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Abstract

The box-counting dimension of a class of random self-affine fractal sets is given. The
methods used involve certain branching processes with random environments. It turns
out that the dimension is a constant, depending on a probability distribution, naturally
associated with the construction.



1. Introduction

Let m and n be positive integers, with 2 < m < n and set Ky = [0,1]2. Divide
the unit square into the mn rectangles [in™1,(: + 1)n™}!] x [m™Y,(G + D)m™1], ¢ =
0,1,...,n—1, j=0,1,...,m — 1 and choose a random subcollection of these rectangles
according to some given probability distribution F. Denote the aggregate of the rectangles
so chosen by K7 and let M; be the number of rectangles in K;. Note that the possibility
M; = 0 (so K1 = 0) is not excluded. Next divide each rectangle in K, (if any) into mn
rectangles of height m~2 and width n™2 and choose a subcollection of these according to
the same distribution F' as before, independently for each rectangle in K;. Denote the
aggregate of these rectangles by K and let M3 be the number of rectangles in K. In case
M; =0 set K5 = 0 and M; = 0. Continuing in this way we obtain a decreasing sequence

of compact subsets of K

KyDOKiDK;D...

and a sequence of nonnegative integers { M;}, where K is either empty or a (finite) union of
rectangles each of which has height m ™t and width n=¢ and M; is the number of rectangles

in K;. Set My = 1 and observe that {M;} is a Galton-Watson branching process.
Define

The set K is what we call a statistically self-affine fractal (as opposed to the strictly self-
affine fractals considered in [Mc], [Be], [Fa] and [LG]) and is the object of interest in this
note.

It is well known that if E[M;] < 1, then either P(M; - 0) =1 or P(M; =1,Vi €
N) = 1 and hence either K = (§ with probability one, or K is a singleton with probability
one. So when E[M;] < 1, the limit set K is trivial. We therefore assume throughout this
note that E[M;] > 1. In this case, with probability one, {M;} either dies out (M; — 0) or
tends to infinity and

P(lim M; = 00) =1— P(lim M; = 0) > 0.

Thus we get a nonempty (“nontrivial”) limit set K, with positive probability.
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Theorem

There exists a constant d, depending on the distribution F' according to which K;
was chosen, such that, given that K # @, the box-counting dimension of K is equal to d,
with probability one.

The proof of the theorem is given in Section 3, where we also give a formula for the
value of d.

It is of interest to also determine the Hausdorff dimension of K and to give conditions
under which these two notions of dimension agree. (See Lalley and Gatzouras, [LG], for a
discussion in the deterministic case.) This will be done in a subsequent paper.

Finally, we would like to mention that random constructions have been considered
before by various authors. All of them however, as far as we know, lead to “statistically”
self-similar sets. (See [CCD], [DG], [DM], [F]1, [F]2, [Ke], MGW] and [MW]. See also [Ma]
for general definitions, examples and motivation.) We emphasize the fact that the cases
considered here are drastically different than the ones already studied, the difference being
that the collection of subsets of the unit square that we consider consists of rectangles
(rather than squares), i.e., images of the unit square under affine transformations (rather
than similarity transformations). Hence the name “self-affine” for the limit set K.

For the proof of the Theorem we will need a result about branching processes with
random environments, which is given in Section 2. In Section 3 then, we use this result to

prove the Theorem.

2. Branching Processes with Random Environments

Let ¢ = (¢1,(z,...) be a sequence of i.i.d. random variables with

P(Clzj):qj? j=17---7ma

where {g; : = 1,...,m} is a probability distribution on {1,...,m}. For each j € N, let
{p;j(?) : ¢ =0,1,...} be a probability distribution on the nonnegative integers, satisfying

o0

E ip;(2) < oo.

=0

Let

oo

pi(z) =Y a'pi(i), 0<z <1,
=0



be the p.g.f. of the distribution {p;(3):¢=0,1,...}, for each j € N.

Now define a branching process {Z;} as follows. Conditional on (, let the transition
from Zy_; to Zj take place as follows: all the Z;_; members of the (k — 1)th generation
reproduce independently of one another and according to the same offspring distribution
specified by the p.g.f. ¢¢,. Then {Zi} is what is commonly referred to as a branching
process with random environments. ‘

Smith and Wilkinson ([SW]) were the first to study such processes. Later on Athreya
and Karlin ([AK]y, [AK];) extended and refined their results. The object of interest to us
is the limiting behavior of the sequence {P(Zy > 0) : k = 1,2,...}. In particular, in this
section we determine the value of limg_,oo{P(Zx > 0)}'/* (Proposition 2.1 and Corollary
2.2 below).

After this note was written we discovered that Proposition 2.1 (and its corollary) was
the object of a paper by Dekking ([De]). However, he only proved Proposition 2.1 under the
additional assumption that E[Z?] < co. Although Dekking’s theorem is sufficient for our
purposes, we have included Proposition 2.1 here for two reasons: 1.) because Proposition
2.1 is more general than Dekking’s theorem and 2.) because some of the arguments in the

proof come up again in Section 3.

Let
(2.1) q(¢) = P(Z = 0, for some k € N | ()
be the probability of extinction, given the whole environmental sequence (. We will make

use of the following theorem, which may be found in [AK];.

2.0 Theorem _
Assume that p;(0) + p;(1) <1 for each 3 =1,...,m.
(i) If E[log (,02.1(1)] <0 then P(¢({)=1)=1.
(ii) If Eflog g, (1)] > 0 then P(q(¢) = 1) = 0.
Observe at this point that

E[wZ"] = Elp¢, 0...0¢¢ (2)], 0<z<1,

so that
P(Zy=0)= Elp¢, 0...0p¢(0)]
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for all £ € N.
Now define ¥: R — R by

$(0) =log E [(¢,,(1))’], 6€R.
and notice that
3'(0) = E [log ¢, (1)]

In the proof of Proposition 2.1 and in Section 3 we will use a certain family of probability

measures {Py : § € R}, which we introduce here. Define
Fr =0((1y. -+, Ck), keN

and

Foo = 0(C) = 0((1, 2 -)-

~ Observe that for k € N, A € Fy

K+ |
(2.2) e~ HIVO R [H«oz,.(l))" u] = HOp [ﬁ(ngl»" u] ,

=1 i=1

for all 5 € N. Given 6 € R, define for A € F;,

Py(A) = e MOE [ﬁ(ﬁolc.-(l))o 1A]

i=1

and observe that by (2.2) Py is a well defined probability measure on U2 ,Fg. Since
U2, Fx is an algebra, Py can be extended, in a unique way, on Foo = 0 (U2, F%). Finally,

for an arbitrary event A (in the underlying probability space) define
Py(A) = Eg[P(A|F )],
where Ey denotes the expectation operator corresponding to the measure Py, i.e.,
EylX] = / XdP,,

for any random variable X.

We now give the main result of this section.
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2.1 Proposition
Assume that p;j(0) + p;(1) <1, for each j =1,...,m.
(a) If¥'(0) > 0, then
Jim P(Z, >0)=1- E[q(¢)] > 0.

(b) () If¢'(0) <0 and ¥'(1) <0, then
lim {% log P(Zs > 0)} — B(1).
(i1) If¥'(0) <0 dut '(1) > 0, then

. 1 .
leIEO {E log P(Zy > 0)} = 5%131/1(9).

PROOF:

(a) This is an immediate consequence of the bounded convergence theorem, (2.1) and

Theorem 2.0.
(b) limg—oo P(Zx > 0) = 1 — E[g({)] is still true in this case but 1 — E[q(¢)] = 0. Thus
we have to proceed differently when ¢'(0) < 0.

First observe that
©e, 0... 00 (z) = B(z%|Fo), 0<z<1

Hence @¢, 0...0 ¢, is a convex function, for each ¥ € N. Thus

k
1_<P(51°-~°‘Pck($)SHSO'c.-(l)-(l—w)7 0<z<1
i=1

and so
k
(2:3) 1—pg 0...006(0) < [ vt (L),
i=1
for all £ € N.

(i) Assume 9'(1) < 0. By (2.3)

P(Zx > 0) = E[1— ¢, 0...09¢(0)] < (Elp, (1))*

-
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for all £ € N, establishing

lim sup{%log P(Z > 0)} < log E[pe, (1)] = 4(1).

k—oo

Now fix € > 0 and let 6 > 0 be such that

1-pj(x) 2 (1-¢€) - (p;(1)) - (1 —2),

foralll1—§<z<1landallj=1,...,m. (Sucha é, depending on ¢, always exists by
definition of the functions ¢;.) Then

E[l - ¢ 0...00(0)]
> (1= €)E[pe, (1)1 = ¢y 0 -+ 006 (0))1(1-6,1)(¢ur © - - 0 9, (0))]

k-1
> (1= 6)E ¢, (D)1 = ¢y 0. 09¢,(0))10,8) (H cp'g,-(l))] :

which upon iteration yields

E[l-¢go...006(0)] 2 (1~ e)k_jE

k
[T @t =g o...0p:(0) 1F,-]

i=j+1

for any k¥ € N and any j € {1,...,k — 1}, where

k—1
Fj= YA, (1)..0g(1) <8}

It now follows that

(2'4) E[1 - P C-0 - 0P (0)] 2
k '
>(1—¢e)f7E —Hj.=1 Lpf‘(l) (1 =g 0...00¢(0)) 1[,3.]
i=1 ‘Pg.-(l)

= (1— e TMVE, H(‘P'@'(l))_l(l ~ ¢ 0 ... 06p¢ (0)) 1FJ.]

= (1 - e)* e WE, H(wﬁ;;(l))_l(l — ¢ 0. 096(0)) 1G,-]

forall k e Nand j € {1,...,k — 1}, where now
G5 = Tlph (V). (D) < .
i=j
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(if)

Now since ¥’(1) < 0 and since, by the strong law of large numbers,

k
1
=2 loggl (1) = Eillog i, (D] = ¢'(1), Py —aus.
i=1
we must have that
k
(2.5) H we, (1) = 0, P —a.s.
J=1

Consequently there exists a j € N such that P,(G;) > 0. Fix such a j and set

c=E, [H(s@'c.-(l))'l(l g, 0...006,(0)) 1G,~] -

=1
Then ¢ > 0 and by (2.4) we have that for all k > j
E[l-pg 0...0p¢(0)] > ¢(1 —e)F et
Since € was arbitrary it now follows that
liminf{%log P(Zy > 0)} = lim nf {% log E[1 - ¢, o ... 0 %(0)]}

k—oo
1
= likminf {E log E[1— ¢, 0...00¢, (0)]} > p(1).

Assume (1) > 0. By the convexity of the function 1, there exists a ¢ € [0,1] such
that

¥(t) = minp(6).
Then, by (2.3)
P(Ze > 0) = B[l - o, 0.0 96, (0)]

[ k k
=E |(1-¢g 0...00¢(0)) {1(0,1] (H 90'4.-(1)> + 1(1,00) (H <P'<.-(1)) }]
- . . =1 . =1
<E H‘P’g.-(l) Lio,1] (H 902.-(1)> +P (H pe. (1) > 1)
:1:1 z=1k =1
Li=1 . =1 ;
H(w’g,-(l))t 1(1,00) (H 302.-(1)”

k
H((p’Ci (1))tJ _ ek¢(t),

+

+E

=F




for each k € N. Conéequently,

lim sup {%log P(Zi > O)} < P(t)
k—oo

We now have to consider two separate cases.
Case 1: ©}(1) = p4(1) = ... = ¢',(1). Notice that we must necessarily have that pi(1) =
1, for all j = 1,...,m, because 1.,b'(0) = log (1) <0 and ¥'(1) = log¢}(1) > 0. Now fix
€ > 0 and choose § > 0 so that for every 1 .y < z <1 we have that

1=-pj(z) 2 (1 -€)(1-2)

for all j € {1,...,m}. Such a § always exists because for each j, ¢; is strictly convex (recall

p;j(0) +p;(1) < 1) and pj(1) = 1.
Now since E[log ¢}, (1)] = log¢}(1) = 0, we have by Theorem 2.0 and (2.1) that

Jm ¢ 0. 00, (0) = lim P(Zk =06, Ca, .. ) = q(Q) =1,
with probability one. Hence there exists some j € N such that
P(pe; 0...004(0)>1—=68)=P(pg, 0...00¢(0)>1-6)>0.

Fix such a j and observe that since ¢j(z) > z, for all 0 <z <1 and all j,

P(Zi4j >0) = E[1 —¢¢,y; 0... 00 (0)]
> E[(1 =gy ©---09¢(0)) 1a—s1)(¢; ©--- 09 (0))]
> (1—e)*E[(1— ¢ 0. 096¢,(0)) La—sn(eg o--- 09 (0))]
> (1—€)*P(pg 0...09¢(0) >1—68)(1~ max p;, o...0¢;(0)),

TLyeeeylj

for all £ € N. Consequently,

lilgninf {% log P(Zy, > 0)} > log(1 —¢)

and since € was arbitrary we must have that

lim inf {% log P(Z) > 0)} > 0 = ¥(t).
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Case 2: There exist integers ¢ and j, with ¢ # j, in {1,...,m} such that {(1) # ¢%(1).
In this case the function % is strictly convex. Hence for any 6 > t, we have that ¥'(6) > 0
and hence Eyllog ¢y (1)] > 0. It then follows by Theorem 2.0 (with the measure Py in the
place of P) that Py(g({) =1) = 0 and so

(2.6) Py(Zr > 0, for all k € N) > 0,

for all # > t. In other words, under the measure Py, > ¢, the branching process {Z;} is
supercritical (in the terminology Athreya and Karlin [AK];) and has therefore a positive

probability of living on forever.
Now choose ¢ > 0. Fix a 6 > ¢ such that () < e and 6 < t+¢ (recall that ¥'(t) = 0

and ¢’ is continuous). By the strong law of large numbers, as k — oo,

. 1/k
[H ‘/"cs(l)] —e?®, Py as.
=1

Consequently,

P(Z; > 0) = Eq

k -0
(i) "]

> O R,

k -6
(H%(D) 1{2; > 0, vJ'eN}}

E -6
> ek¢(9>E9[<H %.(1)) 1{Z; >0, VjeN}

=1
k
“ {Hso’c.-(l) < ek(¢'(9)+5)}]
=1

> exp{k(6) = kO (9)+€)} [ 5Pu(Z; >0, Vi eN)

> —ef¥(W =2k py( 7, >0, VjeN)

N =

for all large enough k. It now follows by (2.6) that
lil:ninf {% log P(Zy, > 0)} > P(t) — 2e0 > ¢(t) — 2¢(t + ¢).

Since € was arbitrary the proof is now complete. O
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2.2 Corollary

. 1 :
kll»n;o {E log P(Zy, > O)} = 91&(1){11] Y(9)

PROQOF: First assume that p;(0) + p;(1) < 1, for all j € {1,...,m}. Then the corollary is
an immediate consequence of Proposition 2.1.
For the general case define N = {j € {1,...,m} : p;j(0)+p;(1) =1} and ¢ = Tjeng;-
Then
P(Zx>0)=P(Zy >0 | (i ¢ N, forall 1 <i < k)(1—q).

Now let (61, Cay .. .) be a sequence of i.i.d. random variables with P({; = 7)=¢i(1—9¢)3,
for j € {1,...,m}\N and P(¢; = j) =0, for j € N. Let {Z;} be a branching process with

random environments corresponding to the environmental sequence (51, Ca, .. .). Then
P(Zy >0)=P(Zy >0|¢; ¢ N, forall 1 <i < k).

By Proposition 2.1

1 1 !
dim (P(Zy > O}/* = min Bl(¢f,(1))°] = T o2in Bllel (1))

and the result now follows. O

3. The Box-Counting Dimension of K

In this section we determine the box-counting dimension §( K) of K. Recall that if X
is a bounded finite dimensional metric space and N(e) denotes the cardinality of a minimal
covering of X by e-balls, then the box-counting dimension §(X) of X is

log N
8(X) = limsup log V(e)
e—n0 —loge

Instead of coverings of K by balls, we will consider coverings consisting of certain

rectangles that we call approzimate squares and which are tailored to the structure of K.

These rectangles are defined as follows: given k € N, let I3 = [klog, m], where the brackets

denote integer part. The approximate squares are then the rectangles

Ri(p,q) = [pn™*,(p+ 1)n™"*] x [gm™*, (¢ + 1)m "]
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where p € {0,1,...,n"* —1},q € {0,1,...,m* — 1} and ¥ € N. These rectangles have
height m =% and width n~" and since

m—k

n! <

<1

n=lk ’

the rectangles R(p, ¢) have sides whose ratio is bounded away from 0 and oco; hence the

term approximate squares. (These rectangles were first used in [Mc].)

Evidently we have the following;:

3.1 Lemma
Let Ny, denote the cardinality of a minimal covering of K by approzimate squares Ri(p,q).
Then

. log]\~/'k
I(K) = h?lrsolip Flogm’ O
We now introduce some notation. Let J = {1,...,m} and Jx = {(s1,...,8k):

s;i € J}. Given a finite sequence s = (s1,...,8;) € J; define N, to be the number of

rectangles in K; that are contained in the horizontal strip

0,1] x [} m™i(s; 1), Y m™i(s; —=1) + m™
7=1 7=1

In particular, for 5 € J,N; is the nubmer of rectangles in K; that are contained in
[0,1] x [(j — 1)m™1,jm™1].
For k € N, define
(3:1) pr = E [Z 1(0,00)(N3)} =) P(N,>0).
: 8€ T €T

Now let (C1,(2,...) be a sequence of i.i.d. random variables with P({; = j) = m™!,
for j = 1,...,m, and such that ({1,(z2,...) is independent of the whole process by which
the fractal K was constructed. For k € N define

Zy = N, on the event ((1,...,(x) = s,

where s € Ji. Set Zg = 1. Then {Z;} is a branching process with random environments,

of the type considered in Section 2. By (3.1) we then have that for each k € N
pr = mFP(Z;, > 0)
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and upon application of Corollary 2.2,

(3.2) kllngo u}c/k = min {Z(E[N ])0}

0<6<L1
]_

Now set

d =log,, (mm {Z(E[N ])0}) + log,, ( min {;[1\14(11]9[]\7].])0}) :

0<6<L1

We will show that, given that K # 0, the box-counting dimension §(K) of K equals d,
with probability 1.

We begin by introducing some more notation. Given k¥ € N let I; (k) Iy (k) be the
rectangles in Kj,. Let X; ) be the number of approximate squares Rk(p, q) Whlch are
contained in I](- ) and do contain at least one rectangle of K. Then, by construction,

X fk), vy X 1(\/,;,)k are independent and identically distributed, with common mean equal to
pk—1,. Furthermore M;, is independent of (Xl(k), ceey XJ(\;,)k )- Set

My,
Se=Y X
j=1

(Set Sk = 0 if M, = 0.) Then S; is the number of approximate squares Rx(p,q) that

contain at least one of the rectangles in K}.

3.2 Proposition
The boz-counting dimension §(K) of K satisfies

P(S(K) < d|K #0) = 1.

PROOF: By Lemma 3.1, it suffices to show that

) log Sk
(3.3) P (11218:2p Flogm

< dK +# 0) =

since

log S,
6(K) <li
(%) lir_l_,s;l,pklogm

If e > 0 is given, we have by Markov’s inequality, that for all £ € N

Sk ek ) —ex P(My, > 0)
P{—— K < AL ~ YY)
(uk_szzk > eI AD ) < B £
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It then follows by the Borel Cantelli lemma that
P|limsup{ —log———— 3 >0|K#0) =1.
( koo { ES Pik—1, My, [ #

Now using the fact that
lim
k—oco (E[M;])

(since {M;} is a Galton-Watson process and limg_,o Iy = o0) and the fact that

= My, a.s.

P(My > 0|K # 0) = P(Ms > 0)M; — 00) =1,

we get (3.3) from (3.2) and the definition of d. O
- To show that P(§(K) > d|K # 0) we will first show that

liminf 228%% > 4 .
k—oo klogm
For this we will need the following:

3.2 Lemma

There ezist constants ¢ € (0,00) and S € (0,1) such that, for all k € N we have
E[M;" 1(0,00)(My)] < cB*.

PROOF: Let f(z) = Z;’iosjP(Ml = 7),0 < s <1, be the p.g.f. of Mj; set f; = f and
fe = fofr—1,k=2,3,.... Then fy is the p.g.f. of My, i.e.,

oo

fe(s)= s'P(My =j), 0<s<1, keN.
=0
Now
(3.4) E[M; 1(0,00)Mi)] < 2E[(Mg + 1)™ 19,00y (M5)]

= 2j=zlj—j_1—P(Mk =7) =2]-=ZIP(Mk =j)/0 s'ds
=2 / (fi(s) — fe(0))ds = 2 / (f(s) — q)ds +2(q — f(0))
<2 / (Fu(s) — q)ds +2(g — £(0)),

14



for all k € N, where ¢ = P(lim;_, o, M; = 0) is the probability of extinction of the branching
process {M;}.
Now choose € > 0 so that f'(1)—& > 1. This is always possible since we have assumed

that f'(1) = E[M;] > 1. Let ¢ be the unique point in (0, 1) for which

=0 -t -1+

such a ¢ always exists and is unique since f:[0,1] — [0, 1] is strictly convex and f(1)=1.

Then f(s) < (f'(1) —e)(s — 1) + 1, for all s € [t,1], by convexity, and hence

1
[ () - apas
= [e) - s+ [ (1) - s
q t
_ / (Fuls) — q)ds + / (Frm1(f(s)) — g)ds
<[ () = a)ds + | (@ = s = 1)+ 1) - g)ds
- | (fils) — ahds + B / (fes(u) - q)du
/(fk(S)—(J)ds-i-f,(l; [/ (fr- 1(3)—9)d5+/ (fe— 1(3)_‘1)ds]

which upon iteration yields

09 [e-0a <3 ([ s -00) (i) + o

7=0

Now by standard Galton-Watson process theory (e.g. see [AN], pp. 38-40)

fx(s) — g
Qs) = Jim TS

exists and Q(s) € (0,00), for all s € [0,1). Hence by the bounded convergence theorem

(since [f(s) = al[f" (D] ™" < [fu(t) — gllf'(@)] 7%, for all ¢ < s <t and [fe(t) — q][f'(g)] * —
Q(t) < )

| ) = s ~ 7@, 25— o0

15



We then have by (3.5) that for all sufficiently large &,

/ (fuls) = a)ds

[k/2]
Z /(fk_g(s>—q>ds+ T (P-4 (-t

J=[k/2]+1
< Cl(f'(q))"” + Co(f'(1) —e) ™2,
Since g — fx(0) ~ (f'(q))¥, the result now follows from (3.4) by setting 8 = max{(f'(g))'/2,
(f'(1) —e)™/%}. O

3.4 Proposition

lo g.S'/C
P (hﬂlo%f klog

> d|K +# (b) =
PROOF: We will need to consider three separate cases.
Case 1: X7, log E[N;] > 0. Observe that in this case (3.2) reduces to lim; u;/j =m.
Let € > 0 be given. By Markov’s inequality
P(Sk < e~ My, pr—1, | K # 0)

(3.6)
= P(My, pk-t, ~ Sk > (1 = ¢~ )pr—1, My, | K # 0)
1 - (Sk — ﬂk—llek )2
< E L(0,00) (M1
PEZD) (=g, o)
1 o[BSk — e My 2 My,
= E 1(0,00) (M
P(K #0) - (a- e—ek)ZMaﬂZ_Ik (0,00) (M)
_ 1 ’E(52|M,k) ui_ ,kM,k Horm(Mi)
P(K # 0) | (L—e R )2M pf_,, RO
Mi, L (k
_ U [ECES X M) - M o1,)
- _ 0,00
P(K 7é(z)) _ (1 —e~k2MEp2 (0,00)3
_ 1 E Mlkaz—lk + Mlk (Mlk - 1)/“’2—113 - /“l’%c—llezk 1 (MI )
- — 0,00 k
PE£D)" | (1 —eFeEMZu_, (0:0)
1
= ——— < E[M;! 1(g,00) (M 1) (1—eok)2,
K £9) 1 Hoeo (M) (#i >( “
where

ol = E[(X"))=E ( 3 1<o,oo)(Ns>)

8€Tk—1,,
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. — . 1/7 . .
Now since ‘712:—1,, < m2(¢—) and since ,uj/] — m in this case,

.
o\ "
2 — 1, as k — oo.
Hr—1,

By Lemma 3.4 and the estimate (3.6) we then have that

Z P(S < 6_€k,uk_1kM1k|K # ) < oo.
k=1

The Borel-Cantelli lemma now implies that

. oerl Sk
— _ 1> = 1.
P (hkrglor:f{k log e } > 0|K # (D) 1

But by standard branching process theory,

M,
A

and P(Mo > 0|K # 0) = P(Ms > 0|M; — oo) = 1. Hence, given that K # (), we have

that, with probability 1,

lim jnf 289

k—oo klogm
1log pg—1, +log M,

.. 1 Sk ..
—lz“it,‘.%f{zl°gm}“¥iﬁf{z Togm }

> lim 1 log pk—1, + lim 1log My, —d
k—oo | k logm k—oo | k logm

Case 2: X7.,log E[N;] > 0 and £72, E[N;]log E[N;] < 0. Observe that in this case

Let again

or=E [(Z 1(o,oo)(Ns)) } )

€T -

for k € N. Then
oy <E[M} < (constant) x (E[M1])2k,

for all k € N, since {M;} is a Galton-Watson process. Consequently, we again have that

1
=
alzc—lk o
—1,as k — o0

2
#k—lk
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and the same argument as in Case 1 can be used.
Case 3: £, log E[N;] < 0 but X1 E[N;j]log E[N;] > 0.
We will show that given any ¢ > 0,

P (lim inf 108 5%

k—oo klogm

2d—a|K7é(b) =1,

which, of course, is sufficient to prove the result.

So fix an arbitrary ¢ > 0. We will truncate the X](-k) in a suitable way and work with
the truncated random variables.

Recall the braching process with random environments {Z;} introduced in the begin-

ning of this section. It is a process of the type considered in Section 2, with
pi(z) = E[z"7], 0<z<1

and such that ¢; = P(; =j) =m™!,forj € J(= {1,...,m}). Now observe that since we
assumed Y72, E[Nj]log E[N;] > 0 and 272, log E[N;] < 0, we cannot have ¢(1) = ... =
¢m(1) and consequently the function

¥(6) =log E[(¢(,(1))’], 6 €R,

is strictly convex in this case. Let, as in Section 2, ¢ be the unique number in [0, 1], with

the property (t) = minge(p,1) ¥(6). Then ¢'(8) > 0, V 6 >t and consequently
Po(Zj — oo) >0,

for all > ¢, where the probability measures Py are the ones introduced in Section 2. Now
fix a § > t. 6 will be chosen appropriately at the end of the proof and will depend on e.
Let

A= {P,,(z,- ~ 0ol Fue) > S Pa(Z; oo)}

and observe that Py(A) > 0, since Eg[Py(Z; — 00| Feo)] = Py(Zj — 00) > 0. Now let
1
(3.7) Ay = {Pg(Zj — Oolfk) > ZPe(Zj — oo)} ,

for k£ € N and observe that since Py(Z; — 0o|Fi) — Pg(Z; — 0| Fe), a.s., as k — 0o, we

must have that for some kg € N,
L
(3.8) Py(Ar) > —2-P9(A), Vk> k.

18



Set

(3.9) o= %P,,(z,- 5 o0),
1
(3.10) y=1pa)
and for k € N
(3.11) B, = {s € Jk:P.g(Zj — oo|((1,. .. (k) =38) > -L]iPo(Zj — oo)}

and observe that
(3.12) Py((C1,---,Ck) € By) = Po(Ay).

Finally, define
Yi= Y Lio,)(Ns),

SEBy
for k¥ € N. The random variable Y} is a truncation of X,c 7, 1(0,00)({Vs) and this is the way

in which we will truncate the X ](-k)’s. Before doing so observe that

o= %PO(ZJ‘ - OO) < Pg(Zj — OOI(CI, ce aCk) = 3)

< Po(Zx > 0[(Ca, ..., Ck) = 8) = Po(N, > 0)(Cr, -, Gk) = 5)
= Py(N, > 0) = Eg[P(N, > 0|Fo0)] = P(N, > 0),

for all s € By. Therefore

Op: = E[Ykz] =F [( Z 1(0,00)(Ns)) :l

sGBk

<a”’E [:( Z P(N, > 0)) J = o (E[Y%])?

SEB;

Letting fix = E[Y%], we then have that for each k € N
£ <72,
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We are now going to truncate the X J(-k). Recall that if Il(k),. .. ,Iﬁl)k are the distinct
rectangles in Kj,, then X‘gk) is the number of approximate squares Ri(p,g¢) which are
contained in Iﬁk) and do contain at least one of the rectangles in K. Soif s = (s1,...,31,)

is the unique sequence in J;, for which the corresponding horizontal strip (row) contains

I](-k), ie

Ik Ik
I 0,1 x |3 m i(s;—1), Y m (s — 1) +m "

j=1 j=1

- 3 g

t€.7k—1k

then

where for t = (t1,...,tk~1,) € Jk~-1,,Zj,t = 1, if the part of the row corresponding to
(81y-++y81st1y. -+ k=1, ), that isin I](-k), contains a rectangle of Ky and Z;; = 0 otherwise;

more precisely, Z;; = 1 if

k-1
I n ([o, 1] x {zm Us; — 1)+ Z m—0+’k>(t 1),

k—1li
Zm =1+ 3 m O D)+ )
contains at least one of the rectangles in K. We now truncate X](-k) by defining

(k) E Zjs.

t€Be-1,

Clearly Yl(k), . ,Ylf,lkl 1 are independent and identically distributed, all having the distri-
bution of Yx—;, and furthermore (Y(k) Y(k) ) is independent of M;, .
Define S = M"’ Y(k) Then, since Y(k) < X(k) for all 7, we have that

S < Sk, k=1,2,....

Hence to show that

log Sk
>d— =
P (hkrﬁloréf Flogm d—e|K # 0)
it suffices to show that
2 (liminf log Sk g ek + m) =
k—o0 ogm
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Using the same arguments as in Case 1, (recall that 6 < a™2fix,k = 1,2,...) we obtain

1 S’k
Plliminf{ ~log——— > >0/K #0 )] =1
( k—o0 {k & ,Uk—llek } | # )
and consequently, given that K # 0}, we have that with probability 1,

log Sk > Lim inf log fig—1, + log M,
klogm klogm

lim inf >
k—oco k ogm k—o00
1 —1. —log fig—
= d — lim sup O8 Hk—l, — 708 Hk—lx
k00 klogm

We will now show that if we choose § appropriately (recall § > t and the sequence {fi;}

depends on ) then

1 —1, — log fik—
(3.13) lim sup OB k-l — OBHk-l: _ .

koo klogm

and this will complete the proof.
Observe that by the strong law of large numbers

k 1/k
o]~ e
=1

Hence, if we set C = {Hf___l pe, (1) < k(¥ (O)+8)}  where § > 0 is arbitrary, then

(3.14) Jim Pp(Cy) = 1.
But then
ﬁk = E[Yk] = E P(Zk > Ol(Ch .. 7Ck) =>3)
sE By,

=mkP(Zk > 0;((1,“',(]6) € Bk)

. —8
= m’“e’“”’(")Eo[(H <P'g.~(1)> 1(0,00)(Zk) 1B, (1, - - -,Ck)]
i=1

k -0
> m’“e’"“”Eo[(H soe..(n) 1{Z; >0, VjeN} 1B, (C1s---5Ck) 1ck]
i=1

> mkek'/)(t)e_Ok(W(o)_i_B)Po(Zj >0, VjeN; (Cl, ... ,Ck) € By; Ck)

x [Po(Z; >0, Vj€N;(Cr,..-,Ck) € Br) — (1 — Po(Ci))]

— b k() — 0k (6)+6) o

X

S Po(Z; = 00l(G1y- - G8) = )Po((Gay -1 Gr) = 5) = (1 — Po<ck)>]

SEB;
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(by (3.7), (3.9), (3.11), (3.12))

> mkek¢(t)e—ek(¢'(0)+6)[ap0(Ak) — (1 = Py(Ch))]

(by (3.8), (3-10))
> m*ek¥(B) =0k (O+8) oy (1 — Py(Cy))]

(by 3.14)

> (meV®)k =0k (0+5) (%)

for all sufficiently large k. Since me?¥(®) = lim;_, o ,u}/ ! , (3.13) now follows by choosing §

small enough and by choosing 6 close enough to ¢ so that ¥'() is sufficiently small (recall

¥(t) =0). O
As a by product of the proofs of Propositions 3.2 and 3.4 we also get that

Pllim<{-log——— > =0K#0)=1
(k—'°° { k8 My, [+
We will only need a weaker fact namely Corollary 3.5, for which we also give a short proof

in terms of Proposition 3.4. (So the reader will not have to go through the proofs of

Propositions 3.2 and 3.4 again.)

P (liminf {%logi} > 0|K # (0) =1.

k—oo0 ﬂ’k—Ilek

3.5 Corollary

PROOF: By Proposition 3.4

P (Lim int 2285%
k—oo klogm

> d|K # 0) =1.
But since M, (E[M;])™% — My, as k — oo and P(My, > 0|K # ) = 1, we have that

P(limm”‘;’km:du{;é@)ﬂ. O

k=  klogm

3.6 Theorem
The boz-counting dimension 8§(K) of K satisfies

P(S(K)=d|K +#0) =1,
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where

R E[M]
d =log,, | min 2:(l7}[Nj])‘9 + log,, — — 5T~
0<6<1 | 013110121{21‘:1(E[N]]) }
PROOF': By Proposition 3.2 it suffices to show that
(3.15) P(§(K)>d|K #0)=1.

Let ng), cees Rg:) be the distinct approximate squares R(p,q) that contain at least
one of the rectangles of Ki. Let I be one of the n=* x m~F rectangles of K} that are
contained in Rg-k). Then I will “reproduce” rectangles of size n=(¥+1) x m=(*+1) within it
and each of them is going to reproduce rectangles of size n=(¥+2) x m=(*+2) and so on. If
M{ is the number of n=(*+1) x y=(¥+1) rectangles that I reproduces within it and M/ is
the number of n=(*+2) x m=(k+2) rectangles that each of the n=(¥+1) x m=(¥+1) rectangles
within I reproduces, etc., then { M/} is a Galton-Watson process with the same distribution
as the original process {M;}. In particular P(Mi(I) —00)=P(M; > ) =": p.

Now let W}k) = 1 if at least one of the n=F x m~F rectangles of Ky, which is within

(k)

Rg-k), say rectangle I, satisfies M} — oo, as i — oo and let W;" = 0 otherwise. Then

ik = P(W](k) = 1) > p. Define S, =0if Sy =0 and

Sk
R
Jj=1
if Sy > 0 and observe that the W](k) are independent (not necessarily identically dis-
tributed) Bernoulli random variables and that (Wl(k), . Wéf)) is independent of Sk.
Now observe that if Ny is the cardinality of a minimal covering of K by approximate

squares Ri(p, q) then

(3.16) 4Ny > Sk.
The reason for this is the following: an approximate square among ng), e ,Rg;), say
R;k), will be in a minimal covering of K if at least one of the n™* x m™F rectangles of

K that it contains, say I, satisfies M — oo, as i — oo, except for the case in which
I “reproduces” rectangles that converge to a point z € K that lies on the boundary of

Rg-k) ; in this case Rg-k) may not be needed in a minimal covering because z may be covered
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by a neighboring ng). Since an ¢ € K can only be covered by at most four neighboring
approximate squares (when « lies in the intersection of 4 different Ry (p,q)) we get (3.16).
By (3.16) it now suffices to show that

(3.17) P <11m1nf ;lgsk > d|K # 0) =

in order to show (3.15) and complete the proof. By Proposition 3.4 then, (3.17) will be

shown once we have established

. J1. 8
P(lerr;o{klogSk}zolKgéQ)):

But since Si < Si, for all k € N, it is enough to show that for any € > 0
P (n?jl k"gn{ék < e kS K # 0) = 0.
By Corollary 3.5 however, this is equivalent to
P (JL U {8k <78k 81 2 €7 iy, My YK # 0) =
and this follows from the Borel-Cantelli lemma and Lemma 3.3, since

P(Sp < %Sk Sk 2 e™F 1, My, |[K #§) <
Sk
< Pik — Sk > Y ik — € FSk; Sk > e F iy, My, ; Sk > 0
P(K ?é ([)) E J JZ__; g sl Pk

< ——— & _ —¢k . > —ek .
—P(K#(O) (Zp” — 5k > (p— e )5k Sk 2 e uk-szz,,,sk>o)

(p— (3_51‘)"2 E[(Sk - Efil Pj,k)zlgk] { pe—1, My, }
= TPK £0) G Sk >—-——e 1{S: > 0}
ME [Si! 1{Sk > e~*F My} 1{Sx > 0}]
= P(K # 0) k k = He—1, My, k
_ ,—ck\—=2 _ek
< (I;J(Ii' 7 %) ,uZ-z E[M,;1 1{Sr > e *pr_i, My, } 1{Sx > 0}]
(p — e—ek)—2 ek

T P(K#0) pr-, E[M;." 1(0,00)(M3)]
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for all sufficiently large k, where

gk=0'(M1,...,Mk;51,...,5k). [}

4. The Dimension of the Projections of K

We remark that with the results of Section 2 about the branching process {Z},
introduced in the beginning of Section 3, one can easily obtain the dimension of proj;(K),
the projection of K onto the y-axis. In particular one can use the arguments in the proof
of the Theorem on page 69 in [F]; to show that

. . . . 1
dimp(proj, K) = §(proj, K) = lim {; log,y, Mk}

= log,,, (Orsngr_gl {J;(E[N,-])"}) ,

with probability one, given of course that K # (; here dimpy(proj, K) and §(proj, K)
denote the Hausdorff and box-counting dimensions of proj, K, respectively.
Finally, observe that similar considerations apply to proj; K, the projection of K onto

the z-axis.

REFERENCES

[AK]; K.B. Athreya, and S. Karlin: On branching processes in random enviroments: I.
Extinction probability, Ann. Math. Stat., 42 (1971), 1499-1520.

[AK], K.B. Athreya, and S. Karlin: On branching processes in random environments: II.

Limit theorems, Ann. Math. Stat., 42 (1971), 1843-1858.

[AN] K.B. Athreya, and P.E. Ney: Branching processes, Die Grundlehren der mathematis-
chen Wissenschaften in Einzeldarstelung, 196, Springer-Verlag, New York, Heidelberg
Berglin (1972).

[Be] T. Bedford: On Weierstrass-like functions and random recurrent sets, Math. Proc.
Camb. Phil. Soc., 106 (1989), 325-342.

[CCD] J.T. Chayes, L. Chayes, and R. Durrett: Connecticivity properties of Mandelbrot’s
percolation process, Prob. Theory and Rel. Fields, 77 (1988), 307-324.

[De] F.M. Dekking: On the survival probability of a branching process in a finite state
i.i.d. random environment, Stoch. Proc. and Appl., 27 (1988), 151-157.

25



[DG]
[DM]
[Fa]

[Fl1
[Flz
[Ke]

[LG]

[Mal
[Mc]

[MW]

[MGW]

[SW]

F.M. Dekking, and G.R. Grimmett: Superbranching processes and projections of
random Cantor sets, Prob. Theory and Rel. Fields, 78 (1988), 335-355.

F.M. Dekking, and R.W. Meester: On the structure of Mandelbrot’s percolation pro-
cess and other random Cantor sets, J. of Stat. Physics, 58 (1990), 1109-1126.

K.J. Falconer: The Hausdorff dimension of self-affine fractals, Math. Proc. Camb.
Phil. Soc., 103 (1988), 339-350.

K.J. Falconer: Random Fractals, Math. Proc. Camb. Phil. Soc., 100 (1986), 559-582.
K.J. Falconer: Projections of random Cantor sets, J. of Theor. Prob., 2 (1989), 65-70.

H. Kesten: Supercritical branching processes with countably many types and the size
or random Cantor sets, Probability, Statistics and Mathematics, Papers in honor of
Samuel Karlin, Academic Press (1989).

S.P. Lalley, and D. Gatzouras: Hausdorff and box dimensions of certain self-affine
fractals, Indiana Univ. Math. J., to appear.

B. Mandelbrot: The Fractal Geometry of Nature, Freeman, San Francisco (1983).

C. McMullen: The Hausdorff dimension of general Sierpinski Carpets, Nagoya Math
J., 96 (1984), 1-9.

R.D. Mauldin, and 5.C. Williams: Random recursive constructions: Asymptotic geo-
metric and topological properties, Trans. of the AMS, 295 (1986), 325-346.

R.D. Mauldin, S. Graff, and S.C. Williams: Exact Hausdorff dimension in random
recursive constructions, Memoir #381, AMS (1987); see also Proceedings of the
National Academy of Sciences, 84 (1987), 3959-3961.

W.L. Smith, and W.E. Williams: On branching processes in random environments,

Ann. Math. Stat., 40 (1969), 814-827.

26





