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ABSTRACT

The problem of computing the probability of random paths, as outcomes of sampling
from dichotomous population either with replacement or without replacement, being ab-
sorbed by any given set of points is considered. A recursive formula for computation of a
function defined on the set is derived. The absorption probability of random path at a point
in the set is shown to be the product of easily computable function 1(-) and the probability
at this point. This result holds when the random path is binomially distributed or hyper-
geometrically distributed. Above investigations are done for the cases when absorption of

paths is defined as first hitting (or second hitting and etc.) to some points in the set.
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1 Introduction

In many practical problems, a random variable is under investigation. Suppose the distri-
bution of this interested random variable belongs to certain class {Fj, 8 € ©}, but the true
6 is unknown to us. We are interested in testing hypothesis Hy : 6 € ©¢ v.s. H, : 0 € 0,.
To make a statistical decision, a number of observations from this random number are sam-
pled to provide information about the underlying true §. More observations are sampled,
more information is obtained. But in real life, more observations means higher costs and

longer time needed. A challenge to statisticians is to find ways to get more information
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from less observations. Sequentially gathering observations and making decision whenever
information provided by the gathered observations is enough, this practice provides efficient
means to achieve the goal mentioned above. Now suppose the observations are X, X5,---
and S, = Su(Xi,::-,X,) is a sufficient statistics for §. We can always imagine that the
sampling is ever going thus the infinite sequence S;, 52, - -, can be observed. In sequential
procedure, we have an opportunity to look at Sj,Ss,--- in sequence one by one, stop and
make decision whenever the early stages of this sequence shows strong evidence either in
favor of g or in favor of ©,. The observations in later stages of this sequence are ignored at
all. In fixed sampling size procedure (assuming sampling size is ny), we making our decision
only depends on S, so the observations in stages, up to ng —1 and after ng, of the sequence
are ignored at all. Looking at these two kinds of decision procedures from this unique point
of view, pinpoints their similarities and differences.

Next we give some definitions to summarize above idea. Let S = (81, Sz, ). Through
out this paper, we will call S the random path. Let X be the set of all sample paths of 3.
Let Py(-) be a probability measure on X, derived from Fy. Then {Py(-),0 € O}, derived
from {Fy,0 € O}, is a class of probability measures on X. In order to test Hy : 6 € O,
v.s. Hy : 0 € 0y, we divide X into a partition {H,,a € A} (A is some proper index
set) according to {P;(-),0 € O}, the probability measures on X. We say {H,,a € A} is a
partition of X" if U, g Ho = X and Hy U Hy = 0 for any a # o. {H,,a € A} should be
such that for each H,, if Py(S € H,) is large (small) for § € Oy, then it is small (large) for
§ € ©;. When doing the test, we observe which H, that S falls in, accordingly we make
decision in favor of Qg if Pg(g € H,) is large for 6 € Oy, in favor of ©; otherwise. Obviously
there are many different partitions meet above requirements. If the partition is made only
according to the possible values of S,,, then we have a procedure of fixed sampling size nq.
If the partition is made according to possible values of S, for some different n’s, then we
have a sequential procedure. We further illustrate this idea in later discussion of random
path from dichotomous population.

Even though sequential procedures are more efficient than the fixed sampling size pro-
cedures, there are two difficulties which disencourage practitioners to prefer the former to
the latter. One difficulty is that in most cases, it is difficult (or too complicated), some-
times impossible, to compute OC' (operation characteristic) and expected sampling size for
a given sequential procedure. The other difficulty is that in most cases, there doesn’t exist a
sequential procedure which is superior than other procedures (sequential or not) uniformly

on O.



In this paper, we only discuss sampling from dichotomous populations. We will develop
a method of computing the probabilities of random paths, as outcomes of sampling from
dichotomous population either with or without replacement, being absorbed by a specified
set of points. This method, tractable and easily computable, not only overcomes the first
difficulty mentioned above but also helps to select proper procedures by providing easily
computed power function and expected sampling sizes for any tentative sequential procedure.

A dichotomous population is defined as a population P consists of two classes of items
such that Np items of which are of one class (which designated as 1) and N(1 — p) of which
are of another class (which designated as 0). Here N is the population size thus a positive
integer, p is the proportion of 1’s in the population thus a positive fraction number between
0 and 1.

Sampling with replacement from a dichotomous population, we denote X; as the outcome
of ith observation, i.e. X; takes the value 1 or 0. Then Xj,---,X,,--- are independent
Bernoulli random variables with same success rate p.

Let S, = Y, X;. Sampling with replacement, § = (S}, Sz, -, Sn, - -) is a random
path with increment X,, = 0 or 1, which is independent of passage position S,_; = s,_; for
n=12-.-.

Let n

X = {§= (15 %y Sny )t .sn:z::v,-, z;=0 orl, n=1,2,---}.

i=1
If sampling is done infinite times with replacement, then S is the random path, and X is the
set of all possible sample paths. In other words, X is the sample space of S.

Let {H(1), H(2),---,H(k)} be a partition of X'. Since elements in each H(3) are sample
paths, for the reason of intuitive thus easier conception, we call H(i) a bunch of paths. So
partitioning of X’ is to divide all paths in X’ into a number of bunches in a way such that
each of the paths in A belong to some bunch, and no single path belong to two bunches.

One of the simple partitions of A" is {Hy,(0), -+, Hny(no)} where H, (i) = {5 € X :
Sn, = 1} and nyg is any fixed positive integer. It is easy to check that {H,, (), =0, -, no}
is a partition of X and P(S € Hyy(3)) = P(Sp, = i) for i =0, - - -, no.

When sampling is carried out with replacement, population P is exhausted at the Nth
step of sampling, and X;, X;,---, Xy are not i.i.d. Sy = (S1,S2,---,Sn) is a random

path with increment X,, = 0 or 1, which is dependent of passage position S,_; = s,_; for



n=1,2---,N. Let Xy be the set of all possible sample paths of Sx, then

AN = {§N= (S1y° " 38ny***ySN) : 8p = zn::v,-, z;=0orl, n= 1,---,N}.
i=1
Xy is the sample space of Sy.

Our goal is to derive a method of computing absorption probabilities of random paths
which arise by sampling with or without replacement from dichotomous population, with
respect to any specified set of points. Computation of absorption probability is of broad
interests. Especially in sequential tests, computation of absorption probability is critical for
computation of O.C. and expected sampling sizes for the tests. Even though this method
is motivated in sequential tests, here we treat it as general as possible in hope it can find
applications widely. First the discussion is given when the absorption of a random path is
defined as the usual sense, i.e. the random path first hitting a point in the specified set of
points. Then we will generalize this method for the cases when absorption of random path
is defined as second hitting (third hitting, etc.) points in a specified set of points.

Random path S can be graphed on two-dimension coordinates (n, 85). The first coordi-
nate n indicates the sampling time for S,, the second coordinate s, indicates the possible
value for S,,. Let B be a set of some interested points on this coordinates that § might hit. We
call B the set of barrier points. Hence B = {b = (by, ;) : b, is positive integer, b, is integer }.
For example, B = {(5,1), (5, 3),(8,2), (8,4), (8,6),(11,5),(11,8)}.

Let B(n) be the subset of B, points in which random path S might hit at time n (during
the nth sampling), that is B(n) = {b,(i) = (n,b,(3)) : ¢ = 1,---,I,}, where b,(:) for
i =1,---, I, are integers; I, is the number of points in B(n), I, = 0 if B(n) is empty. We
call B(n) the set of barrier points at time n. Hence B = |, B(n), and B(1), B(2),:-- are
disjoint.

In last example, B(5) = {(5,1),(5,3)}, B(8) = {(8,2),(8,4),(8,6)}, B(11) = {(11,5),(11,8)},
and B(n) =@ for n # 5,8,11. B is the set of all barrier points which random path S might
hit during the whole process of sampling.

Let XB be the subset of X , Which includes all sample paths which pass through some
points in B. X B can be partitioned into bunches of paths {H(b,(:)), b.(3) € B} where

H(zn(i))={'§€‘)":sn=b’ﬂ(i); sl¢Bh l=1,2a"'7n_1}
i=1,- 0 n=1,2" 1)



where By = {b(i), i = 1,--+, I}. It is not difficult to check that {H(Ba(i)), i=1,---,I;
n=1,2,---.} is a partition of B and

P(8 € H(ba(4))) = P(Sa = b,(3), i€ By, I=1,---,n—1). (2)

The right side of above equation indicates P(S € H(b,(i))) is the probability that random
path S hits b, (i) before hitting other barrier points in B, or the absorption probability of §
by b,(i). For this moment, absorption of § by b, (i) is defined as § hits b,(s) for the first
hitting in B. Later on, we will discuss the cases when the absorption of S by b,(%) is defined
as b,(:) is the second point in B being hitted by 5, etc..

With same idea, XnB can be partitioned into bunches of paths {Hn(b.(3)), ba(i) € B}

where

HN(En(i))={§N=(31,---,SN): Sn=bo(i); 1€ By, 1=1,2,---,n—1}
1=1,---,I,; n=1,---,N. (3)

It is easy to see that {HN(Zn(i)) t=1,---,I;n=1,--. ,N.} is a partition of XNB and

P(Sy € Hy(b(3))) = P(Sn = ba(3), Si¢ By, 1=1,--+,n—1). (4)

2 Main Results

Given a barrier set B, sampling with replacement, the absorption probability at Zn(z) € B,
for any p € [0,1], is

B3 € H@) = Gui)P(Sn = bali)
= ), )0 - o, ®)

where 1(-) is a function defined on B, and can be computed recursively by following formula

i n-1 () (e )
YEa(R)=1-3 3 (b(s))2LAHO L (6)
=1 i (:)eB(l) (1)



where a convention is assumed : (’:‘) =0ifm<tort <.

For the same B, sampling without replacement, the absorption probability of Sy by

Zn(i)EB, for any N and p = ]—f,-,---,% , s

Pon(Sv € Hn(ba(3))) = (ba(3)) Bo,n(Sn = bn(i))
pN \ ((1-p)N

— 1/)(Zn(z)) (bn(i))(%)—bn(f)) ] (7)

3 Illustrative Example

Assuming P is a dichotomous population with size N and p ( the proportion of 1’s in P
). Let the set of barrier points B = {(5,1),(5,3),(8,2),(8,4),(8,6),(11,5),(11,8)}. Let
B(5) = {(5,1),(5,3)}, B(8) = {(8,2),(8,4),(8,6)}, B(11) = {(11,5),(11,8)}. And let
B(n)=0 for n #5,8,11. We have B = {J, B(n).

Barrier function 9(:,-) can be computed by following formula (6).

¥(5,1) = 1, ¥(5,3) = 1 because B(l)=0 for I=1,---,4.

6)G)

¢(8,2)=1—{1-%+1-

} = B 046190,

- (190,00, 200 100 0 OO,
’ @ TE® T T ’

$(11,8)=1— {1- ()G +1. 66 +E’—-@@+l- (50 + 2 ()G =0.30909.
’ @ e tE R T

Sampling with replacement, the underlying distribution is binomial with parameter p.



Assuming p = 0.65, then by (5)
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P,(§ € H(bu(5))) = $(11,5) - P(Sn = 5) = 0.25758 - (5

)0.6550.356 = 0.02538.

Likewise the absorption probabilities with respect to points in B are computed as following

Absorption Probability: | 0.04877 | 0.3364 | 0.0101 | 0.09375 | 0.1663 | 0.02538 | 0.06968
Barrier Points in B: | (5,1) | (53) | 82) | (8:4) | (8,6) | (11,5) | (11,8)

The probability that S hits at least one point in B is

Puss(S € ¥B) = 3 Poes (8 € HEa(3))) = 0.750.
ba(i)eB

Sampling without replacement, the underlying distribution is hypergeometric with pa-
rameters N and p. Assuming N = 20 and p = 0.65, so pN = 13 then by (7)

13\ (7
P, n(Sn € Hy(b11(5))) = ¥(11,5) P, n(Sy1 = 5) = 0.25758 - -(5—)@ = 0.01382.

()

Likewise the absorption probabilities with respect to points in B are computed as following

Absorption Probability: | 0.02935 | 0.38738 | 0.00201 |0.09933 | 0.1839 | 0.01382 | 0.08289
Barrier Points in B: | (5,1) | (53) | (82) | (84) | 86) | (11,5) | (11,8)

The probability that Sy hits at least one point in B is

Pyss20(Sn € AnP) = > Poeso (S’N € HN(i)n(z'))) = 0.799.
bn(i)eB

4 Enclosed Boundary

We say barrier set B is enclosed for random path § if P,(§ € X B ) = 1 for any p € [0,1].
Actually if B is enclosed for S, then X B_x m sequential tests, sampling stops whenever

random path goes acrossing an enclosed boundary. In that case, the set of barrier points B



consists of an enclosed boundary, so we call B the enclosed boundary. Let

B = {(i,4) : (i,4) € {(n, an)}25! U {(n, bu) ¥ U {(m, B}z,

where ay, b, are integers such that a, < b, forn=1,-.-,m.

We call {(n,a,)}77' as the lower boundary, {(n,b )}n__1 as the upper boundary, and
{(m, k)}k=a" as the truncation boundary.

The barrier function (-, -) becomes boundary functions 14 (), ¥s(-), ¥m(-), where 1,(n)
= P(n,a.), ¥s(n) = ¥(n,b,) for n =1,-+-,m — 1; (k) = p(m, k) for k = apm, -+, byy.

By formula (6), boundary functions can be computed recursively by

him=1-% {mm (“')((7)::7) wybillici) )((7)-2'" ) } , ©
bl =1-% { pal) L) (27)((:7):37) + zpb(z)—(l”’?)(%j;' ) } , ©)

forn=1,---,m—-1;

Ym(k) =1 —TZ; {¢a(1)%+¢b(1)%}, (10)

fork=an, -,bn.

To test hypothesis Hy : p < p* v.s. H; : p > p*, the decision rule should be defined as
rejecting Hp if random path first hits upper boundary or upper portion of the truncation
boundary on which the cut off point is (m,k.). So the stopping time is 7' A m where

=iwnf{n:S, >2b, or <a,}.

Sampling with replacement, the power function is, for any p € [0,1]

B = o) S = ) + 3 ) (5 = 1)
= S (1 )pra-ps £ @ (Pora-prt

The expected sampling size S(p) as a function of p on [0,1] is

Slp) = E,TAm



Sn {%bb(n) ( )P”"(l —p)"™" + tha(n) - (:n) P (1 — p)n-a»}

n=1

+m E Y (k) - ( )P"(l—p)’”"‘ (12)

k=kc

Sampling without replacement, the power function is, for any p = _]ov

2|z

m—1 bm
B(p) = 2 tu(n) Pon(Sn=0bn)+ D ¥m(k) - Pon(Sm = k)

n=1 k=kec

(1-p)N (1-p)N
- S ()G )((”)_b")+,§ sty EACa) )((N’S‘-") (13)

The expected sampling size S(p) as a function of p is

S(p) = Ep,NT/\m

= Z n {¢b(n) —( )((:1»)_—11’:),.1\,.)_ + ta(n) - _( )((?)__’;)iv) }

(1-p)N
+m kzk Pm (k) - (—)((N’;—”l (14)

Similarly one can construct sequential test rule for testing hypothesis Hy : p = p* v.s.

n=1

Hy : p # p*. Similar formula for B(p) and S(p) can be set up for the cases of sampling with

and without replacement from a dichotomous population.

5 Proof of Main Results

First let us consider the case of sampling with replacement, in which, S, has binomial
distribution B(n,p) for n =1,2,---. Now we define, for all possible b,(k)) € B,

P,(S € H(bu()))
Yk = —p )

(15)

By this definition, obviously equation (5) holds. Then we only need to show () can
be determined by recursive formula (6). Hence 1(:,-), as a function defined on B, doesn’t

depend on p.



Since Py(5 € H(bu(k))) = P, (S € H(Ba(K)), S = bu(k)), s0

Y(u(k)) = Py (8 € Ha(k))ISn = ba(K))
= P(Sn=0b.(k),S¢B, l= 1,---,n—-1|8, = bn(k))
= P (Si¢By, I=1,---,n—1|S, = by(k))
= P, (Xa € DulSu = ba(k)), (16)

where D, € I, = o ({(21,* - ,2») :2; =0 or 1 ¢t=1,---,n}) such that
(X €Dn) =($1¢ By, I=1,---,n—1). (17)

1(b,(k)) doesn’t depend on p because S, is a sufficient statistics of p. So we write ¥ (b,(k)) =
P (Xn € D,|S, = bn(k)) , the intuitive meaning of which can be explained as following. The
sample paths in X' passing through b, (k) can take (bn’(‘k)) different passages to reach b, (k).
Each passage is taken equally likely by random path S. Of these passages, some met other
barrier points in B before reaching b,(k), while the rest didn’t. Actually (b, (k)) is the ratio
of number of passages which didn’t meet other barrier points before reaching zn(k) and the
number of all passages reaching b, (k). So obviously, (b, (k)) doesn’t depend on p.

Next we consider the case of sampling without replacement, in which S, has hypergeo-

metric distribution H(pN,N,n) forn=1,---, N. Now we want to show, for any p, N,
Pon (Sn € HN(Ba(k)) = $(Bu(k)) - Po(Sn = a(F)) (18)
holds for any b,(k) in B such that n < N.
Claim 5.1 If P, n(Sn = bu(k)) > 0 then
P (S € Hy(8u(R))|Sn = bu(k)) = $(Ba(k))- (19)

Proof of Claim 5.1: '
If P, N(Sr = bn(k)) > 0, then by definition of HN(Zn(k)) in (3),

Py (S € Hy(ba(k))|S, = ba(K))
= PpyN(Snzbn(k)7Sl¢Bh [= 1)"'an-1|Sn=bn(k))
= Bn(Si¢B, l=1,---,n-1|S, = b,(k))

10



P,n(S1€ B, 1=1,---,n—1[S, = b,(k)) is well defined. For D, in (17), we have
Pon(Si€ B, 1=1,---,n—1|S, = by(k)) = Pon(X, € D,|Sy = by(k)).

If we denote Pp(-) as the probability measure of binomial distribution for sampling with
replacement, and denote P, x(-) as the probability measure of hypergeometric distribution

for sampling without replacement, then for any %, € I,,,

Pon(Xn = a|Sn = bo(k)) = Po(Xy = #0|Sn = ba(k))

_ { (b,.'l('k)) sn = ba(k);
0 8n # bn(k).

where s, = }"i-; z;. So consequently we have
Py (X € DSy = ba(K)) = Py(Xa € DalSn = ba(k)) = (Ba(F)).
Thus by (16) we have

P, n(Sn € Hy(ba(k))|Sn = ba(k)) = $(Bn(k)).

I Ppv(Sn = ba(k)) =0, then P, v (S € Hy (ba(k)) = 0 because

P,y (Sn € Hy(ba(K))) Pon(Sn=0ba(k),Si¢ By, 1=1,---,n—1)

< P, n(Sn = bu(k)).

By Claim 5.1, we can see that for any p, N and b,(k) € B, whether P, (S, = b,(k)) >
0 or =0, it always holds

Pon(Sn € Hy(bu(k)) = $(8a(k)) o, ¥ (S = ba(k)).

Now we are ready to show that the (b,(k)) defined by (15) also satisfies (6). Fix n and
point b,(k) in B, let N =n and p = b—";(bﬂ, then

B n(S1=bi(2)) = (bz"?‘r)) ((ll‘_”f()g ) _ (l;:gf))) (nl:::'((i,;)) ‘

() @)
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Under above assumption, random path Sy hits barrier point (n, b,(k)) at time N = n with

probability one. Thus
N ~
> Bn(Sw e Hy(l)) =1 (20)
=1

where Hy (1) = UL, Hx(b(:)). By (18) we have, for [ =1,---, N

Pn(Sve Hy())= 3. P,n(Sv € Hn(bi(2)))
bi(i)eB(l)

= 3 (i) Pon(S = bi(3))

bi(i)eB(l)

) ()
= X (b)) (21)
Bi())eB() (1)
In above equation, let / = N then
Pon(Sn € Hn(IN)) = $(ba(k)), (22)

which is because of

ba(k)\ (n—bu(k)\ |1 i=k
(bn(i)) (n - bn(i)) - { 0 i#k.
By (20), (21) and (22), we have, for any b,(k) in B,

n—1 (b,.(l;)) (n—b,. (]c))
PEE)=1-3 3 o)L (ns—bz(z)

=1 §(:)eB(l) !
n=1,2---. (23)

(b,(k)) can be computed recursively for all barrier points b, (k) in B.

6 Generalization of Main Results

In previous sections, we have discussed the method of computing the probabilities of random

path S, as outcome of sampling with or without replacement from a dichotomous population,
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being absorbed by points in B which is any specified set of points on (n, 3,) plane. There
the event that S is absorbed by a point b(i) in B was defined as that 3§ hits b,.(3) before
hitting any other points in B, or in brief words, as that E,,(z) is the point of first hitting in
B.

In this section, we will discuss the cases, as the generalization of main results, in which
absorption of § by a point Bn(z) in B is defined as that S hits Zn(z) after hitting other k — 1
points in B, or in other words, b,(:) is the point of kth hitting in B. For easier demonstration,

we will deal the second hitting in detail, then give the formula for general case.

6.1 Absorption defined as second hitting

If we denote H(®(b,(3)) the event that S hits b,(i) as the second hitting in B, then

H(z)(zn(i)) = U {3eX: sp,=b,; s; € Bi; sig By, l<n, l#£j}. (24)
B30

Let X8 (2) be the subset of X', which includes all sample paths which pass through at least
two points in B. {H(z)(zn(z')), i=1,---,I,; n=1,2,--. } is a partition of XB(2).

We are interested in computation of

P(Se HOG.@)=P| U (Sa=b(); S;€Bj; Si¢ B, I<n, 1#j)],
j<n
B(5)#0

the probability that ,(:) is the exact second point in B being hitted by random path S.
Also we are interested in computing P(5 € XB(2)) = 2s5.6)eB P(S € H®(},(3))), the
probability that S hits at least two points in B.

Before giving computation formula for P(S € H®(b,())), we need definitions of relative
barrier function ¢(b,/(k'); b,(k)) and barrier-II function (b, (k)) which are defined on B.

Definition 6.1 For any pair of points (b,+(k'); b,(k)) such that n' < n and b (), ba(k) €
B, relative barrier function o(b i (k'); zn(k)) is defined recursively on B by

. (b,.(k)—b", (k')) (n-n’ —bn(k)+b s (k' ))
. o n- - 1w o \bi(i)=b s (K I—n'~by())+b s (&'
ek yBE) =1— T 5 by (K);bi(i)) —2 ’( e

I=n'+1 bi())€B()

— . (25)
-5, (k’))

13



Fix each b+ (k') in B, (b, (k'); bu(k)) can be computed recursively in n for all n > n', all
b,.(k)) in B. In this way, for all pairs of (b,s(k'); b.(k)) such that ' < n and b_(k"), b,(k) € B,
@(bn(k); b, (K")) is computable. Actually the definition of ¢(b,/(k'); b,(k)) is a generalization
of that of 1(b,(k)). It’s easy to check ((0,0);b,(k)) = ¥(Ba(k)). @(by(E);bn(k)) is the
conditional probability that S doesn’t hit any points in B after time n’ and before time n
given S hits b/ (k') at time n' and b,(k)) at time n. Or in other words, (b (k'); ba(k)) is
the percentage of sample paths passing through b_/(k') and b,(k) that don’t pass any points
in B after time n' and before time n.

Once the values of ¢ (b, (k'); ba(k)) are known for all pairs of (b_s(k'); b,(k)) such that
n' < nandb(k), b,(k) € B, We may define barrier-II function on B by following definition.

Definition 6.2 For any point b,(k)) in B, barrier-II function ¢y ®(b,(k)) is defined recur-
sively by

3 n—1 i o (@) (my e
POGE) =Y 3 whi()ebi(i); bu(k) 2L (n)‘ L (26)
{

=1 },(:)eB(l)

@ (b,(k)) is the percentage of sample paths passing through b,(k) that had passed exact
one point in B before time n. We see that ¥(®)(b,(k)) is easily computable for all points in

B with above recursive formula.

Theorem 6.1 Given any barrier set B, sampling with replacement, the absorption probabil-
ity at b,(i) € B, for any p € [0,1], is

Py(5 € HO(3:(2))) = $P(Ba())Po(Sn = ba(0))
= WG, 1 )00 -, @)
where P ?)(+) is a function on B given by (26). |

For the case of sampling without replacement, the event that Zn(z) is the second point in B
being hitted by random path Sy is denoted as H ](3)(7),,(2')), then

HY (ba(3)) = U {neEXN: sn=0bn; s;EB;; si¢ By, I<n, 1#j} (28)
B())#0
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P,n(Sv e H ](\?)(Zn(z))), the probability that Sy is absorbed by b,(i) as the second hitting

in B, can be computed by following theorem.

Theorem 6.2 Given any barrier set B, sampling without replacement, the absorption prob-
ability of Sn by b.(i) € B, for any N and p = %,- SN % , 18

Pon(Sw € HR(ba(@))) = $@(Ba(i))Pon(Sn = ba(i))

= ¢(2)(Zn(z’)) (bf-](\:)) gﬁl—_bfu)(]‘\;) ) (29)

n

where ¥3)(-) is a function on B given by (26). N

Let X ﬁ (2) be the subset of X, which includes all sample paths which pass through at least
two points in B. {H}\?)(Z,,(z‘)), t=1,---, ;s n=12,-.-- } is a partition of XNB(2). The
probability that Sy hits at least two points in B is P(.§'N € XNB(2)) = 25,.(1')63 P(S’N €
HP (B, (i))).

6.2 Illustrative Example Continued

Let B be the barrier set given in Section 3, i.e. B={(5,1),(5,3),(8,2), (8,4),(8,6),(11,5),
(11,8)}. For all pairs of (§,/(k'); b,(k)) such that n' < n and b (K), b,(k) € B, relative
barrier function (b, (k')); b,(k) can be computed by following (25).

¢((5,1); (8,2)) = 1 —27: 3 w((5,1); bi(3)) (’"“)-12 SI—)bl(i)—‘x) _

=6 5,(i)eB() -1

because B(6) = B(7) = 0. Similarly ¢((5,1); (8,4)) = ¢((5,1); (8,6)) = ((5,3);(8,2)) =
¢((5,3); (8,4)) = ¢((5,3); (8,6)) = L.

¢((5,1);(11,5)) = 1—§: ) <p((5,1);i;,(i))(’"(")-lggl—)bz(i)~4)

= 1_{=1f1&+1.%+1.®}
G) &) q

3
.
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Likewise for other pairs of (b, (k'); ba(k)) such that n’ < n and b_(k), b.(k) € B,
@ (b, (K); b+ (K')) are computed and listed as below.

(b (k'); bu(k)) ba(k) = (n, ba(k))

(only for ' < n) | (8,2) | (8,4) | (8,6) | (11,5) | (11,8)
G| 1 1 1 3 1
(5,3) | 1 1 1 2 :

bo(K)=  (82) 1 1

(n', b (K)) (8,4) 1 1
(8,6) 1 1

Barrier-II function %®)(,-) can be computed by following formula (26).
¥ (5,1) = 0, ) (5,3) = 0 because B(I) =@ for I=1,---, 4.

1/)(2)(8,2) =1-1- ___(fzsgg) +1-1- ___(;) (g) b = 0.53571,
s 00 00
)
$p(8,6)=1-1- (6) @ +1- 1-——(6) ) =2 035714,
KGR () u
¢(2)(11 5) = 1.§.(5_2)+ .2. (g) (g) 13 1 erl.l. (Z) (2) +2.1.@(_2 = 0.48268,
I ) R ) B ) AR () RS T R O
0@, 1006, 18, 66 1, 00 s @O
+1 — 1 T+— ot Ans = 0.50909.
HTEEE e TR M)
Sampling with replacement, the underlying distribution is binomial with parameter p.
Assuming p = 0.65, then by (27)

[rary

»P(11,8) =1-1. ( %

Py(S € H®(8:4(5))) = vP(11,5) - P,(Su1 = 5) = 0.48268 - (151) 0.65°0.35° = 0.04756.

Likewise the absorption probabilities with respect to points in B are computed as following

Absorption Probability: | 0.0 | 0.0 | 0.01165 | 0.09375 | 0.09239, | 0.04756 | 0.11476
Barrier Points in B: | (5,1) [ (5,3) | (82) | (84) | (86) | 11,5 [(11.8)
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The probability that S hits at least two points in B is

Poss(S € XB(2)) = Y Poes (S’ € H(Z)(Bn(i))) = 0.360.
Ba.(i)eB

Sampling without replacement, the underlying distribution is hypergeometric with pa-
rameters N and p. Assuming N = 20 and p = 0.65, so pN = 13 then by (29)

13\ (7
Pon(Sn € HP (511(5))) = %(11,5)P, n(S11 = 5) = 0.48268 - M = 0.02589.

(@)

Likewise the absorption probabilities with respect to points in B are computed as following

Absorption Probability: | 0.0 | 0.0 | 0.00232 | 0.09933 | 0.10217 | 0.02589 | 0.13653
Barrier Points in B: | (5,1) [ (5,3) | (8,2) | (84) | (86) | (11,5) [(118)

The probability that Sy hits at least two points in B is

Poes20(Sn € AnB(2)) = > Posszo (S'N € H](\?)(Zn(z))) = 0.366.
Ba(i)eB

6.3 Absorption defined as mth hitting

Now we consider the general problem of computing the absorption probability of S by points
in B when absorption of S by 8,(i) in B is defined as  hits 5,(:) for the mth hitting in B.
If we define (M) (b,(:)) = (b,()) whose values are available by (6), with relative function
@(b,s (k'); b,(k)) whose values are available by (25), barrier-m function ¥(™)(.) on B is defined

as following.

Definition 6.3 Form = 2,3, .-, for any point b,(k) in B, a function ™ (b, (k)) is defined

recursively by

ik = 5 PPN )
pOER) =Y D B I(Bi(E))e(bi(i); ba(k)) AT L (30)
=1 §,(:)eB(l) ( z)

Above definition indicates that {1/1(’")(5,,(2'))}5 (@B a0 be computed inductively for m =
2,3,
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We denote H™)(b,(k)) the event that S hits b.(k) as the mth hitting in B, then

. sn=bn(k); SltEBl,tzl,"',m—l;
H™ (3, (k) = U §€eX: s é€B, l<n, £, ln. . (31)
< <lpymy <n
B(l:)#8, t=1,-m-—1
Let x5 (m) be the subset of X', which consists of all sample paths 3 which pass through at
least m points in B. {H(m)(zn(i)), 1=1,---Ip; n=1,2,--- } is a partition of XB(m).
We denote H }v’"’(i;,,(z)) the event that Sy hits ,(i) as the m#h hitting in B, then

. Sy =0bu(k); s, €B, t=1,---,m—1;

H](Vm)(bn(i)) = U SN € Xn: si¢ B, Il<n, l# 4, . .(32)
< <Llyp_1<n

B(l)#8, t=1,.;m-1

Let X, NB (m) be the subset of Ay, which consists of all sample paths which pass through at
least m points in B. {HI(Vm)(i)n(i)), i=1,---,I;; n=1,2,--- } is a partition of XNB(m).
Theorem 6.3 Let absorption of S by points in a given set B be defined as mth hitting in
B. Sampling with replacement, the absorption probability at b,(i) € B, for any p € [0,1}, s
RS € H™(Bu(3)) = ™ (8.(5))Po(Sn = bu(i))
— ) (s n br() (1 _ . \n—bn(i)
$.0)(, 1 )POa-pr, (33

where Y(™)(.) is a function on B given by (80). The probability that S hits at least m points

in B is

RS exBm)= ¥ B (5 HME.3)). (34)
ba(i)eB

Sampling without replacement, the absorption probability of Sy by ?)n(z) € B, for any N and

1 N .
p—ﬁf",ﬁ; s

Pn(Sn € HPV(Ba(3) = %(5.(6)) Pon(Sn = ba(3))

)
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Tﬁe probability that Sy hits at least m points in B is
Pn(Sn e X5m) = 3 Pow (3w € HP(E.0))). (36)
ba(i)eB
n

Let’s continue the example given in Section 3 and Section 6.3 to illustrate above theorem.
Let m=3, by (30) we have

(”J‘(k)) (n;(gn(,k)))
POGE) =S T PO(Bi(5))p(Bi(s); b (k)2 (n)‘ 0 7 (37)

=1 5, (i)eBQ)

Since relative barrier function ¢(b,/(k); b,(k)) and barrier-II function 3 (By(2)) for this
example have been already computed in Section 6.1, the barrier-III function @ (b (k)) can
be easily computed as following.

P(5,1) = 0, $3(5,3) = 0 because B(l) =@ for I=1,---,4. $(3)(8,2) = ¥B)(8,4) =
$®)(8,6) = 0 because B(l) =0 for 1=1,2,3,4,6,7 and PpI(5,1) = $)(5,3) =0.

$9(11,5) =0.§.("‘)ﬁ+0.2 &) (§)+15 1. erl ) (6)+i . )6 = 0.25974,
5 (&) 0 (5) ) )

(5) ¢ ¢
soars =010 01 00 13, OC) 1, OO o OO _ 00
() 7 ETR T i (5)

Sampling with replacement, the underlying distribution is binomial with parameter p.

'—l

Assuming p = 0.65, then by (33) the absorption probabilities with respect to points in B are

computed as following

Absorption Probability: | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |0.02560 | 0.04099
Barrier Points in B: | (5,1) I (5,3) | (8,2) l (8,4) I (8,6) | (11,5) {(11,8)

The probability that $ hits at least three points in B is

Poes(S € XB(3)) = Y Pogs (5' € H(s)(i)n(i))) = 0.067.
ba(i)eBB

Sampling without replacement, the underlying distribution is hypergeometric with pa-
rameters N and p. Assuming N = 20 and p = 0.65, so pN = 13 then by (35) the absorption
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probabilities with respect to points in B are computed as following

Absorption Probability: | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |0.01393 | 0.04876
Barrier Points in B: | (5,1) | (5,3) | (8,2) | 84) [(8,6) | (115) [(1,8)

The probability that Sy hits at least three points in B is

Possao(Sn € twB(3) = 3 Possan (Sw € HP (ba(s))) = 0.063.
tn()eB

6.4 Proof of Theorem 6.3

Similar to the definition of (b,(k)) given in (15) and (16), here we define

PER) = P (5 € HM(Eo(K))[Sn = bu(k))
= P (X. € DulS, = ba(k)) (38)

where H(™)(b,(k)) were given in (31) and D,, is such that

(X, € D,) = U
11<...<1m_1 <n
B(l)#9, t=1,--ym~1

Sp=bn(k); S, €By, t=1,---,m—1;
S"‘ ¢BT7 l<n, l#ha"',lm—l-

By this definition, (™) (b,(k)) satisfies equations (33). With justifications similar to those
leads to (7), ¥(™)(b,(k)) also satisfies (35). Now we only need to show $(™) (b, (k)) defined by
(38) satisfies equation (30), thus can be computed recursively with that equation. Before do-
ing this, we need to give an intuitive presentation of relative barrier function e(b (K); ba(k))

which is defined in (25) and plays an important role in equation (30).
We give another definition of ¢(b,/(%"); b,(k)). For n’ < n, b (E'), b(k) € B, let

@(by (K);ba(k)) = P, (S, €B,l=n"+1,---,n—1|Sy =b(k),S, = Zn(k)) . (39)
Then we show this definition agrees with that in (25).

Conditioned on S, = b,/(k'), random walk §* = (S, 41— Sy Spryg — Sprye++) has

same stochastic behavior as that of §. Let I* = [ — n, n* =n-— n, St =8-S,
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b (¢) = bi(i) — b, ('), then equation (39) became
(b (F); bu(R) =P, (S @ B*(I"), I*=1,-++,n* 1|8} = b2 (K), S,y =5, (K)) . (40)

Let §* = (87,8;,-++), B* = {5;‘.(z’)=b,(z')——bn:(k') : b(i) € B,l*=l—n',l=n'+1,n'+2---},
then (25) can be derived from (40) and (6) just by replacing v(b,(k)) by @(b, (K'); ba(K)),
n by n* =n—n', bi(i) by bi(3) = bi(:) — b (k') ete. in equation (6). Justification of this
derivation is analogous to the proof of (6) given in Section 5.

Now we proceed to show that y(™)(b,(k)) defined by (38) satisfies (30). Recall that
H(™)(B,(k) is a bunch of paths in X' that just pass the b.(k) as the mth point in B.

P, (8 € HM(Bu(k))) = P, (8 € H™ (b (k)), Sa = bu(k))

n—1
=Y Y B (8eH™IGG);Si=b();S ¢ By,r=141,---,n—1; S, =by(k))
I=1 (e B()

n—1
=Y Y P (SeH™IGE)S=b();S, ¢ By,r=I41,--,n—1; S, =by(k)) -
I=1 §,:)eB()
Py (Si=bi(i); Sy By, r=1+41,---,n—1; S, = bu(k)). (41)

But in (41),

P, (§ € H™D(B(3))|S) = bi(3); S, & Bryr =1+ 1,-++,n—1; Sn=b,(k))
= P(8 e H"I({B(i)Is: = bi(i))
= P D(h(s)) (42)

and

PP(SI = bl(z), Sy ¢B7‘a r=1+ L yn— L Sp = bn(k))
= Pp(Sn = ba(k))Po(Si = bi(3)] Sn = ba(k)) -
Py(S @ Bry r=1+1,,n— 1] 8 = bi), S = ba(k). (43)

br(k)\ (n—bn(k)
With the fact P,(S; = bi()|S, = b.(k)) = &&%(;"T"&L) and because of (42), (43) and (39),
i

equation (41) became

P, (5 € H™ (b,(k)))
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n—1 b (k) {n—bn (k)
=y X ¢<m-”(7>n(k>)so<zl<i);Mk))(""")("”“")Pp(sn=bn(k)). (44)

=1 5,(5)eB() ()
Divided both sides by P,(S, = b,(k)), equation (44) became (30). ||
ACKNOWLEDGMENTS

I am very grateful to Professor Steven P. Lalley for his guidance, advice, and encour-
agement. His suggestions and criticism had been a source of inspiration for me during
preparation of this paper. Thanks are also due to Sayaji Hande for his helpful comments

about grammatical and stylistical structure of this paper.

References

[1] Arkles, L. and Srinivasan, R (1979). On the Sequential Selection of the Better of Two
Binomial Populations. Sankhya B 41, 15-30.

[2] Aroian, L.A. (1968). Sequential Analysis, Direct Method. Techmetrics 10, 125-132.

[3] Aroian, L.A. (1976). Applications of the Direct Method in Sequential Analysis. Tech-
metrics 18, 301-306.

[4] Aroian, L.A. (1975). Exact Sequential Methods for the Comparison of Two Medical
Treatment. Schenectady, New York 18, 301-306.

[5] Bechhofer, R.E. (1985). An Optimal Sequential Procedure for Selecting the Best
Bernoulli Process — a Review. Naval Res. Logist. Quart. 32(4), 87-95.

[6] Benzing, H., Kalin, D., and Theodorescu, R. (1987). Optimal Policies for Sequential
Bernoulli Experiments with Switching Costs. J. Inform. Process Cybernet 23(12), 599-
607.

[7] Eisenberg, B., and Lienhard, C. (1989). Curtailed Version of Randomized Binomial
Tests. Sequential Analysis 8(3), 317-329.

[8] McWilliams, Thomas P. (1989). How to Use Sequential Statistical Methods— Volume 13.

American Society for Quality Control, Wisconsin.
[9] Wald, A. (1939). Sequential Analysis. John Wiley, New York.

[10] Wald, A. and Wolfowitz (1939). Confidence Limits for Continuous Distribution Func-
tions. John Wiley, New York.





