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'ABSTRACT

This paper briefly reviews some of the past and recent developments in ranking and
selection methodology for multivariate populations. This is done with a view to indicate
and discuss directions for future research. The coverage of the subject matter includes:
selection from a single multivariate normal population (Section 2), selection from several
multivariate normal populations (Section 3), selection from a multinomial population (Sec-
tion 4), selection from several multinomial populations (Section 5), selection of the best
set of predictor variables in a linear regression model (Section 6), and classification proce-
dures and selection in principal component analysis (Section 7). The final section provides
additional comments on future directions.
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1. INTRODUCTION

Statistical inference problems have been studied in the now familiar “ranking and
selection” framework over the last four decades. These problems have been examined
within this framework employing different goals and formulations under various model
assumptions. As such, substantial progress has been achieved in studying selection from
multivariate populations. Qur objective in the present paper is to emphasize the need,
potential, and some directions for future investigations. We review briefly some of the
past and recent accomplishments in order to stress the need for further investigations of
these aspects. We will also discuss aspects of multivariate selection problem that have
been barely considered thus far. We divide the subject matter into: selection from a
single multivariate normal population (Section 2), selection from several multivariate nor-
mal populations (Section 3), selection from a single multinomial distribution (Section 4),
selection from several multinomial distributions (Section 5), selection from the predictor
variables in a linear regression model (Section 6), and classification procedures and se-
lection in principal component analysis (Section 7). The final section provides additional

general remarks on future directions.

In most of the investigations, multivariate populations have been ranked in terms of a
scalar function of the unknown parameters. This entails a complete (unknown) ordering of
the populations according to the values of the chosen scalar function. The selection proce-
dure in this situation depends on a suitably chosen (one-dimensional) statistic which has a
univariate distribution. We then start with a brief introduction to the basic methodology

of ranking and selection for univariate distributions.

Consider k independent populations 7y, ..., where 7; has the underlying distribu-
tion Fy;,2 = 1,...,k. The 6; are unknown real-valued parameters which represent the
values of a quality characteristic of interest for these k populations. We define #; to be
better than =; if 6; > 6;. The ordered 6; are denoted by 0y < ... < G- It is assumed that
there is no prior knowledge regarding the correct pairing of the ordered and the unordered
6. Selection problems have been generally studied under one of two formulations, namely,

(1) the indifference-zone and (2) the (random size) subset formulations.

For the basic problem of selecting the best population (i.e., the population associated
with 6[3;), the indifference-zone formulation of Bechhofer (1954) stipulates that one of the
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k competing populations be selected as the best. Selection of any population associated
with ) results in a correct selection (CS). Any procedure R, to be valid, should guarantee
a specified minimum probability of a correct selection (PCS), say P*(1/k < P* < 1),
whenever the best (assumed to be unique) and the second best populations are apart
at least by a specified amount. Let 6(;,60;) denote an appropriately defined nonnegative
measure of the amount of separation between the population associated with 6; and 6;. For
any specified 6* > 0, let (5« be the subset of the parameter space 2 = {0|6 = (6y,...,6:)}
defined by

e = {01661, b1x—yy) 2 6} (1.1)

The subset Qs+ is called the preference-zone. Letting P(CS|R) denote the PCS of a rule
R, in order to be valid, it should satisfy

P(CS|R) > P* for all 8 € Q.. (1.2)

Both 6* and P* are specified by the experimenter in advance. Suppose R is based on
samples of fixed size n from each population. The problem then is to determine the
smallest sample size n for which the requirement (1.2) holds. The complement of Q4.
w.r.t. () is the so-called indifference-zone where no requirement is made on the PCS.
In the subset selection formulation of Gupta (1956, 1965), the basic problem is to select
a nonempty subset of the k given populations so that the best population is included in
the selected subset with a guaranteed minimum probability P*. In case of a tie for the
best population, we assume that one of the contenders is tagged as the best. Selection of
any subset that includes the best results in a correct selection. Any valid rule R should
satisfy
P(CS|R) > P* for all § € Q. (1.3)

Note that the size S of the selected subset is not decided in advance but is determined by
the data.

The requirements (1.2) and (1.3) are known as the basic probability requirements or
the P*-conditions of the two formulations. Any parametric configuration § which yields
the infimum of the PCS over (2s« or 2, depending on the formulation, is called a least
favorable configuration (LFC). For a valid subset selection rule R, the expected subset size,

E(S|R), has been generally used as a measure of its performance for a comparison with
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another valid rule. Some alternative measures that have been used are E(S)/P(CS|R) and
E(S) — P(CS|R), the latter being the expected number of non-best populations included
in the selected subset. |

Many variations and generalizations of the basic formulation using either of the two
approaches have been extensively studied. There are also related problems such as se-
lecting populations better than a standard or a control. A comprehensive survey of the
developments involving all these aspects with an extensive bibliography is given by Gupta
and Panchapakesan (1979). A critical review of developments in the subset selection the-
ory with historical perspectives has been provided by Gupta and Panchapakesan (1985),
who have reviewed in another paper (1987) subset selection procedures in multivariate
models. Reference can also be made to Gibbons, Olkin and Sobel (1977, Chapter 15) who
have given examples to illustrate the need for selection procedures for multivariate normal

populations in terms of different criteria.

2. SELECTION FROM A SINGLE MULTIVARIATE NORMAL POPULATION
Counsider a p-variate normal population Np(g,Z) with mean vector g’ = (1,...,up)
and covariance matrix £ = (0y;), which is assumed to be positive definite. We consider
ranking the p components according to their means y;, and according to their variances
oii. The case of £ with g;; = 0,7 # j, is the case of independent components which has

been extensively investigated in the literature and will not be discussed here.

2.1 Selection in Terms of the Meauns.
Our goal here is to select the component 7; associated with the largest mean, Bip)-
Let X' = (X3,...,X,) be the sample mean based on n independent (vector) observations.
Known ¥ Case: Assume without loss of generality that 0;; = 1,7 = 1,...,p. Gnanade-
sikan (1966) considered the subset selection procedure

dy

R;: Select the component 7; if and only if X; > Xpp) — 7= (2.1)

where X|3) < ... < X[;] denote the ordered X, and d; = d;(n,p,E) > 0 is the smallest
number such that the P*-condition is met. Letting ¥; = v/n(X(;) — pj7), where X;) is the

component of X associated with yy;, it is easily seen that
iBfP(CS|R1)=Pr{Y;, >2Y;—d,j=1,...,p—1}. (2.2)
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In order to evaluate d; for which the right-hand side of (2.2) equals P*, one needs to know
K = (kij), where £ij; = cov (¥;,Y;). Although ¥ is known, the correspondence between

the x;; and the k;; is not known except when p = 2. For p = 2, we get

dy =di(n,2,%) = /2(1 — 012)8~1(P*) (2.3)

where ®(-) is the standard normal cdf. For p > 2, Gnanadesikan (1966) obtained two
different lower bounds for the infimum of PCS, one using a well-known inequality of Slepian
(1962) and the other using a Bonferroni inequality. These bounds yield conservative values
for d;. In the special case of equal positive correlation p, the value of d; is given by

/_ : o1 (:c + ﬁ‘l‘__p) d®(z) = P* (24)

and H = d;/+/2(1 — p) is tabulated for selected values of P* and p by Gupta (1963a), and
Gupta, Nagel and Panchapakesan (1973) who have also considered the selection problem

in this special case.

For selecting the component associated with y[, using the indifference-zone formula-
tion with the preference-zone Qs = {g|p(y] — Hp—1) = 6* > 0}, one can use the natural
rule

R}: Select the component that yields the largest X;. (2.5)

In this case, we have
‘i)an(CS|R'1)=Pr{Y,, >Y;—+/né*j=1,...,p—1}. (2.6)
5* .

Comparing (2.6) and (2.2), we see that the minimum sample size needed is the smallest
integer n > (d1/6*)?, where d, is the constant to be used in rule R;.

Unknown X Case: Assume that oj; = 0%,i = 1,...,p, that s2 is an estimator of o2 on
v degrees of freedom independent of the sample mean vector X = (Xj,...,X,), and that
vs? o2 has a chi-square distribution with v degrees of freedom. In this case, for selecting
the component associated with the largest mean, Gnanadesikan (1966) proposed a subset

selection rule

dys,

/n

Ry: Select the component ; if and only if X; > X[, — 2.7
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where d; = dy(v,p, P*) > 0 is the smallest number for which the P*-condition is met.
Gnanadesikan (1966) has shown that P(CS|R;) is minimized when the y; are all equal.
Letting 2o denote the subset of 2 where the u; are equal, Gnanadesikan (1966) has shown
that 7

P(CS|R3) = Pr{tj < d3/1/2(1 — apj),j =1,...,p— 1} for u € Dy, (2.8)

where t; = Z;j/sy,2' =(Z1,...,Zp—1) has N,_1(0, B), B has a known structure involving

apj,j =1,...,p—1, and a,; is the correlation between the components associated with

pip) and ;). Letting doz = min{dz/+/2(1 — a,5),5 =1,...,p—1},

inf P(CS|Rz) > Prit; > do,j = 1,...,p— 1}

Z 1 —iPr{tj Z doz}
= (2 p)+ (o — )F(don), 29)

where F,(-) is the cdf of a Student’s ¢ variable with v degrees of freedom. Thus a conser-
vative value for d; of the rule R; is given by dys which is the solution of

(2—-p) + (p—1)Fy(doz) = P*. (2.10)

If we assume that o;; = po?, where o2 is unknown and p > 0 is known, then do;,
a conservative value for d3, can be evaluated as an equicoordinate percentage point of a
multivariate ¢ distribution. The dy3 values in this case are tabulated by Gupta and Sobel
(1957), Krishnaiah and Armitage (1966), and Gupta, Panchapakesan and Sohn (1985).

Frischtak (1973) considered the same problem using the indifference-zone approach
with preference zone Qs+ = {g, Z|pu[p — ppp-1) > 6*}. However, he assumed that £ = 2T,
where 02 is known and T = (p;;), the associated correlation matrix is unknown. Without
loss of generality, we take o = 1. Based on the mean X = (Xj,...,X,) of n independent
observations, Frischtak (1973) proposed the natural rule

R): Select the component that yields the largest X, (2.11)

where n is the minimum sample size needed to satisfy the P*-condition. Letting, as before,

Y: = v/n(X() — pq), it is easily shown that
P(CS|Ry) 2 Pr{Z; < a(n)(1 — ki) ™/%,j =1,...,p— 1} (212)
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where a(n) = 6*\/n/2, kji = cov (¥;,Y), and Z; = (¥; — Yi)/{2(1 — ;x)}Y?%,5 =

1,...,k —1. The Z; are correlated standard normal random variables with
cov (Zi, Z;) = (1 — kix — K5 + £3)/[2(1 — wix)/2(1 — k)2 (2.13)

Frischtak (1973) has shown that the infimum of P,, the right-hand side of (2.12), occurs
when |I'| = 0 for p = 3. But no analytical result is available on the configuration of the p;;
that gives the global minimum of P;. Further, very little small sample results are available
for p > 3. One can, of course, get a conservative approximation to the sample size needed
by using a Bonferroni inequality to obtain a lower bound for P;.

If the correlations p;; are all equal to p > 0, then
P(CS|R}) 2 Pr{Z; < a(n)(1 - p) 2,5 =1,...,p— 1} (2.14)

where the Z; are now equally correlated with correlation 3. Since —(p—1)"! < p < 1, we

have
inf P(CSIR,) = Pr{Z; < a(m)l(p — 1)/pl'/%,5 =1,....8). (2.15)

The smallest sample size needed for satisfying the P*-condition can now be obtained using
the tables of Gupta (1963a) or Gupta, Nagel and Panchapakesan (1973).

2.2 Selection in Terms of the Variances
We now define the best component as the one associated with the smallest o;;. Let
S = (si;) be the sample covariance matrix based on n independent (vector) observations
from the population. Let s? = s;; so that 3[21] <...< 3[2,:] are the ordered s?. A natural

subset selection rule for our goal is
Rj3: Select the component =; if and only if sﬁ] < ;1—3[21] (2.16)
3

where 0 < ¢c3 = c3(p,n,P*) < 1 is the largest number for which the P*-condition is
satisfied. Frischtak (1973) has considered this procedure R; and shown that the infimum
of PCS is attained when 03; = 0322 and 012 = 0 for p = 2. Thus the constant ¢ in this case
can be obtained for selected values of n and P* from the tables of Gupta and Sobel (1962b)
who have considered the selection problem in the uncorrelated case in a companion paper

(1962a). For p > 3, Frischtak (1973) obtained only an asymptotic (n — 0o) solution using
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the asymptotic normality after suitable normalization of log (3%1) / s%j)), j=2,...,p, where

3%:‘) is the sample variance associated with the ith smallest ¢;;. The asymptotic solution

Pr{Z,-5‘/ngllogC3,j=2,...,p}=P* (2.17)

where the Z; are equally correlated standard normal variables with correlation %, and thus

for c3 is given by

can be obtained from the tables of Gupta (1963a) or Gupta, Nagel and Panchapakesan
(1973).

Frischtak (1973) has also investigated the natural rule R} which selects the compo-
nent associated with the smallest s? under the indifference zone formulation with Qs =
{(g,D): 08y 2 8* 0}y, 6* > 1}, where 07 = 0;;. He has shown that, for p = 2, the infimum
of PCS occurs when 0[22] = 6*0[21] and p;2 = 0. For p > 2, no exact solution is available.
One can obtain a conservative approximation or a large sample solution.

Frischtak (1973) also considered a generalization of the problem of selecting the
component associated with the smallest o;;. Consider a partitioning of the p variates
into m(2 < m < p) subclasses, denoting the covariance matrices of these subclasses
by Zii,¢ = 1,...,m. Then A; = |Z;;| is the generalized variance of the ith subclass.
The goal is to select the subclass associated with Ajy}, the smallest generalized vari-
ance. Frischtak (1973) considered the natural procedure using the indifference zone for-

mulation. He obtained only an asymptotic solution using the asymptotic normality of

(n — 1)%(log |S1| — log A1, . . ., 10g |Sm| — log Am).

2.3 Remarks and Future Directions

Although selection of the best component (suitably defined) from a multivariate nor-
mal population is a meaningful problem, there is very little published work on it. Most
of the procedures discussed in this regard are from dissertations. For selection in terms
of means, generally only conservative solutions are available based on lower bounds to the
infimum of the PCS. In the case of Ry, it is assumed that an estimator of o2 independent
of the X is available having (properly scaled) a chi-square distribution. One can obtain
such an estimator from any one of the marginal distributions; however, using only one of
them is expected to be inefficient. If we use the average of the estimators of o2 from all
the p marginal distributions, as one would, its distribution is unknown.and the setup of

R; does not hold. This case needs further investigation.
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In the independent case, where = 0%I and ¢2? is unknown, an indifference-zone
procedure based on single sample does not exist. Bechhofer, Dunnett and Sobel (1954)
studied a two-stage procedure in this case. It is interesting to ask: What is the correlated
case analogue when ¥ is unknown?

For selection in terms of the variances, there are no exact solutions for p > 3. In the
case of Ry, the LFC is known only for p = 2.

Further, there are other goals of interest. For example, one may want to select the
pair of components that have the largest (smallest) correlation or the largest (smallest)

absolute correlation. These have not been studied.

3. SELECTION FROM SEVERAL MULTIVARIATE NORMAL POPULATIONS
Let my,...,m be k p-variate normal populations, Np(ui,X;),¢ = 1,...,k, where the
i are the mean vectors and the ¥; are positive definite covariance matrices. We consider
several measures for ranking the populations such as the generalized variance, Mahalanobis
distance, and the multiple correlation coefficient. We also consider comparison with a
control using as criteria linear combinations of the elements of the mean vector and those

of the covariance matrix.

3.1 Selection in Terms of Mahalanobis Distance
Let \; = g!X;7 " i, the Mahalanobis distance from the origin. We discuss the selection
of the population associated with the largest A;. The case of the smallest \; can be treated

in an analogous manner.

3.1.1 Subset Selection Procedures.
Here we consider three cases: (i) known I;, (ii) unknown ¥;, not necessarily equal,

and (iii) £ = ... = Iy = I, unknown. Let X;;,j = 1,...,n, denote n independent obser-

vations from m;,i = 1,..., k. Define ¥;; = X1,57'X;, Y = 3 Yij, Zi = X;5;'X;, and
=1

T; = X:-S;‘ r)j(-,-,i =1,...,k, where Z(_.- and S; are the sample mean vector and covariance

matrices.

Case (i): The I; are known. In this case, Gupta (1966) proposed the rule
Ry: Select ; if and only if Y; > ¢4 Yy (8.1)

where 0 < ¢4 = c4(k,p,n,P*) < 1 is the largest number for which the P*-condition is
satisfied. It has been shown [Gupta (1966) and Gupta and Studden (1970)] that the LFC
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is A =(A1,...,Ak) =(0,...,0). Thus the constant c, is given by
/ GE1(z/ca)dG)(z) = P* (3.2)
0

where G, (z) is the cdf of a standardized (i.e. unit scale parameter) gamma variable with
v = np/2 degrees of freedom. The values of ¢4 are tabulated by Gupta (1963b), and
Armitage and Krishnaiah (1964).

For the analogous procedure for selecting the population associated with the smallest
Ai, the appropriate constant can be obtained from the tables of Gupta and Sobel (1962b)
and Krishnaiah and Armitage (1964).

It is natural to use the Z; defined previously instead of the Y; in rule Ry. In this
situation however, the infimum of the PCS and hence the constant ¢4 do not depend on n;
this is an unsatisfactory feature. One can, of course, propose a different type of procedure;
for example, Ry: Select =; if and only if Z; > Zj — d,d > 0. Such a procedure has not
been investigated.

Case (ii): The X; are unknown and not necessarily equal. In this case, Gupta and

Studden (1970) proposed the rule
Rs: Select ; if and only if T; > ¢5Tjy (3.3)

where 0 < ¢5 = c5(k,p,n, P*) < 1 is to be chosen suitably to satisfy the P*-condition. As
in case (i), the LFC is A = 0 and the constant cs is given by

/0 ” FyoLl (z/cs)dFpnp(z) = P* (3.4)

where Fp n,_p(z) is the cdf of a central F-variable with p and n — p degrees of freedom.
Values of cs have been tabulated for selected values of k,n,p and P* by Gupta and Pan-
chapakesan (1969), who have also tables for the constant needed for the analogous rule for
selecting the population associated with the smallest ;.

Case (ii): £ = ... = X3 = ¥ (unknown). In this case, one would use the rule R
which is Rs with T; = X:S’ "IX, where S is the usual pooled estimator of ¥, and with cg in
the palce of cs. Chattopadhyay (1981) has investigated Rg and its analogue for selecting
the population associated with Ajy). In fact, his procedure is defined for unequal sample
sizes. An exact evaluation of the infimum of P(CS|Rs) is difficult. Chattopadhyay (1981)
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obtained a lower bound for the infimum so that a conservative value for the constant ¢4 is
given by -

/ GE1(26. /c6)dG, (z) = P* + ¢ (3.5)
where v = p/2,G, is as deﬁ(;1ed in (3.2), and @ is the eth percentile of the distribution
of the ratio of the largest to the smallest of the characteristic roots of S. Values of ¢/,
can be obtained from the tables of Gupta (1963b) for selected values of k,p, and P* + e.
Evaluation of 6. can be done rather easily for small values of p using the distribution
result of Pillai, Al-Ani and Jouris (1969). Cha.ttopadhyay (1981) has also mentioned the
possibility of obtaining some improvement in the evaluation of cg.

3.1.2. Indifference-Zone Approach

Alam and Rizvi (1966) have investigated procedures for selecting the populations
associated with the ¢ largest A;,1 < ¢ < k—1, by taking for the preference-zone Q(6},63) =
Qs: N Qsy, where sz = {A: Ag—t41) — Ap—q > 67} and Qo3 = {A: Ag—e41)/Ae—gq > 63}
for specified 67 > 0 and é5 > 1. Let Z; and T; be defined as before. Alam and Rizvi
(1966) considered the natural selection rules, selecting the populations that yielded the ¢
largest Z; in the case of known X,;’s and the ¢ largest T; when the ¥; are unknown and not
necessarily equal. In either case, the LFC is given by

{ Ay = = Ap—g = 65(85 - 1)1

Alk—t41] = - .. = Ay = 6765(63 — 1)7L.

Alam and Rizvi (1966) did not consider the case where the I; are all equal but unknown.
An investigation parallel to Chattopadhyay (1981) is possible but has not been done.

(3.6)

3.2 Selection in Terms of the Generalized Variance
The generalized variance § = |X| of a multivariate normal population with covariance
matrix ¥ serves as an over-all measure of the variability among the components. Gnanade-
sikan and Gupta (1970) considered selection of the population associated with the smallest
0;. They proposed a subset selection rule

R7: Select m; if and only if W; < ciWh]
7

where W; = |S;| is the sample generalized variance and 0 < ¢7 = c7(k,p,n, P*) < 1is to
be chosen to meet the P*-condition. They have shown that

inf P(CS|Rr) = Pr{¥i < —Y;,j =2,..., k) (3.7)
7
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where the Y; are i.i.d., each distributed as a product of p independent factors where the rth
factor has a clﬁ-square distribution with (n — r) degrees of freedom. An ezact solution for
cr is obtained for p = 2 and is tabulated by Gupta and Sobel (1962b) and Krishnaiah and
Armitage (1964). For p > 2, Gnanadesikan and Gupta (1970) have studied approximations
using the normal approximation of log x? and Hoel’s approximation of the distribution of
Y,-l/ ? by an appropriate gamma distribution.

Regier (1976) has consider:d two alternative procedures, namely, R}: Select ; if
and only if W; < a (jil Wj) K and RY: Select ; if and only if W; < b .él W;/k. The
evaluation of the constants a and b are again based on normal approxim;.;ion to log x?

and the asymptotic distribution of the sample variance, respectively.

Eaton (1967) considered a decision-theoretic approach to ranking the k¥ populations
according to the values of the §;, assuming reasonable properties for the loss function which
depends only on the 6;. He showed that the natural rule which ranks the populations
according to the values of W; is minimax, admissible, and uniformly the best among rules

that are invariant under permutations of (Wy,..., W;).

3.3 Selection in Terms of Multiple Correlation Coefficient

We assume that the y; and X; are unknown. Let p; denote the multiple correlation
coefficient between the first component and the rest of #;,¢ = 1,...,k. For selecting the

population associated with pjz), Gupta and Panchapakesan (1969) studied the rule
Rs: Select m; if and only if R} > csRfy (3.8)

where RY" = R?/(1— R?), R; is the sample correlation coefficient, and 0 < cs = cg(k, p,n—
p, P*) < 1 is chosen suitably to meet the P*-condition. They considered both the condi-
tional (variables 2 to p are fixed) and unconditional (all variables are random) cases. It is
shown that the LFC in both cases is given by p; = ... = pr = 0 when R',"z has the same
distribution. Values of cs have been tabulated for selected values of k,p,n — p, and P* by
Gupta and Panchapakesan (1969), who have also considered the analogous procedure for
selecting the population associated with the smallest p; and provided tables for the values

of the constant.
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3.4 Selection in Terms of Other Measures

For selecting the best multivariate normal populations, a few other measures have
been considered in the literature. However, these investigations are either limited in scope
or solved only asymptotically for large sample size. These measures are: the sum of
bivariate product-moment correlations [Govindarajulu and Gore (1971)], the coefficient
of Alienation between two partitioned sets of the components [Frischtak (1973)], and the
conditional generalized variance of one set given another set in a two-set partition of the
components [Gupta and Panchapakesan (1969)]. For more details, the reader is referred
to Gupta and Panchapakesan (1979, Chapters 7 and 14).

3.5 Comparison with a Standard or Control

As we remarked in Introduction, related to selecting the best among a given set of
populations is the goal of selecting those which are better than a standard or a control. Let
T1,..., Tk be the k given p-variate normal populations where =; is Np(gi,3:),i = 1,..., k.
The control population mp is Ny(po,Xo). Krishnaiah and Rizvi (1966) have considered
comparison with a control by defining positive (good) and negative (bad) populations using
different criteria based on linear combinations of the elements of the mean vectors and also
on distance functions. Krishnaiah (1967) based the comparison on linear combinations of
the elements of the covariance matrices. Huang (1973) considered partitioning the set

{m1,...,7} into good and bad sets using comparison based on the generalized variance.

3.5.1. Comparisons Based on Linear Combinations of Mean Vectors
Let 0;c = gipi(c =1,...,r;4 =0,1,..., k), where the g/, are specified vectors reflecting
the economic weights assigned to the elements of the mean vectors. Krishnaiah and Rizvi
(1966) considered three definitions of positive and negative populations as follows:
A. m; is positive if 6;c > 0,c + Acyc = 1,...,r, and negative if 6;c < Opc,c = 1,...,r,
where the A, are given positive constants;
B. ; is positive if (6;c — 0,c)? > Ar,c=1,...,r, and negative if (6;c — 0,c)? < Age,c =
1,...,r, where A;c > Ay. > 0 are known constants;
C. m; is positive if |0;c| > |0,c],c =1,...,r, and negative if [6ic| < |05c,c =1,...,r.
For any procedure § defined to select the positive populations, let P(w, ), S(w,$),
and R(w,§) denote, respectively, the probability of including all positive populations, the

expected proportion of true positives, and the expected proportion of false positives; here
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w denotes a point in the appropriate parameter space. It should be noted that P(w, §) and
S(w, &) are defined only for the set of parameters for which there is at least one positive
population. We seek a procedure § such that either

inf P(w,8) > P* (3.9)

or

inf S(w, 8) > p* (3.10)

where P* and p* are appropriately specified constants. The rule é proposed by Krishnaiah
and Rizvi (1966) in each of the cases described previously is of the form:

Ry: Select ; if and only if ;. > d,c=1,...,r, (3.11)

where the choice of T} in each case is described as follows.
Let a sample of n; observations be taken from =,z = 0,1,...,%, and let X denote

the sample mean from ;. Define

U — ae(Xi — Xo)
7 [al(n S + 15 So)ac]t/?
n1/2[|a' X;| — |a' Xol]
Wie = Sz il — Se
[a.Za] /2

(3.12)

where W;. is defined when n; = nand 3; =%, =0, 1,..., k. Krishnaiah and Rizvi (1966)
used
U inCaseB, (3.13)
W;. in Case C.
In Case A, they obtained a lower bound for inf P(w, §). However, solution for d such that
this bound equals P* is difficult in general and not obtained. In Cases B and C, Krishnaiah
and Rizvi (1966) obtained lower bounds for inf P(w, §) using a Bonferroni inequality and

have no results regarding sup R(w,é), which is a measure of the efficiency of 4.

U;c in Case A,
Tic = {

The above discussion will indicate that the problem requires further investigations
dealing with possible alternative procedures and efficiency comparisons. The same can be
said about the procedures investigated using comparisons based on distance functions. For

more details, see Gupta and Panchapakesan (1979, Chapter 20, Section 8).
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3.5.2. Partitioning Based on Comparing Generalized Variances

Huang (1973), using a formulation of Tong (1969), considered a partition of P =
{m1,...,m} into three subsets, Pg = {mi:|i| < p1[Zo[},Pr = {mi:p1|80| < |Zi| <
p2|Ze|}, and Pp = {mi:|Zi| > p2|To|}. He considered rules for partitioning P into two
subsets S¢ and Sp based on samples of size n from all the (k + 1) populations. A correct
deciéion occurs when Pg C Sp and Pg C Sg. For this problem, Huang (1973) considered
a single-stage as well as a sequential procedure. We leave out details of these procedures
which are given in Gupta and Panchapakesan (1979, Chapter 20, section 8). However, we

emphasize on the need to revisit these problems.

3.6. Remarks and Future Directions

For the problem of selecting from multivariate normal populations in terms of the
Mahalanobis distance function, the subset selection rules investigated were of the ratio
type. For the procedures R4 and Rs, the supremum of E(S), the expected subset size turns
out to be k. One has to investigate other types of rules and make efficiency comparisons. As
pointed out in the case of R4, we can use R}, a difference type procedure. Panchapakesan
and Santner (1977) have discussed selection of good populations defined using a class of
functions. They considered also selecting a subset with a restricted size. Reference should
be made to their application to selection in terms of Mahalanobis distance. One can
use such a rule which selects the population that yields the largest value for the relevant
statistic, say T}, or uses a difference type rule, or a ratio type rule depending on the value
of T}y falling in one of three ranges. Further, the case of £; = ... =33 = & (unknown)
has not been well investigated.

Regarding other goals, the problems described in Section 3.5 need to be examined
further from the point of view of alternative procedures, efficiency comparisons, and opti-
mality properties.

In the problems we have discussed so far, the multivariate normal populations have
been ranked according to the values of a scalar function of the parameters. This reduces
the problem to a univariate one. Instead, we can specify a partition {Q,...,9} of the
parameter space {2 so that if the true state is in £;, then =; is the best population. An
attempt in this direction has been made by Dudewicz and Taneja (1981). In a recent paper,
Bofinger (1992) has considered the problem of multiple comparisons with the best for

15



multivariate normal populations using a “multivariate” approach. Her results are mainly
for bivariate normal populations. She finds that “for comparisons with the ‘best’ of each
variate, repeated univariate comparisons appear to be almost as efficient as multivariate
comparisons, at least for the bivariate case and, under certain circumstances, for higher
dimensional cases.” These aspects of the selection and related inference problems are worth

exploring further.

4. SELECTION FROM A MULTINOMIAL POPULATION

Multinomial, as a prototype for many practical problems, is one of the most useful
discrete multivariate distributions. When observations from a population are classified into
a certain number of categories, it is natural to look for categories that occur very often or
rarely. Consider a multinomial distribution on m cells with probabilities p;,...,pn. Two
goals of common interest are selecting the most and the least probable cells, that is, cells
associated with pj,;) and p;). The early investigations of Bechhofer, Elmaghraby and Morse
(1959), Gupta and Nagel (1967), and Cacoullos and Sobel (1966) generated substantial
interest resulting in a considerable number of papers that followed. The investigations of
multinomial selection problems reveal some interesting aspects. Analogous procedures for
selecting the cells with probabilities p;) and p(,;) using either the indifference-zone or the
subset selection approach do not have similar structure for the LFC; see Gupta and Nagel
(1967) and Alam and Thompson (1972). Under the indifference-zone formulation, the
preference-zone can be specified using either a ratio or a difference. For selecting the most
probable cell, we can specify the preference-zone by pjm)/p[m-1} = 6* OF Pjm] — Pjm—-1] = 6*.
It is found that generally the ratio-type works well for pj,;) and the difference for p;j in
dealing with the LFC. Chen and Hwang (1986) have surveyed the problem of LFC in
multinomial problems.

Under the indifference-zone formulation, Bechhofer, Elmaghraby and Morse (1959)
and Alam and Thompson (1972) studied fixed sample procedures for selecting the most
probable and least probable cells, respectively. Cacoullos and Sobel (1966) investigated
an inverse sampling procedure for the most probable cell. Alam (1971), Alam, Seo and
Thompson (1971), Ramey and Alam (1979, 1980), and Bechhofer and Kulkarni (1984)
considered sequential selection procedures for selecting the most probable cell.

Using the subset selection approach, Gupta and Nagel (1967) studied fixed sample
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procedures for the most and the least probable cell. Panchapakesan (1971) and Chen
(1985) considered inverse sampling procedures for the most probable and the least probable
cells, respectively. Berger (1980, 1982) investigated minimax rules for selecting the most

as well as the least probable cell.

Ramey and Alam (1980) investigated a Bayes sequential procedure for selecting the
most probable cell. Recently, Gupta and Liang (1989) have studied parametric empirical
Bayes rules for selecting the most as well as the least probable cell. They assumed the
loss L(p,¢) = pim] — pi (or pi — ppj), where i is the index of the selected cell and p =
(1,---,Pm) which has a Dirichlet prior with hyperparameters o = (aa,...,an), where
the o; are positive but unknown. Gupta and Liang (1989) derived empirical Bayes rules
when agy = igl a; is known as well as unknown. Asymptotic optimality of these rules have

also been established by them. This study has been later generalized by Gupta and Hande

(1992) for more general loss functions.

In recent years, the problem of estimation after selection has received increasing atten-
tion. Recently Gupta and Miescke (19902, b) studied this problem for the normal means
selection problem and the binomial selection problem under the general decision-theoretic
framework. Reference can be made to Gupta and Miescke (1990a) for a list of earlier
papers dealing with this problem. Gupta and Hande (1992) have considered the problem
of simultaneous selection and estimation for the most and the least probable cells using an

empirical Bayes setup.

We have not referred to several papers dealing with selecting the best multinomial
cell. We have confined ourselves to a few that will indicate the basic developments. Be-
cause of the difficulties with finding the LFC, several procedures have not been completely
investigated. Further, there have been no systematic comparative studies of competing

procedures.

Finally, it should be noted that the importance of multinomial selection rules is en-
hanced by the fact that they provide distribution-free procedures. Suppose that my,... 7%
have continuous distributions Fy,,7 = 1,...,k, and {Fs,} is a stochastically increasing
family in 6. Let p; denote the probability that in a set of k observations, one from each
population, the observation from ; is the largest, ¢ = 1,...,k. The problem of selecting

the stochastically largest (smallest) population can now be converted to selecting the most
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(least) probable cell in a multinomial distribution.

5. SELECTION FROM SEVERAL MULTINOMIAL POPULATIONS

Although selecting the best cell from a single multinomial population has been inves-
tigated over a period of more than thirty years, selecting the best of several multinomial
populations has not received attention until recently except for the paper by Gupta and
Wong (1977). For ranking multinomial populations, we need a measure of diversity within
a population. The need for such a measure arises in ecology, sociology, genetics, economics
and other disciplines. Diversity in ecological contexts has been discussed by Pielou (1975),
and Patil and Taillie (1982). Consider a multinomial population with m categories (cells)
and probability vector p = (p1,...,pm) where p; denotes the proportion of the population
in category i. Three indices of diversity widely used in ecological studies are: (1) the
species count, (2) Shannon’s entropy, and (3) the Gini-Simpson (GS) index. Of these, the
species count, which is defined as m — 1, is not of interest here because we are compar-

ing populations having the same number of categories. The entropy function of Shannon
(1949) is defined by N
H(pi,--.,pm) =— Y _pjlogp; (5.1)
=1
and is a measure of uncertainty in an m-state system used in information theory. The GS
index is defined by o
Y1,y Pm) =1-)_ p (5.2)
=1
was introduced by Gini (1912) and Simpson (1949). There are various other measures
of diversity available in the literature. Rao (1982) introduced a unified approach to the
measurement of population diversity from which the Mahalanobis distance function can
be derived as a measure.

Now, let 71,...,m be k independent multinomial populations with m cells and let
the unknown cell probability vector of m; be p; = (pi1,-..,pim),i = 1,...,k. We discuss
selection from multinomial populations in terms of the entropy function, the GS index, and
two other measures (defined later). As a preliminary to our discussions, let a = (a,...,am)

and b = (b1,...,bm) such that "_Enl a; = .gl bi. Then g is to majorize b (written g > b) if
5 aj;) > § by, = 2,...,m, where the aj; and by;) are the ordered a; and b; as previously.
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Further, a function f defined on the m-dimensional space is Schur-concave if f(z) < f(z')

whenever z > z'.

5.1 Selection in Terms of the Entropy Function
For m = 2 (binomial case), H; and H; are equal if and only if ; and 7; have the same
probability vectors. However for m > 2, while p; = p; implies that H; and H; are equal, the
converse is not true. We assume that there exists a population whose probability vector is

majorized by that of any other population. This implies that there exists a population with

the largest H; because the entropy function is Schur-concave. Let ¢; = ¢ (%';1-, ceey i"-;fk),
where ¢ is Schur-concave and Xj,..., X, are the cell counts based on n independent

observations from =,z = 1,...,k. Gupta and Wong (1977) proposed the subset selection
rule
Ryo: Select m; if and only if ¢; > ¢y — dio (5.3)

where dyg = dio(k,m,n, P*) is the smallest positive constant for which the P*-condition
is met. They have shown that the PCS is minimized when all the p; are equal to po (say).
However, the value of po for which the PCS will attain its infimum is not known. Gupta
and Wong (1977) obtained a conservative solution for d, using the idea of conditioning as
done by Gupta and Huang (1976) who have studied selection in terms of entropy in the
binomial (m = 2) case. o

Alam, Mitra, Rizvi and Saxena (1986) considered among other things the problem
of selecting the population having the largest H; using the indifference-zone approach.
Continuing with our earlier notations, let T = —n~1 _gl Xijlog(Xij/n),i =1,...,k. The

preference-zone {24+ is given by the set of configurations for which
Hpy — Hig—qy 2 &* (5.4)

where 6* is a specified number such that 0 < §* <logm. Alam et al. (1986) proposed the
natural rule

Ry Select the population that gives the largest T}, (5.5)

using randomization to break any tie. Alam et al. has no exact solution for the mini-
mum sample size n needed to satisfy the P*-condition. They obtained a lower bound

for P(CS|R11) when n is large. Using this lower bound one can obtain a large sample
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(conservative) solution for n for given k,m, and * but this involves computing certain

asymptotic variance which has been tabulated by Alam et al. (1986) for m = 2(1)10.

5.2 Selection in Terms of the Gini-Simpson Index
We are interested in selecting the population associated with the largest (smallest)
;. Let 6; = _gl(p,-,- - ;1.-)2 Then 6; = jgl p?j - -;}'- = B=2 — ;. Some investigations have
been done in terms of the §;.
Gupta and Leu (1990) considered selection of the population associated with the

smallest 6; and proposed the subset selection rule
Ry2: Select m; if and only if ¥; < ¥jy) + di2 (5.6)

where Y; = § (Xij — %._)2 and d;; is the smallest positive number such that the P*-
condition is s;;sﬁed. Assuming that there exists a p; which is majorized by all other p;,
Gupta and Leu (1990) showed that the infimum of PCS takes place when p; =... = p; =
Po (say). However, the py where the infimum takes place is not known. Gupta and Leu
(1990) have obtained a conservative solution for d;2 using the idea of conditioning as done
by Gupta and Huang (1976). They have also obtained a large sample solution.

Recall that we assumed that there exists a p; which is majorized by all other probabil-
ity vectors. Instead of this, under some other restrictions, Gupta and Leu (1990) obtained
some partial solutions. They have also discussed selecting the population with the largest
0; under both sets of assumptions. Details of these are omitted here.

Liang and Panchapakesan (1992) have derived an empirical Bayes procedure for se-
lecting the population associated with the largest v; relative to Dirichlet product prior G
(unknown) of the p;, assuming the loss L(%,) = ¥jz) — ¥; corresponding to the true state
of nature ¢ = (%1,...,%z) and the decision to choose 7;. They have shown the asymptotic
optimality of their procedure, showing that its Bayes risk converges to the minimum Bayes
risk at an exponential rate.

Gupta and Leu (1990) also considered selecting all good populations which are defined
to be those 7;’s for which 6; < é for a specified § such that 0 < § < 1 — # A correct
selection occurs if the selected subset contains all good populations. They proposed a
subset selection rule

Ry3: Select 7; if and only if Y; < ¢13 (5.7
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where Y; is the statistic used in R;;, and the constant c;3 > § is the smallest constant
such that the P*-condition is satisfied. Gupta and Liang (1991) have shown that the rule
Ri3 is a Bayes rule relative to a symmetric Dirichlet prior and consequently is admissible
for an additive loss function which is made up of a loss (6p — 6;) for not including a good
population 7; and a loss (§; — 6y) for including a bad (not good) population ;. They have
also derived an empirical Bayes rule relative to a symmetric Dirichlet prior G4, where the
hyperparameter « is unknown. They have established the asymptotic optimality of their

procedure, showing that its Bayes risk converges exponentially to the minimum Bayes risk.

5.3 Selection in Terms of Other Measures of Diversity
For the population 7;,7 = 1,...,k, define

m

gij = Z Pi[4] (5.8)

=m—j+1

where pjji] < ... < pi{m] are the ordered p;j,j = 1,...,m. It followsthat 1/m < ¢iy < ... <
¢im = 1 and that ¢;; > j/m,j = 1,...,m;i = 1,...,k. The population m; degenerates
when ¢y = ... = ¢im = 1, and it is uniform when gij = ... = ¢im = 1/m. Motivated

by these considerations, Rizvi, Alam and Saxena (1987) proposed two diversity measures,

namely,
Di=) (1-gj)= Y (m—jpy (5.9)
j=1 j=1
and m
D =m+ ngn(c - gij), (5.10)
=1

where c is a fixed number between 0 and 1, and

sn(z):{l for z > 0,
g -1 forz <.

The two measures have the minimum value zero when ; is degenerate and attain their
different maximum values when 7; is uniform. The measure D; is related to the area
under the Lorenz curve used in economic inequalities studies. Finally, both D; and Dj are
Schur-concave functions of p;. |

Rizvi, Alam and Saxena (1987) considered procedures for selecting the population
associated with the largest D; and the one with the largest D}. In each case, they have
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proposed procedures both under the indifference-zone and subset selection formulations,
considering two possibilities according as the ordering of magnitudes of the cell probabilities
in each p; are, a priori, known (Case A) or unknown (Case B). These procedures are based
on estimators T; and T* of D; and D} in Case A, and on estimators T; and 7% in Case B.
These estimators are obtained by replacing ¢;; in (5.9) and (5.10) by X;; associated with
the cell probability p;; in Case A, and by Xj; in Case B. The indifference-zone procedure
proposed by Rizvi et al. (1987) selects in each case the population that yields the largest
value of the appropriate statistic. Their subset selection procedure is R;p with ¢; being

the appropriate estimator.

5.4 Remarks

As we mentioned earlier, the diversity measures are of practical importance. Shannon’s
entropy has been used by Lewontin (1972) in biology. Applications of the GS index have
been discussed by Agresti and Agresti (1978), Greenberg (1956), and Lieberson (1969), in
the areas of sociology and linguistics. For further investigations of selection problems, it will
be interesting to consider other measures of diversity. Nayak (1985) has discussed several
diversity measures based on entropy functions. Reference should be made also to Rao and
Nayak (1985) who have discussed cross entropy and dissimilarity measures. Cross entropy
could be used to define the best population by considering the amount of dissimilarity of
each population from the rest. In discussing the procedures of Rizvi et al. (1987) in Section
5.3, we mentioned Case A, where the ordering among the cell probabilities in each p; is
a priori known. In this case, it is more appropriate to use isotonic estimators of the cell
probabilities. One has to consider procedures based on such estimators and compare their
performances with those of Rizvi et al. Several procedures have been investigated when
selection is in terms of different diversity measures. It is important to explore a unified

approach to the selection problems.

6. SELECTION OF VARIABLES IN LINEAR REGRESSION
In applying regression analysis in practical situations for prediction purposes such as
economic forecasting and weather prediction, one is faced with a large number of predictor
(independent) variables. While the prediction can be made more accurate by bringing in as
many relevant predictor variables as possible, some of them may be highly correlated among

themselves and some others may contribute only very marginally. In these situations,
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an “adequate” prediction may well be possible by considering a smaller number of the
predictor (independent) variables. Thus arises the problem of choosing a “good” subset of
these variables. Hocking (1976) and Thompson (1978a, b) have reviewed several criteria
and techniques that have been used in practice. However, these procedures are ad hoc in
nature and are not designed to control the probability of selecting the important variables.
McCabe and Arvesen (1974), and Arvesen and McCabe (1975) were first to formulate this
problem in the framework of subset selection theory.

Consider the standard linear model
Y=Xg+e (6.1)

where Y' = (Y3,...,Y,) is a vector of random observations, X = [1,X1,...,X,-1] is an
n X p matrix of known constants, ' = (Bo, B1,. .-, Bp—1) is a vector of unknown parameters,
and € ~ N(0,021,). Here 1 is a column vector of 1’s and I,, is an n X n identity matrix.
The model (6.1) with p — 1 independent variables is considered as the “true” model. Any
reduced model whose “X matrix” has r columns is obtained by retaining any r — 1 of the
p — 1 independent variables, where 2 < r < p. For each r, there are k, = ‘:j) such
models, which are indexed arbitrarily : = 1,...,k,. These models, referred to as models

M,;, are then described by
Y=XsiBriterii=1,... .k, (6.2)

where X r; is an nXr matrix (of rank r), B; is a r X1 parameter vector, and €, ~ N(0,0%).

Arvesen and McCabe (1975) considered all possible subsets of an arbitrary size #(=
r — 1) of the independent variables. These reduced models are considered for prediction
purposes and must be compared under the true model assumptions. The expectations
of residual mean squares in the corresponding ANOVA evaluated under the true model
assumptions are 02,5 = 1,...,k,. Arvesen and McCabe (1975) considered the goal of

selecting the model associated with the smallest 62;. They proposed the rule
Ry4: Select the model M,; if and only if SS,; < -cl—SS,.[ll (6.3)
14

where SS,; is the residual sum of squares in the ANOVA corresponding to model M,
and 0 < c¢14 = c14(p,t,n, P*) < 1 is to be chosen to satisfy the P*-condition. An exact
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evaluation of c14 is difficult. Arvesen and McCabe showed that the PCS is asymptotically
(n — o0) minimized when § = Q. The evaluation of c;4 is not easy even under this
asymptotic LFC. McCabe and Arvesen (1974) has given an algorithm for determining ¢;4
under the asymptotic LFC using Monte Carlo methods.

Now, for any reduced model My; in (6.2),

SS.ifas ~ x*{vr, Ari} (6.4)

where v, = n — r is the degrees of freedom and ),; is the noncentrality parameter. This
gives
E(SSri) = vrog + 202 ). (6.5)

Since o7 is fixed, it is clear from (6.5) that A,; should not be large for a good model. This
motivates the criterion employed by Gupta and Huang (1988), namely, any reduced model
M,; with the associated noncentrality parameter ),; is defined to be inferior if \,; > A,
where A > 0 is a specified constant. The goal is to eliminate all inferior models from the
set of 2°~1 —1 regression models including the true model. For this goal, Gupta and Huang
(1988) proposed and studied a two-stage procedure. In the first stage, inferior models are
eliminated. Then, in the second stage, one of the models from the retained set (if it has

more than one) is selected. Their procedure is based on the estimate ,; of Ari given by

. n—pl—R: o,
METT TR 2 (65)

where R and R,; are the multiple correlation coefficients of the models (6.1) and (6.2),
respectively. The two-stage procedure R;5 of Gupta and Huang (1988) is as follows.
R;5: At Stage 1, eliminate all models M,; for which

a

Avi > d; (6.7)

and at Stage 2, select from all the models that are retained after Stage 1 that model which
has the smallest

A —p—2_ .
I = %[2,\,..- +(@—-r)]-(—2r). (6.8)
The constant d, in (6.7) is chosen to satisfy
_ Vr 2 _4n—p
Dr_[(dr+ 2)n-P l]p—r (6.9)
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where D, is the 100 (1 — P*) percent point of the noncentral F' distribution with p—r and
n — p degrees of freedom and noncentrality parameter A. It has been shown that, for the
rule R;s,

Pr{all inferior models M,; are eliminated} > P*. (6.10)

Several authors have studied the influence on the fitted regression line when a part
of the data is deleted. Recently Gupta and Huang (1992) have integrated the concept of
influential data with their procedure R;s. _

Now, consider all reduced models M,;. Let 8,; = E(1— RZ,) where R,; is the multiple
correlation coefficient associated with M. Any reduced model M,; is called inferior if
0p-1,1 < 6*0,i, where 0 < 6* < 1 is specified. (6p-1,1 is associated with the true model.)
A correct decision is selection of any subset of all possible models which does not include
any inferior model. For this goal, Huang and Panchapakesan (1982) proposed the rule

Ris: Exclude model M,; if and only if §,; > ?—fép_l,l (6.11)

where 0,; =1— RZ;, and ¢;6 = c16(n, p, P*) > 6* is determined so that the P*-condition is
satisfied. The LFC is established only asymptotically (n — o). For evaluating c;¢ under
the asymptotic LFC (8 = 0), Huang and Panchapakesan (1982) used an algorithm similar
to that of McCabe and Arvesen (1974).

Hsu and Huang (1982) considered the goal of selecting a subset of the models that
contains all the superior models, namely, all models for which 02; < Ao?, where A > 1 is
a specified constant. For this problem, they investigated a sequential procedure.

Gupta, Huang and Chang (1984) studied the problem of eliminating inferior models,
using the expected mean squares as the criterion for comparing any model with the true
model. Their approach differs from other papers in that they considered tests of a family
of hypotheses in constructing their procedure.

Finally, Ramberg (1977) considered an indifference-zone approach for selecting the
best predictor variate among X, ..., X} to predict X, assuming that X = (X,,X,,...,
Xi) has a multivariate normal distribution with an unknown mean vector ¢ and unknown
covariance matrix £ = (). Let 0 ; denote the conditional variance X, given X;. The
goal is to select the variate associated with the smallest 03 ;- Since o} ; = ago(1 — p2,),

the problem is equivalent to selecting the variate associated with the largest pZ,. The
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preference-zone (ls» is defined by ag.[ll < ag_m/ 6*, where 6* > 1 is a specified constant.
Based on a sample of size n, Ramberg (1977) proposed the natural rule that selects the
variate which yields the smallest sample conditional variance s2 ;. For the minimum sample
size needed to satisfy the P*-condition, he obtained an asymptotic solution for k¥ = 2 and

discussed some approximations for k > 3.

7. SOME MISCELLANEOUS PROBLEMS

In this section, we discuss selection and ranking approach to classification problems
and to the problem of determining the appropriate number of components in principal
component a.na.lysis. Both these problems and their applications are well-known in multi-

variate analysis.

7.1 Classification Problem

Classification problems typically arise when an investigator makes measurements on
characteristics of an individual with a view to classify the individual into one of several
possible categories. Assuming that the individual actually belongs to one of the specified
categories may not be realistic. What we are really looking for is the category to which
the individual is closest. In doing so, we want to control the probability of a correct classi-
fication (CC). An approach based on the concept of ranking and selection was considered
by Cacoullos (1973) and Gupta and Govindarajulu (1973, 1985). However, their results

are too conservative and limited.

Let P(CC|R) denote the probability of a correct classification (PCC) using the rule
R. We want the rule R to guarantee a minimum value of P*, 1/k < P* < 1, for the PCC.
Gupta and Leu (1989) have considered selection procedures, mostly using subset selection

approach, based on Mahalanobis distance function.

Let 7;,1 = 0,1,...,k, be k + 1 populations, where 7 is to be classified as one of the
remaining ;. We assume that m; ~ Np(pi, Xi),¢ = 0,1,...,k. Gupta and Leu (1989)
have considered various cases depending on whether the y; are known or not, and whether
the X; are known or unknown (with a possibility that they are known to be equal). The
procedures are developed in a way analogous to the selection rules in terms of Mahalanobis

distance discussed in Section 3.1. The details of these are omitted here.
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7.2. Procedure for Principal Component Analysis

Let X' = (Xi,...,X,) be a random (observable) vector with mean g and covariance
matrix ¥ having the characteristic roots A; > Az > ... > A,. Of the principal components
Y;,i = 1,...,p (which are certain linear combinations of the X;), we want to determine
the important components. This problem has been considered by Kaiser (1958), Cattell
(1966), Horn (1965), and Horn and Engstrom (1979), who have suggested heuristic meth-
ods. Recently, Huang and Tseng (1992) have formulated this problem using a selection
approach. Let

In(Q) =AM +...+A)/ (A1 + ...+ Xp) (7.1)

and
Qx(8) = {Algr(}) > 6} (7.2)

where § is a fixed constant and k is an integer less than p. We want to choose an integer
m from {1,2,...,p} which corresponds to choosing the first m principal components. A
correct decision (CD) occurs if A € x(8) and m = k. We want a decision rule R for which
P)(CD|R) > P*, where 0 < P* < 1 is specified in advance.

i Let X1,...,Xn~ be N independent observations on X and £; > £, > ... > £y 2 0
denote the p characteristic roots of the sample covariance matrix. Huang and Tseng (1992)

proposed the rule

Ry7: Select the number of components up to the smallest integer m for which 9m(£) > c1r
where c;7 is a fixed constant. They have discussed the determination of (N,c17) when
X ~ Ny(p,Z). They have also done a simulation study of the robustness of the rule R;;

derived under normality assumption when X follows a multivariate ¢ distribution.

8. CONCLUDING REMARKS
In the preceding sections, we have discussed several selection procedures for multivari-
ate populations and also have, in several places, made specific comments relating to future
directions of research. Related to the basic problem of selecting the best population, there
are problems such as estimating the true PCS, estimating the appropriate parameter of
the selected population, and comparison of the selected population with the best. Such
problems have been examined in the case of selection from univariate populations. These

problems, for example, should be of interest in selection problems discussed in this paper.
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Further, Bayes and empirical Bayes procedures have been studied generally only for multi-
nomial populations. From the point of view of reliability studies multivariate exponential
populations and multivariate analogues of increasing failure rate (IFR) distributions are
important. Selection problems in these contexts have been studied for univariate popula-
tions. Reference should be made to Gupta and Panchapakesan (1985, 1988).

Essentially, a vast literature is available detailing techniques and formulations in the
case of selection from univariate populations; see Gupta and Huang (1981) and Gupta and
Panchapakesan (1979, 1985, 1988). These provide natural avenues for future investigations

of selection from multivariate populations.
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