e.g. see Devroye (1986,
Section 4.2]).

Let {X;,7 > 0} be the homogeneous Markov chain generated by the H&R sampler. Then, this
Markov chain has one-step transition probability density at X;;, = y given X; =z

2 f(y)

p(ylz)= ' =
Yy C _ k-1 iz

, forall y#z¢€S§, (2.2)

27r§

where C} = N3] is the surface area of the k-dimensional unit hypersphere. Since the Lebesgue
2

measure of one single point z is zero, we are free to give p(z|z) a positive value. We use the
following results, which are proven in Schmeiser and Chen [1991].



Lemma 2.1 The Markov chain {X;,i > 0} is time reversible, i.e.,

p(ylz)f(z) = p(zly)f(y), for every z,y€ S, - (23)

and p(y|z) > 0 for every z,y € §.
Let B’; denote the Borel sets of S. For every A € B~, let probability measure ¢, defined by f, be

$(4) /A f(a)de. (2.4)

Then, we have

Lemma 2.2 The probability measure ¢ is invariant for the Markov chain {X;,7 > 0}, i.e.,

8(4) = [ [ pllo)dps()d, (25)

for every A € BE.

A Markov chain is called ergodic if it is positive Harris recurrent and aperiodic.
Proposition 2.1 The Markov chain {X;,% > 0} is ergodic.

From Schmeiser and Chen [1991], we also have

Proposition 2.2 The probability measure after the n-th iteration of the Markov chain {X;,7 > 0}
converges to the invariant probability measure ¢ in total variation regardless of the starting point

zy.
Furthermore, we have

Proposition 2.3 If h is integrable with respect to f, i.e., [¢|h(z)|f(z)dz < oo, then for every
fized 0 < jo <

. 1 =
where E¢(h) = [¢ h(z)f(z)dz.
h

A fundamental problem of Markov chain sampling is to determine the speed at which the nth.
iteration distribution converges to the stationary distribution f. In the next section, we show that
H&R converges geometrically when § is bounded.

3 Geometric Convergence of the Hit-and-Run Sampler

Applying the Schervish and Carlin sufficient condition (1.1) for geometric convergence to H&R
yields

[, [ reliptule)izdy < o

where, p(y|z) is the one-step transition probability density of the H&R sampler of Equation (2.2).
Primarily due to the distance ||z — y|| expression in the denominator of p(y|z), this sufficient
condition does not hold for H&R, even for bounded support S. - .
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Kaufman and Smith [1990] bound the H&R rate of convergence by assuming the density function
f to be bounded from above and away from zero, and by assuming bounded support §. In this
section, we relax the Kaufman and Smith sufficient conditions by substituting a weaker assumption

on f.
Let K(z,A) be the H&R one-step transition probability kernel. Then,

K(z,A) = / o(ylz)dy, for every z € S and A € BE. (3.1)
L PE)ey.

Let K™(z, A) be the ntM_iteration transition probability kernel. We say that the kernel K(z, A)
satisfies the Minorization Condition M (no, B, s,v) if

K™ (z,A) > Bs(z)v(A), for every z € S, A€ B, (3.2)

where ng > 1 is an integer, 8 > 0 is a constant, s is a positive real valued measurable function on
(8,B%) and v is a positive measure on BE. Such an s is called a Small Function. A set C € Bt
is called a Small Set if the kernel K'(z, A) satisfies a Minorization Condition M(no,3,C,v) for an
integer ng > 1, a constant 3 > 0, the Small Function s(z) = I¢(z), which is an indicator function,
and a probability measure v on B, i.e.,

K™(z,A) > Bv(4), for every z € C,A e B, (3.3)

Let B denote the k-dimensional unit open sphere centered at the origin and let B denote its
surface. Then the set of directions is

OB ={deR":|d|=1)}. (3.4)

Let p be defined by

= z+ Ad)dA 3.5
? ieast?u,pzes'{/s‘ie(i@ fla ) } (3:5)

where S;(d, z) is defined by Step 2 in the H&R sampler.
We now present an alternative sufficient condition for H&R geometric convergence.

Assumption A:
S is bounded, and p < oo. (3.6)

For many cases, the condition p < oo automatically holds. For example, if f is bounded above,
then p < oo is satisfied since S is bounded.
The following lemma will result in the geometric convergence of the H&R sampler.

Lemma 3.1 Under Assumption A, S is a Small Set. More specifically,
K(z,A) > Bd(A), for every z € S, A€ Bk, (3.7)

where B = WZET)F’ Cy is the surface area of the k-dimensional unit hypersphere, d(S) is the
diameter of S, and ¢ is the stationary probability measure defined by (2.4).



Proof: According to (2.2) and Assumption A, we have p(y|z) > mf(g) = Bf(y), for every z,
y € §. Thus,

K A)= [ sy > 6 [ fwdy = 59(4),

for every z € S and A € B%. Therefore, S is a Small Set. [ |

Before proving geometric convergence, we review two types of ergodicity. An ergodic Markov
chain with invariant distribution ¢ is geometrically ergodic if there exists a nonnegative real-valued
function M with [¢ M(z)¢(dz) < oo and a positive constant 7 < 1 such that

| K*(z,-) - ¢ < M(z)™, (3.8)

for every z € S. The chain is uniformly ergodic if there is a positive constant M and a positive

constant r < 1 such that
sup | K™(z,")— @< Mr™. (3.9)

Uniform ergodicity implies geometric ergodicity. Under Assumption A, we prove that the Markov
chain generated by the H&R sampler is uniformly ergodic.

Theorem 3.1 Under Assumption A, the transition probability kernel K (z, A) of the H&R sampler
satisfies a minorization condition M(1,3,S5,$), and the corresponding Markov chain is uniformly
ergodic with the convergence rate r < (1 — 3), where 8 is defined in (3.7).

Proof: Lemma 3.1 gives that under Assumption A, the kernel K(z, A) satisfies the minorization
condition M(1,8,S5,¢). Thus, the uniform ergodicity follows from Theorem 6.15 of Nummelin
[1984], together with Proposition 2.1. According to Proposition 2 of Tierney [1991b], the rate r
satisfies r <1 - 8. ]

The above theorem says that if § is bounded, then the H&R sampler has geometric convergence.
S being bounded is not a strong condition, since a change of variables can (at least theoretically)
transform an unbounded region into a bounded region; such transformations are common in nu-
merical analysis. However, such transformations can be difficult to implement in high-dimensional
problems, such as in Bayesian posterior analysis where unboundedness is common.

In the next section we empirically investigate the performance of the H&R sampler on un-
bounded S. We compare the performance of the Gibbs sampler, Metropolis algorithm and the
H&R sampler, three Markov chain sampling schemes to generate a dependent random series from
a multidimensional distribution. Furthermore, we discuss sources of error, using overlapping batch
statistics for estimating standard errors, and using antithetic initial points for bias reduction.

4 The Gibbs sampler

In this section, we review the Gibbs sampler and the Schervish and Carlin [1990] sufficient
condition for geometric convergence. This sufficient condition is investigated for the independent
components and the bivariate normal distribution.

We denote densities generically by square brackets, so that joint, conditional and marginal forms
for random variables X, Y, appear as [X,Y], [X|Y] and [Y], respectively. Let X be distributed as

aia) =

f. Then, the basic scheme of the Gibbs sampler is as follows:



Algorithm Gibbs Sampler
step 0. Choose an arbitrary starting point X ©) - ( Xl(o),Xéo)’ . X]£0)), and set i=0.
step 1. Generate XD = (x {1, x (1) .. -,X,£i+1)),
o Generate X. 1(i+1) ~ [ X Xéi), e X/Si)];
e Generate X§i+1) ~ [X2|X1(i+1)7XI§i), Sty ngi)];
o Generate X{*!) ~ [Xol X (), X{*, X0, x (),

o Generate X,gH'l) ~ [Xlel(i'H), Xé""'l), cee, X,Eﬁl)].
step 2. Set ¢ =i+ 1, and go to step 1.

Thus each component of X is visited in the natural order and a cycle in this scheme requires
generation of k£ random variates. Under the regularity conditions, Gelfand and Smith [1990] give
the following limiting result of the sample average.

Proposition 4.1 For any measurable function T of X1,---, X\ whose ezpectation ezists,
lim ~ ZT(X(’) X0y & B(T(Xy,- -, XR)). (4.1)

Now, we look at the sufficient condition of geometric convergence for Gibbs sampler. We
use the notation of Schervish and Carlin [1990]. Let X be a random vector with coordinates
X1,Xo,-+, Xg. Let f(‘)(X) = f(X;|X1, -+, Xi_1,Xiy1,++, Xk). For two vectors X and X/,
define foreach i = 1,-++,k— 1, X*) = (X1, X5, Xty y,+ 0+, X}). We adopt the convention that
X = x', X*) = X, and fO(X) = f(X). Define the measure p by

w(A) = /f( )dg, for A€ BE.

Denote the transition kernel for the Gibbs sampler k(z/, z) by

k
k', 2) = [T f9). (4.2)

=0
Define H be the Hilbert space of functions that are square integrable with respect to the measure
p. The inner product in H is / 91(y)g2(y)dp(y), for every gi,g2 € H. Thus, a sufficient condition
I
of the geometric convergence of the Gibbs sampler, which is given by Schervish and Carlin [1990],
is

Assumption B:

[, [k 2)Pdue)au(z) < oo. (4.3)

Let f, be the density of the observation X (") after the nth iteration of the Gibbs sampler with
the starting density fo € H. Schervish and Carlin give the following geometric convergence result
for the Gibbs sampler.



Proposition 4.2 Under Assumption B, there ezists a number ¢ € [0, 1) such that for every density
fO € H;
lfx = fll £ |l folle™, for all =, (4.4)

where || - || is the inner product in H.

Let F,, and F be the probability measures corresponding to the densities f, and f, respectively.
Then, a natural result follows Proposition 4.2.

Corollary 4.1 Under Assumption B, there ezists a number ¢ € [0,1) such that for every density
fo € H, and for every A € B,

|Fu(4) = F(A)| < [ folle™, for all m. (4.5)

Usually, it is more convenient to start the Gibbs sampler with a point z5. In this case, we still have
above two results for almost every z, € S. The only difference is that now we begin the Markov
chain at X, rather than at z, by substituting "~ for ¢® on the left of Equations 4.4 and 4.5 and
similarly replacing fo by f3, where f3(z) = k(zo, 2).

Assumption B is quite general in guaranteeing geometric convergence for the Gibbs sampler,
but often it is hard to verify. However, this sufficient condition holds at least for the following two
cases.

Result 4.1 Let X = (X1, X2,--+,Xk) ~ f. If X1, X3, -+, X} are independent, then Assumption
B holds.

The above result is easy to verify, since for this special case, the transition kernel k(z’, z) is k(z/,z) =

f(&)f(z)-

Result 4.2 Let X = (X1, X2) ~ N(p, %), where p = (p1,42) and

5= o  poio2
= 22 |,
pO107 03

with |p| < 1. Then, Assumption B holds.

Proof: This proof uses only basic calculus. To simplify notation, let (X,Y) ~ N(u,X). Then, the
transition kernel k((2',¢'), (z,%)) = fx,y (2',¥') fxy (z|y') fr|x (ylz), where fxy is the joint p.d.f.
of N(y, %), fxjy(zly’) is the p.d.f. of N(p1+ pZ(y' — p2),01(1 - p?)), and fy|x(y|z) is the p.d.f.
of N(puz + pZ(z — pua),03(1 — p?)). So, for this case, ignoring constants, the left side of Equation
(4.3) is proportional to

[ [ [ 1 (2= m)? (&' — ) (¥ —p2) | (¥ — p2)?
/_oo /_oo /_oo /_oo {5 p2)[ = R & T B
(Y —p2—p(z - m))?

(& —m — p2(Y — p2))?

Ty Ty )
z — m)? T— — M2 — p2)? I
exp{2(1 1 pz)[( 0151) - 2P( 0_1” ) (v 02” ) + (y U; ) 1}dz'dy'dzdy.



’ ! -
By changing variables —== -z S — il — 2/, and <= — ¢/, then ignorin
y ging 714/1-p7 " an/1—p? Y, o1/ 1—p? y oa/1—p? v, g g

constants, the above integral is proportional to
Y Rt Rt e 1 p2 10 12 n2
exp{—Z[z" — 2p2"y’ + 4" T} exp{~(z - py')°}
—00 J =00 J =00 J—00
1
exp{—(y — pz)?} eXP{E[ib'z — 2pzy + y?|}dz'dy' dzdy.

Then integrating z’,y’ and y out, the above integral is proportional to
* (1-—p?)? ,
exp{——=———<z“}dz. 4.6

Since Integral (4.6) is finite, Assumption B holds. [

Results 4.1 and 4.2 imply that if the components of X are independent or if X is distributed
as a bivariate normal distribution, then the distribution of the nth Gibbs sampler iteration con-
verges to the stationary distribution at a geometric rate. The examples demonstrate that none of
independence, normality, or dimensionality are required for geometric convergence. We conjecture
that Assumption B holds for any multinormal distribution. More boldly, we conjecture that if f is
a density in k dimensions, then the Gibbs sampler converges geometrically.

5 Comparing the Gibbs and Hit-and-Run Samplers

In this section, we discuss Markov chain sampling versus i.:.d. sampling and discuss sources of
error for Markov chain samplers. For the bivariate normal stationary distribution we show that
the marginal sample paths of the Gibbs sampler are AR(1) processes; we also derive the standard
errors of sample mean and sample variance. For this special case, we empirically compare the Gibbs
and Hit-and-Run samplers.

5.1 Controlling Sampling Error

If samples are generated by an ergodic Markov chain sampling scheme, the factors that influence the
quality of point estimators include standard error, estimator bias, and systematic bias. Standard
error arises from randomly sampling, estimator bias arises from using either a biased estimator or
from nonrepresentative samples (such as caused by the initial transient), and systematic bias arises
from programming error, numerical error, or the use of pseudo-random numbers. So,

true value = estimate — standard error — estimate bias — systematic bias,

where “-” means “eliminating”.

In our experience the Gibbs sampler seems more sensitive to systematic error. Using the same
(uniform) random-number and (non-uniform) random-variate generators, we have had examples
where the empirical Gibbs sampler behavior didn’t match known asymptotic behavior while the
H&R sampler behaved as expected; changing generators caused both algorithms to behave as
expected. The straight-forward logic of the Gibbs sampler might explain this sensitivity. The (i(k —
1)+ j)th random number Uj(x_1)4; is transformed into X J(z), so lack of k-dimensional uniformity
in the pseudorandom number generator is passed directly to the Gibbs sampler results. Other. .



samplers, such as H&R, use more-complicated transformations, which might ameliorate this effect.
Systematic bias can be tested by comparing to known solutions for simple problems or by comparing
to the known asymptotic performance. In the following discussion, we assume that the experiment
has no systematic error.

We consider the following mean and variance estimation for a simple Markov process to look
at how the correlation structure reflects standard error and estimator bias. Suppose {V;,7 > 0} is
a stationary Markov process. Let u = E(Y;), 02 = Var(Y;) and pp = Corr(Y;,Y;11). Then, the
usual estimates of mean and variance of Y; are

_ 1 n _
ﬂ:Y:lZY,-, F=85=—2>(:i-Y)~ (5.1)
n n—1 =1
If {Y;,1 < i < n} are i.i.d., then the standard error of Y is o//n. But, now, because of dependence,
. = h
nVar(Y)=o [1 + 2hz=:1(1 - ;)ph] : (5.2)

Since often py is positive (Tierney [1991], Schmeiser and Chen [1991]), then the standard error
for dependent observations is bigger than that for .i.d. observations. Furthermore, for estimating
variances

E(8%) = anlE (Zn:(Yz — Y)2) S {n02 - nVar(}_’)}

i=1 n—1

n—1 n—1
_ 1 {naz _ g2 [1 25~ %)ph]} = o2 [1 _ % (1 - %)ph} . (5. 3)
h=1 h=1

n—1

Thus, S? is a biased estimate of 02, but for 7.i.d. observations, S? is an unbiased estimate of o2. So,
the correlation of dependent observations obtained by a Markov chain sampling causes the bigger
standard error of the mean estimation, and also causes 52 to be a biased estimate of 2.

We now discuss the choice of experimental design (which X observations to generate) and the
choice of point estimator (primarily, which X observations to include when computing the point
estimator).

We now consider three experimental designs, including their point-estimator bias and standard
error.

First, at one extreme, as described by Tierney [1991], we can generate n i.i.d. Markov chain
realizations, using only the last observation X, of realization ¢ in the point estimator. The
disadvantage is the difficulty of determining a value of m that balances initial-transient point-
estimator bias with the wasted data.

Second, at the other extreme, we can generate a single long run of length nm, using all ob-
servations X;,..., X, in the point estimator, possibly after discarding the jo initial observations
X _jo+1>°-+»Xp. The disadvantage is that the autocorrelation between observations complicates
standard-error estimation.

Third, an approach between these two extremes, we can use each of n i.7.d. runs of length m to
‘obtain n point estimates, each based on X;;,X; -, X;,,. These n independent point estimates
are averaged to obtain a single point estimator with an easy to compute standard-error estimate.
The advantage and the disadvantage of the third approach is that it combines the best and worst
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of the first two approaches. Consider, for example, estimating the margmal va,rlance o?. Let S?
be the estimate of o2 from ith i.i.d. run of length m. Then the estimate of 0% is = .5’ 2 which
has the same bias as a single SZ, since the bias depends only on run length m.

Although exceptions can occur, a single long run usually provides the best point estimator for
a fixed number of observations nm, since a single long run simultaneously reduces the standard
error and the bias. (Whitt [1991] discusses this issue, focusing on queueing simulations.)

The single long run does complicate standard-error estimation. Estimating standard errors of
general point estimators from stationary autocorrelated data requires (either implicitly or explicitly)
including the autocorrelations in the standard-error estimate. A variety of methods are discussed
in system simulation textbooks, for example, Bratley, Fox and Schrage [1987] or Law and Kelton
[1991], with emphasis on sample averages. General point estimators are considered in Schmeiser,
Avramidis and Hashem [1990], who discuss overlapping batch statistics.

Since the standard error depends on the autocorrelation structure of the data, in the next
section we investigate the correlation structure of the Gibbs sampler applied to bivariate normal
models and compare the H&R sampler with the Gibbs sampler empirically.

5.2 Bivariate Normal Model

In this example, we apply both the H&R and Gibbs samplers to estimate the means, variances,
and correlation of the bivariate normal distribution N (g, X), where p = (p1, 2), and

0'12 pPo102
2 = 2 )
PO102 gy

where |p| < 1. Let {X;,i > 0} and {¥;,7 > 0} denote Markov chains generated from the above
bivariate normal distribution by the H&R and the Gibbs samplers, respectively. If we start from
the stationary distribution, i.e., Xy and Y ~ N(g, X), then both {X;,s > 0} and {Y;,7 > 0} are
stationary stochastic processes. For this particular example, the Gibbs sampler has the following
nice property.

Proposition 5.1 LetY; = (Yi(l),Yi(z)). IfY; is generated from a bivariate normal distribution by
using the Gibbs sampler, then each of Y,-(l) and Yi(2) is corresponding to an AR(1) process.

Proof: Let {Zi(l), Zz-(z),i > 0} be an 7.i.d. N(0,1) random variable sequence. Then the structure
of the Gibbs sampler implies

Y = o+ p2 (Y - ) + /1= 220 (5. 4)
(2) = uy+ p—z(Y(l) — 1)+ o2v/1 - Z(2) for i>1
{ Y(l) i +01Z§ ) 5. 5)
O =y 4 p2 (0 — ) + o2 T LD,

Now, we consider the first component Y;-(l). iFrom Equation 5.4, for ¢ > 1

a
m+ P% [p;j—(Y,(_l; —p1) +o2y/1 - PZZ,-(E)l] + o111 - PzZi(l)
=+ — ) + pory/1- p22) + o111 p22). (5. 6)

11

y()



Let ¢ = = 03(1 — p*). Let {Z},i > 0} denote an i.i.d. N(0,1) random variable sequence.
Since Z; (2 )1 a.nd Z( ) are independently and identically distributed as N(0,1), then we can rewrite
Equatlon 5.6 as

YD = e - m) +oiZ;, for iz 1, (5. 7)
W o= mtoaZ (5. 8)

Thus, {Y(l) ] > 0} is an AR(1) process with lag-one autocorrelation ¢ = p?. Similarly, we can

prove that {Y ,4 > 0} is also an AR(1) process with lag-one autocorrelation % = p2. The only
difference is that we use 03 = 02+/1 — p? instead of o} in Equation 5.7, and we use p; and o
instead of y; and oy in Equation 5.8. [ |

Since {Y,-(l)} isan AR(1) process, then Schmeiser and Song [1990], for example, give the following
result.

Result 5.1 Let Y() = 157, Yi(l). Then Var(Yi(l)) =0 pp = C’orr(Yi(l) Y(l,)z) = ¢ and

14+ 2¢(1—¢“)]
1=y na(l-9)2 )"

Therefore, if we use a single long run, then after the nth iteration, for the Gibbs sampler we have

nVar(YM) = [ (5.9)

Result 5.2 By using Equation 5.1 to estimate py and o2, then the standard error (ste) of py is

1+ P 2¢(1 - ¢y)

ste(fi1) = \/_ T ST (5.10)
and the bias of 6% is
P N ad [ 20 21—y
pias(o)l = 1E(oD) - ofl = -2 [ - 20=1). (5.11)

The proof of Result 5.2 follows from Equations 5.2 and 5.3 and Result 5.1. Furthermore, from
Equations 5.2 and 5.3 again, for general stationary processes we have the asymptotical result, that
for large n

(ste())? = [bias(67)|. (5.12)

We used these results to verify our simulation experiments with respect to programming , numerical,
and initial-transient errors.

Deriving exact expressions for standard errors is more difficult when the point estimators are not
means or when the sampler has a structure more complicated than the Gibbs sampler. An important
case is the standard error of the Gibbs sampler variance estimator, as given in Proposition 5.2. We
first give a well-known result of covariance of quadratic form without proof.

Lemma 5.1 Let Y and @ be two 1 X n vectors. Let ¥ denote an n X n positive definite matriz.
Then if Y ~ N(8,X), and if A and B are any two n X n symmetric matrices,

Cov (YAY',YBY") = 2ir (ASBY) + 40AS B, (5.13)

where tr(A) is the trace of A. .
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Since 67 = S = T Ly (v -z, y) = Ly ,Y"), then let T be the identity matrix of
order n, 1 = (1,1,--+,1), p. = p1 1, and YW = (Y(l) Y(l) 751)),

5% = (I Ly ) Yy, (5.14)

Proposition 5.2 gives the result of Var(é3).

Proposition 5.2

1+92  29°(1-¢™) (1+¢)? +4ymH

(n — 1)*Var(8?) = 2no [

92 a(1-¢2)2  n(l- )
41— ™) | ap(L+ ) (L= ™) | 4931 - pn)?
RO o R ) D (e L B
Proof: See Appendix A. |

Corollary 5.1 The standard error (ste) of 67 can be obtained by Equation 5.15, and

0.2
ste(al)_‘/jﬁl,/lﬂb +0(). (5.16)

Similarly, we can get the expressions of Var(62) and ste(62) by using o, instead of ;1 in Equations
5.15 and 5.16.

Unlike the Gibbs sampler, analysis of the H&R sampler is less tractable even in this special
bivariate normal case because of its sampling structure, i.e., generating a random direction plus
a signed distance. Lacking theoretical results, we compare the empirical performance for both
samplers, using both multiple runs and a single long run. As before, we let {X;,7 > 0} and
{Y;,% > 0} denote Markov chains generated from the above bivariate normal distribution by the
H&R and the Gibbs samplers, respectively. Let i1, fi2, 6%, 2, and p denote the usual estimators of
the means uy, po, variances o2, o2, and correlation p of the bivariate normal distribution using either

{X;,% > 0} or {Y;,¢ > 0}. By Proposition 2.3 and Proposition 4.1, j; 25 pi, 62 2% 62, 5= 1,2,
and p a5 p, as n — oo. We avoid initial bias by starting both samplers from the known stationary
distribution. We use Markov chain n = 1000 iterations and m = 500 :.:.d. macro-replications.

Table 5.1: Empirical performance of the bivariate normal model

parameter | true value Gibbs Sampler H&R

estimate (ste) bias estimation (ste) bias
™ 0.0 20.013(0.014) | -0.013 | -0.012(0.007) 0.012
12} 0.0 -0.018(0.020) -0.018 -0.017(0.010) | -0.017
o2 1.0 0.908(0.012) 20.092 | 0.972(0.009) 20.028
o 2.0 1.816(0.025) 20.184 | 1.943(0.018) 20.057
P 0.99 0.98792(0.00017) | -0.00208 | 0.98927(0.000083) | -0.00073
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Comment 5.1: In Table 5.1, the estimated bias is the parameter estimate minus thé true param-
eter value.

Comment 5.2: One validation of the empirical results is to compare the estimates to the known
true values for the Gibbs sampler obtained from Equations 5.10, 5.11, and 5.15: ste(ji1) = 0.0138,
ste(fiz) = 0.0194, ste(6?) = 0.0126, ste(62) = 0.0251, bias(6?) = -0.094, and bias(62) = -0.187.
The estimated values are close to the corresponding true values. For example, setting ¥ = 0
(since macro-replications are independent) and simplifying in Equation 5.15 gives the value of
the standard error of the sample variance of the Gibbs sampler estimator of the mean g, as
[Var(fy,;)/m]v/2](m—1) = 1.2 x 1073, where Var(j;), the jth macro-replication estimator
of u;, is from Equation 5.9. Therefore the difference is well within sampling error.

Table 5.1 shows that for this example the Gibbs sampler estimators of ¢ and 02 have larger
biases than the H&R estimators, and the H&R standard errors (ste) are smaller than those for the
Gibbs sampler. Since both bias and large standard errors are caused by the the sum of autocor-
relations, the empirical results imply that the Gibbs sampler has larger autocorrelations than the
H&R sampler.

Figure 1 shows component-1 autocorrelations, both the known values for the Gibbs sampler and
estimates (with 3-o limits) for H&R. The empirical results are based on 30 independent replications
of 50000 iterations each. At all lags H&R has substantially smaller autocorrelations. The sum
of autocorrelations v = Y e _. pr is about 40 for H&R and (1 + ¢)/(1 — ) = 99.5 for the
Gibbs sampler. The constant 7o can be thought of as the number of dependent observations with
information equivalent to a single independent observation, since the variance of the sample mean is
Var(X,-(l) )/(n/70). So for this example the Gibbs sampler needs about 2.5 times more observations
than H&R for the same precision.

i

Gibbe (true valuaes)
Ha.R (watimmtoc)
B-sigma limita (estimated)

i
I

)
I

W

0
I

Figure 1: Gibbs and H&R autocorrelations for component 1 of the bivariate model with
p=10.99, 02=1,and ¢% =2.

An alternative to many short runs is a single long run. Figure 2 shows point estimates and
associated (overlapping-batch-means) standard errors for p; from a single run of 200, 000 iterations
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for correlations p = .99 and p = .01. The results are similar to those for several short runs. For
the extreme case p = 0.99, graphs (a) and (b) show that the H&R estimates are closer to the true
value than the Gibbs estimates, and the H&R standard errors are smaller than those of the Gibbs
sampler. Both samplers are more efficient in the nearly independent case of p = 0.01, as shown in
graphs (c) and (d), with the Gibbs sampler having the smaller standard error.

In the next section, we discuss the overlapping batch statistics, and we provide empirical ev-
idence that the estimated standard errors obtained by the overlapping batch statistics are good.
We also discuss antithetic-variates sampling.

>
g 9 g -
>
= = 7 g o |
— B =
= -
g =4 J
— <a»
£=1 n =]
] g2 3
=
~— 1
< R v v v - = v v T v
o 50 100 150 200 o 50 100 150 200
iterations (in 1000's) iterations (in 1000’'s)
(a)
v g
<
] = oes" = i
——— True values
= 7 § >
L —3 Lo .
E ‘S =
7] =]
g _ & 1
< N -
L
1&= E S L
-
-— -—
< L v T - v = - v v v
(o] 50 100 150 200 o 50 100 150 200
Iterations (in 1000's) iterations (in 1000’'s)
(<) M

Figure 2: A single trajectory for estimates and standard errors of the first bivariate
normal mean with p; = y; =0, 02 =1, 02 =2, (a) and (b) p = 0.99, (c) and (d) p=0.01.

6 Estimating Standard Errors Using Overlapping Batch Statis-
tics

As noted in Section 5.1, when we use a single run to using Markov chain to sample from a
multidimension distribution, a complication that arises from the dependence in using a single series
is that variances of estimates are harder to obtain. Geweke [1991] suggested using the asymptotic
variance of the sample mean obtained from spectral analysis with a Daniell window. The spectral
analysis method for estimating variance of the sample mean of a dependent sample can be found in
[Hannan, 1970, pp. 207-210] and [Bratley, Fox, and Schrage, 1987, pp. 100-103]. In this section, we
discuss using overlapping batch statistics (Schmeiser, Avramidis, and Hashem, 1990) to estimate
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the variances of point estimators, including means, variances, and quantiles.

Suppose that the simulation experiment produces an output sequence {Y;,1 < ¢ < n}, from
which the point estimator, 6, is computed. As described in Schmeiser, Avramidis, and Hashem
[1990], the overlapping batch statistics (obs) estimate of the variance of 6 is

» m ;'L=—1m+1(éj - 9)2
Vm) = |20 Ze (6.1)

where é is defined analogously to 6 but is a function of only Y;,Y;41,++,Yj4m—1, the data in
gtk batch of size m. Sufficient conditions for obs estimators to be unbiased and to have variance
mversely proportional to n are given in Schmeiser, Avramidis, and Hashem [1990].
Specializing 6 to the sample mean yields the overlapping batch means (obm) estimator, which
is based on §; = m™1 fo]m ~1Y;. Song [1987] shows that the obm estimator is a spectral estimator
with the spectra.l window

w(O)(h) = { n(n—m+1)"Yn-m) 1 (1- L:Ll) ifh=1,---,m,
S W

otherwise,

which is essentially the Bartlett window when n%(n — m+ 1)~Y(n — m)~! ~ 1. Therefore, ignoring
end effects, obm can be viewed as an efficient computational method for the Barlett window at
zero frequency. Computation is O(n), as discussed in Meketon and Schmeiser [1984]; Schmeiser
and Song [1987] give a Fortran subroutine for computing the obm estimate V5, (m).

The statistical properties of V,4,,(m) depend upon the batch size m. Bias decreases and variance
increases with m. Asymptotically the bias of obm is that of the nonoverlapping-batch-means (nbm)
estimator and has two-thirds the variance of nbm. Schmeiser and Song (1990) show that the mse-
optimal asymptotic batch size is m* = 1+((9/8)c,n)'/3, where ¢, is the center of gravity of absolute
value of the autocorrelation lags.

Specializing 6 to the sample variance yields the overlapping batch variance (obv) estimator,

which is based on 0 = Sfm, the sample variance of {Y},---,Yjtm—1}. The obv estimator is

n—m+1

f}vobv(Tn): :n m+1 E ( 52)2 ’ (62)

n

where m (satisfying 2 < m < n — 1) is the batch size. Schmeiser, Avramidis, and Hashem [1990]
provide a Fortran subroutine for the obv estimator V,4,(m) requires in O(n) time for any given
value of m.

The primary difficulty in using the obs estimator is the choice of the batch size m to balance bias
and variance, since no optimal batch size formula is known for obs estimators other than for obm.
Schmeiser [1982] discusses the trade-off in the context of confidence intervals for nonoverlapping
batch means. Song and Schmeiser [1988a,b] consider estimator variances and covariances of variance
estimators for the standard error of the sample means. Limiting behavior for sample means is
discussed by Goldsman and Meketon [1986] and Schmeiser and Song [1990]. For many situations,
choosing m so that 10 < & < 20 is reasonable.

We now study the empirical performance of obs estimators for the bivariate normal model
discussed in Section 5.2, where we showed that the Gibbs sampler sample paths Yi(l) and Yi(2) are
each an AR(1) process with lag-one autocorrelation p?. We directly check whether or not the obm
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and obv standard error estimates are consistent with the analytical values Var(ji;) and Var(62),
j = 1,2 given in Equations 5.9 and 5.15.

Figure 3 shows the obm and obv estimates and the true standard errors for f; and c“rf from
a single Gibbs run of 200,000 iterations for the bivariate normal distribution with p; = ps = 0,
02 =1, 02 =2 and p = .01,.5,.85,.99. Graphs (a), (b), (c), and (d) show obm estimates and the
true values; graphs (e) and (f) show obv estimates and the true values. Here we choose batch size
m = max(35, }—i’ﬁ;—)

This crude batch-size heuristic works reasonably well in this case. For the smaller correlations
lp| = .01,.5,.85, the obm and obv estimators are consistent with the analytical values (see graphs
(a), (b), (c), and (e)), even for small numbers of iterations n. For the large correlation |p| = 0.99,
the obm and obv estimators also are consistent with the true standard errors (see graphs (d) and (f))
except for the small values of ». The difficulty with large correlation p is the large autocorrelations
psubh, which decrease the effective sample size, as discussed earlier.

The alternative of using several shorter independent replications yields a consistent standard
error for any number of iterations, but then the biasin 6 is a concern. Thus, with either a single long
run or severl short runs, one needs to be careful not to stop too soon based on a bad standard-error
estimate caused by small sample size.
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Figure 3: A single Gibbs trajectory for standard errors of fi; and 62. The dashed curves are true
standard errors; the solid curves are overlapping-batch-statistics standard-error estimates.

17



7 Antithetic Variates Sampling

Ideally, a Markov chain sampler is started by choosing a random point from the stationary
distribution. Since such a choice is difficult, in practice the initial value is chosen from some
tractable (often degenerate) distribution. The error caused by such sampling is called the initial
bias.

Deligonul [1987] suggests reducing the initial bias by using antithetic initial points. The initial
point of the second run is 2% — z, where z, is the initial point of the first run and Z is the sample
mean from the first run. The idea has intuitive appeal, at least for estimating means. Koksalan
and Basoz [1991] discuss a modification, but we consider only the original idea.

If two runs are made, then inducing negative-correlation between the two estimators reduces the
variance of their average. The usual method, antithetic variates, uses a uniform random-number
stream U = (Uy, Uz, - - -) for the first run and the uniform random-number stream W = (W, Wy, - )
for the second run, where often W; = 1 — U;. Multiple streams are used if necessary to synchronize
use of the random numbers for the two runs; in our case one stream is sufficient, since each iteration
requires a constant number of random numbers. General discussion can be found in simulation
textbooks, such as Bratley, Fox, and Schrage [1987].

Applymg this approach to Markov chain sampling for estlmatmg mean response, we have to
use different strategy for each Markov chain sampling scheme. In particular, we must choose the
transformation W; to obtain the most negative correlation possible. This choice depends on the
use for U;. We discuss antithetic-variates sampling for the H&R and Gibbs samplers, individually.

7.1 Antithetic-variate sampling for the Gibbs sampler

We want to get an antithetic-variates estimate of a marginal mean of Y for the Gibbs sampler.
Let Y ~ f denote a k-dimensional probability density function. We assume that Y; is generated
using the inverse transformations in each of the k£ coordinate directions with the k random numbers

Uti-1)k+1> U(i-1)k+20* - - Uik, Tespectively.
Denote {_}:1(-]),0 <i<n}, j=1,2, be two random variable strings, and define

A 121@@,1 _
n i=1

Then antithetic-variate sampling for the Gibbs sampler is obtained using the same random-number
stream U, but the second time using the uniform (0,1) random numbers 1 — U. That is

Run 1 Start at X((,I) =Y. Use the uniform random-number stream {Uy, Uz, -+, Uy, -} to get
the first Gibbs sample {L(l), 1< i< n}, and calculate Z_(l).

Run 2 Start at _}:32) = 22(1) ~Y, Use{1-U;,1-Us,-++,1—Up,---} to get the second Gibbs
sample {ng),l <1 < n}, and calculate Z(z), )

Thus, the antithetic-variate estimate of mean response is

= @XM + 1)/, (7.1)
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and the antithetic-variate path is
Y, =@¥W+yPy/e, i=1,2,---,n. (7.2)

The above antithetic-variate sampling approach is common, made possible by the constant number.
of random numbers per iteration. More complicated sampling methods, such as acceptance/rejection
or Metropolis ideas (Miiller [1991]), require more than one stream to synchronize random-number
use.

7.2  Antithetic-variate sampling for the Hit-and-Run sampler

Now, consider antithetic-variate sampling for the H&R sampler. Let X ~ f. We assume that
X, is generated using Ui-1)(e+1) 415 Ui—1)(k+1)+25 - * *» Uik 41), With the first k¥ random numbers
generating the random k-dimensional direction and the (k + 1)St random number used in the
inverse transformation to generate the random signed distance A. ‘

Let {lf-”,o <t < n}, 7 = 1,2, denote two random variable strings, and define X(J) =
"1, X_a(]), J = 1,2. The straight-forward transformation W; = 1 — U; is not effective, since
the direction is reversed and the signed difference is antithetic, causing positive correlation be-
tween the runs. Two alternatives seems reasonable: (a) same direction choices and and antithetic
signed-distance choices and (b) antithetic direction choices and and same signed-distance choices.
For our normal example, these methods produce the same sample path. Our implementation is of
alternative (a).

Run 1 Start at l((,l) = Xy. Use uniform random-number stream {Uy,Us,--+,Up,,- -} to get
the first H&R sample {X,l(-l), 1< i< n}, and calculate X(l).

Run 2 Start at X((]z) =2X M _ Xy. For sampling a random direction d, use the same uniform
random variables U; as for Run 1, and for sampling a signed distance );, use the antithetic
variables 1 — U; to get the second Hit-and-Run sample {2(_',5”, 1< i < n}, and calculate X @)

As with the Gibbs sampler, the antithetic-variates sample path and point estimator are the averages
from the two runs. For each marginal mean, the point-estimator variance is reduced by half of the
induced negative covariance. As we see in the next subsection, this strategy for this problem class
induces perfect negative correlation in symmetric problems.

7.3 Empirical Results

Figure 4 shows antithetic sample paths of these antithetic-variate sampling schemes for the
Gibbs and H&R sampler for the bivariate normal model with 3 = po =0, 62 = 1, 62 = 2, and
p = 0.99. The initial point of the first run is chosen from the arbitrary point (0.577,0.537); the
second run begins with Deligonul’s antithetic reflection through the sample mean of the first run.

Graphs (a) and (b) give single run paths of Run 1, Run2, and the antithetic-variate estimates
for fi;. Graph (c) shows the enlarged Gibbs and H&R antithetic-variate estimate paths. For this
problem, the antithetic-variate sampling estimates are extremely good, with the H&R sample paths,
both original and antithetic, being a bit better than the Gibbs sampler, as before. Because of the
almost perfect symmetry, the standard errors of the antithetic-variate point estimates for means
are very small.
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The two-tun antithetic sampling scheme is quite inefficient for estimating marginal variances,
since the two antithetic sample paths produce approximately the same distances from the mean.
Therefore, an independent second run (or doubling the first run) would be better for estimating

variances.

In addition, antithetic sampling is sometimes not appropriate even when estimating means.
Often the inverse transformation is not tractable. And even when it is tractable, non-sysmmetric
problems can reduce the induced correlation, since the sample paths will not be symmetric around

the mean.
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8 The General Metropolis and Hit-and-Run Samplers

Hastings [1970] describes and discusses a general version of the Metropolis algorithm. Tierney
[1991] shows that the general algorithm produces (under mild conditions) an ergodic Markov chain
with stationary distribution f.

Let Q be a transition probability kernel of the form Q(z,dz) = ¢(y|z)dy, and assume Q(z, 5)
=1if z € § and 0 otherwise.

Algorithm General Metropolis Sampler

step 0. Choose a starting point zy € 9, and set i=0.

step 1. Generate a candidate y from distribution Q(z;,-)-

step 2. Set
g =4 Y with the probability a(y|z;)
Sl z;, otherwise,
where
. fa(zly .
B 1 if fz:)a(ylz:) = 0.

step 3. Set ¢ =1+ 1, and go to step 1.

A nice feature of the general algorithm is that it is easy to implement even for complicated
multidimension probability density function or posterior density function, because we sample from
an arbitrary ¢ rather than from the conditional distribution given z;. A disadvantage of this
algorithm is that the Markov chain may stay the same point for more than one iteration, which
creats positive autocorrelation and therefore slower point-estimator convergence. We may accelerate
the Metropolis algorithm by choosing a good q(y|z).

For many multidimension distributions, generating random variates from the marginal condi-
tional distribution [X;| X1, X2, -+, Xj—_1, Xj41, -+, Xi] for the Gibbs sampler, and a signed distance
A for the H&R sampler, is difficult. We may solve this problem by using acceptance/rejection or
griddy method, but that may be inefficient. In this section, we focus on a special Metropolis
algorithm, i.e., the independence chain sampler given by Tierney [1991], who also discusses other .
Metropolis samplers. The independence chain sampler has geometric convergence rate for a general
density f on a general support S; we discuss how to accelerate the sampler. Finally, we consider a
generalized H&R sampler mixed with Metropolis algorithm.

8.1 Independence Chain Sampler and Its Convergence

The independence chain sampler, proposed by Tierney {1991], is a special case of the general
Metropolis sampler in which the candidate is generated independently of the current point z;.

Algorithm Independence chain Sampler

step 0. Choose a starting point z; € §, and set i=0.
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step 1. Generate a candidate y from the distribution with a p.d.f. g(y).

step 2. Set
I with the probability a(y|z;)
=417 .. otherwise,
where

a(glz:) = min {i@— 1} , (8.2)

w(z;)’

and the weight function w = f/g.
step 3. Set i =¢ 4 1, and go to step 1.

The Markov chain generated by independence chain sampling has transition probability kernel

K= (1- [ s@etue)dy) @)+ [ swalyl)dy (59

where A C S is an arbitrary Borel set in R¥, and I4(z) = 1if z € A and 0 otherwise. Under mild
conditions, Tierney [1991] gives the following geometric convergence result.

Proposition 8.1 An independence chain sampler kernel K(z,A) with density ¢ > 0 on S and
bounded weight function w = f /g satisfies a minorization condition M (1, 3, S, ) with § = (supw)~!,
and is thus uniformly ergodic. The convergence rate is 7 < (1 — ) = (1 — (supw)™1).

In practice, for a given density f, the problem is to find a easy-to-generate density g having
a bounded weight function w. Common choices of g include normal, split-normal, split-¢, and
mixtures of these. Here we introduce two other possibilities: the multivariate Cauchy (Johnson,
[1987]) and, a spherically symmetric exponential distribution with density proportional to ezl
with 4 > 0. The following result says that these choices satisfy Tierney’s conditions for ergodicity
if the tails of g are sufficiently heavy for the f of interest.

Corollary 8.1 Suppose f is continuous on R*, and a density g is chosen one of the following
densities: (a) multinormal, (b) split-normal, (c) split-t, (d) multivariate Cauchy, (e) spherically
symmetric exponential distribution, and (f) miztures of the above densities. If

) f(llzlld)
lim sup —/——= < o0, 8.4
lellmsco geop 9(]|z]|d) &4

where OB is defined in (3.4), then the independence chain sampler kernel K(z,A) is uniformly
ergodic.

The proof of the above corollary follows from the boundedness of the weight function w.

Generating random candidates from these distributions is easy. Algorithms to sample from
split-normal and split-t can be founded in Geweke [1989]. The multivariate Cauchy distribution
has density function

g(g) = 7-(-"(19+1)/2I‘(_k_-__;-__1_)(1+ ﬂt)—(k+1)_/2’ z = (xla .. '7$k) c Rk. (8.5)
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The k-variate Cauchy random variable X can be sampled as follows: generate the first component
X7 of X from the standard univariate Cauchy distribution, i.e., X; = tan[r (U — %)], where U is uni-
form (0, 1), then generate X,, from the conditional distribution of X,, given X3 = 21,--+, X1 =
Tm—1, Which is straight forward since |m1/2 (1 + ot X?) _1/2] X has a univariate Student’s
¢ distribution with m degrees of freedom, for m = 2,---,k. The t variates can be sampled as
Y/\/(Z]m), where Y is standard normal and Z is an independent I'(m/2,2) variate. More details
are given in Johnson [1987]. The spherically symmetric exponential variate X can be sampled as
X = p+ Ad, where d is a k-dimensional uniformly distributed unit-length direction, and X is a
univariate I'(k, 1/7).

In practice, Corollary 8.1 implies that if the support of f is unbounded, and the tail of fis no
heavier than multivariate Cauchy, we can choose g as a multivariate Cauchy, and the independence
chain sampler still has geometric convergence rate. To accelerate the Metropolis Markov chain, ¢
should be chosen to be similar to f. Therefore, one could perform some pilot sampling, roughly
estimate f, and use a mixture distribution of (a)-(e) in Corollary 6.1.

8.2 Metropolisized Hit-and-Run Sampler

The H&R sampler, described in Section 2, is a special case of the general algorithm with
[f(¥)a(ylz)]/[f(z)q(z|y)] = 1 and therefore a(y|z) = 1. The Romeijn and Smith [1990] generaliza-
tion of H&R is also a special case, as is that of Schmeiser and Chen [1991].

The following algorithm modifies the Schmeiser and Chen [1991] generalization. We no longer
require g to be symmetric about z;, but we now require that g depends on z; only through the line
segment S;. This modification is a special case of the general algorithm. Since g depends on z;
through §;, this algorithm is not a special case of independence-chain sampling.

Algorithm Metropolisized Hit-and-Run Sampler

Steps 0 through Step 2 are those of the H&R sampler, as given in Section 2. Steps 3 and 4
become

step 3. Generate a signed distance \; from density g;(z; + Ad;), where ); € S;.

step 4. Set y = z; + M\id;. Then set

g d B with the probability a(y|z;)
=+1 7 1 2., otherwise.

step 5. Set i=i+1, and go to step 1.

Here
a(ylz;) = min{w(y)/w(z;), 1},

where w(y) = f(z; + Aidi)/gi(z; + Midy), w(@) = f(2:)/9i(z:), and gi(z; + Xid;) > 0 is an arbitrary
density function on S;, and depends only on the line segment S; and not on the point ;.

The Metropolisized H&R Markov chain {X,,,n > 0} is time reversible and ergodic, and therefore
has all the properties of H&R discussed in Section 2. Choosing g, the one-dimensional distribution of
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A, for the Metropolisized H&R is often easier than choosing the k-dimensional g of the independence-
chain sampler. For example, g could correspond to a piecewise-linear distribution function based
on evaluating f at a few points on S;, similar to the Griddy sampler of Ritter and Tanner [1991].

Appendix A: Proof of Proposition 5.2
From Equation 5.7 and Result 5.1, Y ~ N (p,,01%), where

1 qp "bz oo ¢n—1
¢ 1 ¢ .o Qp"—‘?
= i . . . .
¢n;1 ,¢,;z—2 ¢n—3 . 1
Using Equation 5.14, Lemma 5.1 with 8 = I and A=B=1- %lt Landp A=0 and Aﬁi = 0,
we have
(n - 1)*Var(?) = Var (_}:“)(I - %lt ;)L(Ut)
= 205tr ((I - —1f LI - ly ;)2)
= 207 H-=121t 4+ =(1x1f 2] : .
%sz)n——+mﬁ—) (A1)

For easy writing, denote & = (0y;)axn, and pp = %", for b = 0,1,.... Then oy; = pj;_j|, and
therefore

n n

ZZM =n [1 +2 Z(l - —)ph} ) (A-2)

=17

i iplz—n =n [1 +2 Z(l - —)ph] (A.3)

=1 j=

Il
.M:’
M:

o
1
oy
[N
1
iy

tr(z?) =

-
'M=

..
Il
-

<
1l
-

Thus, by Equations 5.2 and 5.9,

[l 20 -9
N e n(1= ) | (A-4)
2 2 _ ah2n
tT(Z2) I:i -_l- :Zz - 2":&1_ ,(;'f)z)‘l . (A.5)

Since £2 = (3 f=1 OikOk;j)nxn, then

n n

n n n
IR0 =33 "D ook =3 Y D PlikPlk—i|
=1

’L—l j= 1 k=1 =1 j3=1k=1
n n n n n k n 2
Z e kl) (Zl’lj—kl) = (Zf’h—kl) > (Zpli_—kl + > Pu_m)
k=1 =1 i=1 k=1 \i=1 k=1 \:=1 i=k+1
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n k ] n ' 2 " 1 _ (Lyk ok 9
= Z( ¥+ Zw-k) = [W 1_(‘1) +¢llﬁp¢ ]
k=1 \:=1 i=k+1 k=1 7
| Lot v- wn_kﬂ] ’ 1 - k n—k4+1)2
= + = 149 — pF — =
kz=;[1_¢ 1-9¢ (1—¢)2;( )
= (1—_1,7)2 D [(1+ )2+ 9% 4 920RD 914 )k — 21+ )R 4 2]
k=1
= i _1¢)2. [n ((1 + ) + 2¢n+1) +2 E P2 — 4(1 + ) Z ¢k}
k=1 k=1
1 1-— 2n 1—oym
T -2 [n ((1 +9)% + 2¢n+1) + 2¢2_1 —122 — 41+ 9)p _pr ]

_ n[(1+¢)2 P UG () 4¢(1+¢)(1—¢“)J° (A6)

=P T T-9F " al-9—9%) n(i-pp
Thus, by Equations A.1, A.4, A.5, and A.6,

(n = 1Var(e}) = 201 [er(s?) - 215711 4 —s1Y]
_ 2not [(1 +OT 2071 - ¢2")) L(Lte 201y

1-92  n(l—y?)? T 1—%  n(l-y)2
2 (1 + q/))z 2¢n+1 2¢2(1 _ ,¢2n) ~ 4¢(1 + ¢)(1 _ ’l,bn)
% ((1 — )2 + (1 - )2 + n(1 — $)2(1 — $2) (1= )3 )] . (A.7)

By simplifying the right hand side of Equation A.7, Proposition 5.2 follows. ]
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