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ESTIMATING THE MIXING DENSITY OF A
MIXTURE OF POWER SERIES DISTRIBUTIONS!

By WEI-LiEM LoH

Purdue University

Let X1,Xa,- -, Xn be independent and identically distributed
observations from a mixture of power series distributions. Based
on this random sample, we consider the problem of estimating
the mixing density of the mixture distribution. A mixing density
kernel estimator is proposed which, under mild assumptions, has
1/logn as an upper bound for its rate of convergence to the
true density under squared error loss. It is also shown that the
optimal rate of convergence cannot exceed 1/n" for any constant
T

1 Introduction

Let X be an integer-valued random variable with the following mixture
distribution.

(1) PX=j)= [ ai@()d6E), Vi=012:,

where G is a probability distribution function on [0, o] with o known, and ¢ :
[0,a] — [0,00), ¥ : {0,1,2,---} — (0,00) are known functions. We assume
that 27¢(z)1(4) is a probability mass function in j for each z € [0,o]\{y :
#(y) = 0}, and the restriction of G to the set {y : ¢(y) = 0} is a known
measure (without loss of generality we assume that G({y : ¢(y) = 0}) < 1
for otherwise G is completely known) if the cardinality of {y : #(y) = 0}
is greater than or equal to two. Here we adopt the convention that 0/0 =
0° = 1. Under these assumptions, Lemma 3 (see Appendix) shows that this
mixture distribution is identifiable in G.

We observe that (1) is a mixture of power series distributions [see, for
example, Johnson and Kotz (1969) page 33]. This class is quite broad and
includes the common mixture distributions listed below.
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ExaMPLE 1 (Compound Poisson distribution). The random variable X
is said to have a compound Poisson distribution with mixing distribution G
having support on [0, o] if

P(X =)= [ N/AGR),  Vi=01,2,0

Here we take ¢(z) = e~% and ¥(j) = 1/j!. We remark that Lambert and
Tierney (1984) also made a similar assumption that the support of the mix-
ing distribution has a known finite upper bound.

ExAMPLE 2 (Negative binomial mixture). X is said to have a negative
binomial mixture distribution with parameter » € {1,2,---} and mixing
distribution G if

1 . .
P(X = j) =/0 CI1pi(1- p)dG(p), Vi=0,1,2,,

where C'JJ-"'”—1 =G +v—DYv-1)]. Here a =1, ¢(z) = (1 — z)” and
P(j) = C’JJ-.+"—1. In the case where v = 1, we have a mixture of geometric
distributions.

EXAMPLE 3 (Mixture of logarithmic series distributions). X has a log-
arithmic series mixture distribution with mixing distribution G if

P(X =j)= [ G+ D)log(l- &) dG(x), Vi=0,1,2,-

In this instance, we take a = 1, ¢(z) = —z/log(1—z) and ¢(j) = 1/(5 +1).
COUNTEREXAMPLE (Binomial mixture). X has a binomial mixture dis-
tribution with N fixed and mixing distribution G if

1 . .
P(X=j)=/0 CYp (1 p)N9dG(p), Vi =01, N.

However the binomial mixture does not belong to (1). Indeed Teicher (1961),
page 247, showed that it is not even identifiable.

Now let X7, Xs,..., X, be independent and identically distributed ob-
servations having the same distribution as that of X in (1). Assuming that
g(a) = G'(a) exists for some 0 < @ < a, the main purpose of this paper is
to discuss how well g(a) can be estimated nonparametrically on the basis of
X1, X3, .., X, under squared error loss. In addition, the difficulty of esti-
mating the whole mixing density (assuming that it exists) is also investigated
with respect to a rather natural weighted squared error loss.
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Among mixture problems, the deconvolution problem appears to be the
best understood. Recent and important advances to the solution were made
by Devroye and Wise (1979), Carroll and Hall (1988), Stefanski (1990),
Zhang (1990), Fan (1991a), (1991b), (1991c) and many others using the
techniques of Fourier analysis. In particular, kernel estimators for the mixing
density (distribution) have been obtained which achieve the optimal rate of
convergence to the true mixing density (distribution) respectively. Indeed, as
the reader will probably observe, the present work is significantly influenced
by the papers of Zhang and Fan.

Another problem that has been of much interest is the estimation of
the mixing distribution of a compound Poisson distribution. Tucker (1963)
approached this problem via the method of moments and Simar (1976)
proposed a nonparametric maximum likelihood estimator for the mixing
distribution. However, although these estimators have been shown to be
consistent, their convergence rates are not known.

Other mixture problems were studied by Robbins (1964), Deely and
Kruse (1968), Blum and Susarla (1977), Jewell (1982) and Lindsay (1983a),
(1983b), (1989) among others. Rolph (1968) and Meeden (1972) used Baye-
sian methods to construct consistent estimators for the mixing distribution.
Again the convergence rates of these estimators have not been worked out.

The test of this paper is organized as follows. In Section 2, a kernel
estimator g, for the mixing density g is proposed. In addition, local and
global upper bounds for the rate of convergence of §, to g are obtained
via Fourier analysis. Section 3 gives complementary local and global lower
bounds for the optimal rate of convergence. Finally the Appendix contains
proofs of a few somewhat technical lemmas that are needed in previous
sections.

2 A mixing density kernel estimator

Let 0 < a < a such that g(a) = G'(a) exists and ¢(a) > 0. In this section,
a kernel estimator for g(a) will be constructed and studied using techniques
of Fourier analysis. Let k() be a probability density function, with charac-
teristic function k*(t), such that

k) = 0, Vjt{>1,
k(z) = k(-z), VzE€ER,
(2) /oo ’k(z)dz < oo,

—o0
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/ lzk'(z)|dz < oo.
Zhang (1990) has observed the existence of such a k(z); an example being
k(z) = (6/7)[(2/z)sin(z/4)]*. Now define

On . .
Kn(G,z) = (2m) 1R{ [ k*(o; t)e (it [j1(5)] " dt},
—on
where R{z} denotes the real part of the complex number 2, and {o,}
is a suitably chosen sequence of constants. Based on a random sample
X1, X3, -+, X, of independent and identically distributed observations dis-
tributed as in (1), the mixing density kernel estimator for g(a) is given by

3) 3u(a) = [n6(@)] "3 KnlX ).
Jj=1

The motivation for (3) is as follows. We observe that with X as in (1), we
have

o (ity & e (itay .
g F == | Sre@ac), e

Using Fubini’s theorem, we have
EG)X[X (X)) = / ¢ 4(2)dG(z), Vi€ R.
0

We observe that ¥~1(0)P(X = 0) = [ ¢(z)dG(z) > 0 since 0° = 1 and
G({z : ¢(z) =0}) < 1. Let

@ ¢, = [ #@uc@I™,

h*(t)

c, / * e (0)dG(z), Vi€ R,
0

and H(z) be the distribution function of the measure Cy¢(z)dG(z).
Then under mild regularity conditions, it follows from the Fourier inver-
sion theorem that

(2m)1 /_ " k(oM )e R (1)dt — Cyd(a)g(a),

On
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as o, — o and hence

(21)" f_ ™ k(o= e B (it) XX (X)) dt

(5) — ¢(a)g(a), ason,— 0.
n(a) is obtained from the Lh.s. of (5) by replacing E@E)X[X19p(X)]™! with
b I ()X XX

Theorem 1 Let 0 < a < a, 0, = (Blogn)t/? with 0 < § < 1l/a and
gn(a) be as in (3). Suppose that g(a) = G'(a) exists, inf;>0 j'4¥(4) > 0 and
¢(a) > 0. Then

E[gn(a) - g(a)f’ = o(1), asn— co.

ProoF. With X as in (1), we observe from Fubini’s theorem that

CEKn(X,a) = (2m)' [ k(o7 t)e "h*(t)dt

= - [_0:0 onk(z)dH(a— o 'z)
(6) = /_o:o on[H(a— o z) — H(a)k'(z)dz.

Letting ¢ denote a sufficiently small positive constant, it follows from Tay-
lor’s expansion that the r.h.s. of (6) is equal to

—C,d(a)g(a) /_ °:o ok (2)de + e20(1) /:° ok (c)|dz
+o(1)/_o:o |zk'(z)|dz
— —Cy¢(a)g(a) /_o:o zk'(z)dz + o(1) [_o:o |zk'(z)|dz, as n — oo.

Here O(1) pertains to the limit as n — oo uniformly over small ¢ and o(1)
pertains to the limit as ¢ — 0 uniformly over large n. Since € can be
arbitrarily small, we have lim, EK,(X,a) = ¢(a)g(a). Next we observe
that

Var[K, (X, a)]

IA

EK%*(X,a)
(27)~? / o / Bt X [X (X)) %ds dt

{.;gg[jw(j)]—l}r-%-l(O)aze““%-

IA

(7)

IA
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Consequently we conclude that

E[ga(a) - g(a))”
(8) = ¢ (a){n"Var[K(X,a)] + [EKn(X, a) - $(a)g(a)]'}

— 0, asmn— oo.

This completes the proof. o
Next let 8 be a positive constant such that [a — §,a + 6] C (0,). We

define G(a,8, M) to be the set of probability distributions G with support

on [0, 0] such that g = G’ exists on [a — §,a + 6] and that g satisfies the

following Lipschitz condition at z = a: there exists a positive constant M

such that

(9) lg(a+¢€) — g(a)l < Mlel, Vl|e| <6

We shall also assume that ¢ satisfies a Lipschitz condition at z = a, i.e.

there exists a positive constant My such that

(10) |$(a+¢) — ¢(a)] < Mile|, Ve <&

Theorem 2 Let 0, = (Blogn)/? with 0 < B < 1/ and g, be as in (3).
Suppose that (10) holds, inf;>0 j'4(j) > 0 and ¢(a) > 0. Then

sup  Eljn(a) — g(a)]* = O(1/logn), asn — oco.
Geg(a,6,M)

PrOOF. Let €1(y) = sup,», 2%k(z) and e2(y) = [;° zk(z)dz, for all y > 0.
It follows from (2) that &;(y) and e2(y) both tend to 0 as y — oo. Let
G € G(a,6,M) such that g(z) = G'(z) whenever ¢ € [a — §,a + é]. Then
with X as in (1), we observe that

onl EK (X, a) — ¢(a)g(a)l
a+6
ol /a_& onk[on(a — z)]¢(z)g(z)dz — ¢(a)g(a)| + 51(0n5)5_2Cg_1

IN

oul [ KeNgla+ o7 e)g(a+0512) - Ha)g(a)lds]

—0n

+e1(0,8)672C; " + 2¢(a)g(a)b~'e2(046)

on [T Ka@latat o7') ~ 9@ + s(a + o7 2o+ 05'0)
—$(a)[Jdz + £1(0n8)62C; 1 + 2¢(a)g(a)8 e2(0nb)

{Mo(a) + Mlg(a) + Ma]} [ [alk(e)da

+e1(008)67271(0) + 2¢(a)g(a)6 " ex(0,6).

IA

IA

IA
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The last inequality uses (9), (10) and Cy; > (0). However from the Lipschitz
condition on g at z = a [see Zhang (1990) page 814], we have g(a) <
(1 + Mé%)/(26). Thus we conclude that

(11) on|EKn(X,a) — ¢(a)g(a)| = O(1),
as n — oo uniformly over G € G(a,8, M). Also as in (7), we have
(12) Var[K (X, a)] = O(c2e°%),

as n — oo uniformly over G € G(a,é,M). The theorem now follows from
(8), (11) and (12). O

REMARK. We observe that the conditions ¢(a) > 0 and inf;>o j1%¥(J)
> 0 are satisfied by Examples 1, 2 and 3 of the first section. Consequently
Theorems 1 and 2 apply to these cases.

Now assume that g = G’ exists on [0, «]. We shall conclude this section
with an upper bound for the global rate of convergence of g, to the true
mixing density g under the following weighted squared error loss:

L(g,gn) = /Oa[gn(x) - g(x)]2q52(x)d:v

It appears that this is a more natural loss function to consider than the usual
unweighted L, loss as in the computation of mixture probabilities, see (1),
the distribution G is weighted by the function ¢. For simplicity we define
h:R— Rby

hz) = { Coilelala) H0< s <ar

otherwise,

where C, is as in (4) and for M > 0,
F(M) = {G:g=G"and I exist on [0,a] and R respectively with
/ [#(2)2dz < M).
0

Theorem 3 Let 0, = (Blogn)'/? with 0 < B < 1/ and §, be as in (3).
Suppose that inf ;>0 j1%(j) > 0 and F(M) is nonempty. Then

sup E [ [3a(3) - g(2)P¢*(a)de = O(1/logn), asn — oo.
GEF(M) 0
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ProoF. Let G € F(M) and g = G'. With X as in (1), we observe from
Plancherel’s identity and Fubini’s theorem that

E /affg(x,z)dz < @r) B [ (ko K XX Y dt
0

—0On

o) [ ESX[X (X)) dt

(13) = O(one®™),

as n — oo uniformly over G € F(M). From the Fourier inversion theorem
and Taylor’s expansion, we get

EK.(X,5) = C7i(2m)™ /_ k(o )e T (2) dt
= ¢ [ Mt ~ o3 w)dy
= s~ Cort [ [ ubun(a - o5 )iy
Hence it follows from Jensen’s inequality and C, > ¥(0) that
[ (ERA,2) - 6(e)a(a)da
007 [~ [ ik [ (o - o7 )P dsyardy

1) = o) [ luikwa,

as n — oo uniformly over G € F(M). Consequently we conclude from (13)
and (14) that

[9:(2) — 9(z))°d(z) dz

[+ 3
Ger(M) Jo

IN
»n
=
-]

pv .
3

L

=

S—

[ KX, 0)ds + [ (BKA(X, )~ 4(o)g(a)da}

it
)
—_
—
~
—_—
Q
o
3
~—

, asn — oo.

This completes the proof. (|

REMARK. The hypotheses of Theorem 3 are satisfied by Examples 1, 2
and 3.
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REMARK. We note that the condition G' has support on [0,0] can be
weakened to the condition that G has a sufficiently rapidly decreasing tail,
for example a normal tail will suffice. However the convergence rate of gn
will then be significantly slower and a further disadvantage of using the latter
condition is that this condition will most likely be unverifiable in practice.

3 Lower Bounds

In this section, we shall complement the results of the previous section by
establishing local and global lower bounds for the optimal rate of conver-
gence. To obtain a local lower bound, we shall use the techniques developed
by Donoho and Liu (1987), (1991a) and (1991b) in a remarkable series of
papers.

Let X be as in (1) and

P(Y =5) = [ S9E(dF(@), ¥i=0,12:,

where F is a probability distribution on [0,a]. We define the L distance
between the law of X and Y by

L(F,G) = S IP(Y = §) - P(X = j)l-
=0

If F and G possess densities f and g respectively, we write Li(f,g9) =
L1(F,G). Now let r > 0 and m be a positive integer. Let Go € G(a, 6,M)
such that G has a continuously differentiable probability density go on [0,a]
with go(a) > 0. Define

| @8- 121+ c22? + -+ cana®™) iffa| <1,
(15)  pn(e) = { 0 if || > 1.

Then for sufficiently large N, there exist constants c3,...,con such that
1.
(16) / z'py(z)dz =0, Vj=0,...,m~-1L
-1

(This involves solving a system of linear equations.) For such a py and for
each n > 1, we write

gn(2) = go(z) + " Ppn(n¥(z - a)), V0<z <o

Let Gn(z) = [ gn(y)dy. Then for sufficiently large n, we observe that
Gn € G(a,6,M).
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Lemma 1 Letr > 0 and m be a positive integer satisfying mr > 8. Suppose
that ¢ is m times continuously differentiable on an open interval containing
a and that there exists € > 0 such that

() S im0+ P i) < oo.

j=m
Then for sufficiently large n, we have
(18) L1(Go,Gr) £ 1/n.

The proof of Lemma 1 is somewhat technical and is deferred to the Ap-
pendix. Let T}, be an estimator for g(a) = G'(a) based on a sample of n
independent and identically distributed observations having the same law
as X. If (18) is satisfied, Donoho and Liu (1987) observed that

. Lal _ > _
ljl}f Ge?c’;?f‘g,,}PG“T“ g(a)] > |go(a) — gn(a)l/2} > ¢,

for some positive constant ¢, and hence

inf sup E[T,—g(a)? > clgo(a)— gn(a)]*/4
Tn GeG(a,b6,M)

(19) = o/(4n"),

for any constant r.

Theorem 4 Suppose that ¢ is infinitely differentiable on an open interval
containing a and that for each m > 1, there exists £, > 0 such that

(20) S (@ + em V() < oo.

j=m
Then with Ty, as in (19), we have

lim inf sup n" E[T, — g(a)]* = oo,
n=0 T, Ged(a,6,M)

for any positive constant .

ProoF. This is immediate from (19) and Lemma 1. O
REMARK. Donoho and Liu (1987) has also observed a result similar
to that of Theorem 4 for the case of estimating the mixing distribution of
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a scale mixture of exponentials. However an explicit proof has not been
provided by them.

REMARK. We observe that (20) and the infinite differentiability of ¢
on (0,c) are satisfied by Examples 1, 2 and 3 of the first section. Hence
Theorem 4 is applicable to them.

We end this section with a corresponding global lower bound for the
optimal rate of convergence. Let 7 > 0, m be an integer satisfying mr > 8
and py be as in (15) satisfying (16). Furthermore let 7, = [n7/8], where
[z] denotes the smallest integer greater than or equal to .

We assume that ¢ is continuous on [0, «]. This implies that ¢’ is right
continuous at 0 and left continuous at «. Then for M sufficiently large,
there exists Gy € F(M) such that Gy has a continuously differentiable
density gg on [0, a], gs(z) > 0 on (0,a), gs(z) = brz*(1+0(1)) as z | 0 and
g9(z) = ba(@—2)%(1+0(1)) as T « where by and by are nonzero constants.
Following Fan (1991c), define for 0 < p< v < e,

T—p, 1
n = I I} S S ny
Tnl p+ py (I 2) Vi<I<T
¥y = (01""’0711) € {0,1}1-,1’
(21) gon(s) = 9()+n77Y bpn(dr——24), WO<z<a
=1

and given 9, we write

"9n,l,q = (01, e '701—-1, q, 01+1, e 70Tn))

whenever ¢ = 0,1. Writing Gy,(z) = f3 99,(y)dy, we observe that Gy, €
F(M) for sufficiently large n uniformly over 9, € {0,1}™.

Lemma 2 Let r > 0, mr > 8 and gs,, be as in (21). Suppose that ¢ is m
times continuously differentiable on [p,v] and

> i () < 0.
J=m

Then for sufficiently large n,

(22) max max Li(99,,0:99,,,) < 1/n-

The proof of Lemma 2 is deferred to the Appendix.
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Proposition 1 Let gy, be as in (21). Suppose that ¢ is continuous on [p,7]
and (22) is satisfied. Then for any estimator T,, for g based on a random
sample Xy, -+, Xy, having the same law as X in (1), we have

inf max E/’Y[Tn(m) — g(z)*¢*(z)dz > c/n",
Tn ge{gﬂn:'ﬁn} p

for some positive constant c.

The proof of the above proposition can essentially be found in Theorem
1 of Fan (1991c). In that paper, the x? distance is used instead of the
L, distance. However we observe that the proof can be easily adapted to
accommodate the L; distance.

Theorem 5 Suppose that ¢' is continuous on [0, ), ¢ is infinitely differen-
tiable on [p,v] and that for each m 2> 1,

0 -

Y ™) < o0,

j=m
where 0 < p < v < a. Then with T:. as in Proposition 1, we have for
sufficiently large M,

v
lim inf sup nTE/ [To(z) — g(z)]?¢*(z)dz = o,
=0 T GeF(M) p

for any positive constant r.

ProoF. This follows directly from Lemma 2 and Proposition 1. O
REMARK. We observe that the hypotheses of Theorem 5 are satisfied by

choosing 0 < p < 7 < a in Example 1. In the case of Examples 2 and 3, the

hypotheses of the above theorem hold if we take 0 < p <7 < .
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5 Appendix

Lemma 3 Under the assumptions of the first paragraph of Section 1, the
mizture distribution as defined by (1) is identifiable in G.

PROOF. Let G, and G be two probability distributions on [0, @] such that

[ #o@ica) = [ g()iGala), ¥i=0,1,2.
0 0

Furthermore we assume that the restriction of G; — G to {z : #(z) = 0} is
identically zero if the cardinality of {z : ¢(z) = 0} is greater than or equal
to two. As the Hausdorff moment problem is determinate [see, for example,
Shohat and Tamarkin (1943) page 9], we conclude that

(23) #(z)dG1(z) = ¢(2)dGo(z).

Now we consider two cases.

CASE I. Suppose that the cardinality of {z : ¢(z) = 0} is greater than or
equal to two. Then it follows from (23) that Gy = G on [0, a]\{z : ¢(z) = 0}
and hence G1 = Gs.

CasE II. Suppose that the cardinality of {z : ¢(x) = 0} is less than two.
Again from (23) we have G1 = G; on [0,a]\{z : ¢(z) = 0}. Hence G1 = G2
as both are probability measures. This proves Lemma 3. a

Proor oF LEMMA 1. We observe that

Li(Go,Grn) = Y_| /Oa (@) 2pn (03 (z ~ a))da|
j=0
(24) = p57/8 i | / ll(a + 2 "By (0 + zn~"/B)(5 )pn(z)dz].
j=0 7

It follows from Taylor’s expansion that for j > m and n sufficiently large,
(a+an”BY = o +Cla Y(an )+ + Cl_yad ™ (@n /8y
+C,(a+ £ (anT Y™,

and for 1 <1 < m,

(I-1) O]
¢(a + xn—r/S) — ¢(a) +oe g ¢(l _1 1(;1’!)($n—'r/8)l—1 + ¢ (al"+ nl)(zn—r/S)l,
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where max{|¢|, |m|} < |zn~7/®|. Hence using (16), we get
1 .
[} (as an e Yoo + an~ P )pu(a)s
-1
1 . .
= | [ [#a+an)Ch(at &
-1
T ¢Dat+m) i - _
+ = 1 ) Ci _a ™) (an™"/®) " py(e)da]
(25) = a™ B0 (a +¢)),
as n — oo uniformly over j > m. Similarly we have for 0 < j < m,
1 .
[} @@+ en~/eYg(a+ on~To)pn(e)ie
-1
(26) = O(n~™/®), asn— oc.
Thus we conclude from (17), (24), (25) and (26) that
L1(Go, Gr) = O(n=GT™1/8) < 1/n,
for sufficiently large n. This completes the proof of Lemma 1.
PROOF OF LEMMA 2. As in the proof of Lemma 1, we have

max max L
1<l <t 19" l(gﬁnlohq'ﬁnll)

(7 p)
1<l<1',n 4Tnn7‘/2 Z l / [ Tn,l + ]

X (2 + %ﬂ)ﬂb(j)pzv(w)dwl

= O™ PP ) 3o ™Y H(),

—0

as n — 0o. Hence we conclude that

max max/l <1l/n
1<I< Ty B 1(g19n10’g79n11) / 3

for sufficiently large n. This proves Lemma 2.



ESTIMATING MIXING DENSITIES 15

References

[1] BLuM, J. R. and Susarra, V. (1977). Estimation of a mixing distri-
bution function. Ann. Probab. 5 200-209.

[2] CaRROLL, R. J. and HALL, P. (1988). Optimal rates of convergence
for deconvolving a density. J. Amer. Statist. Assoc. 83 1184-1186.

[3] DeELy, J. J. and KRrUSE, R. L. (1968). Construction of sequences
estimating the mixing distribution. Ann. Math. Statist. 39 286-288.

[4] DEVROYE, L. P. (1989). Consistent deconvolution in density estima-
tion. Canad. J. Statist. 17 235-239.

[5] DEVROYE, L. P. and WisE, G. L. (1979). On the recovery of discrete
probability densities from imperfect measurements. J. Franklin Inst.
307 1-20.

[6] DoNoHO, D. L. and Liu, R. C. (1987). Geometrizing rates of conver-
gence, I. Technical Report, Dept. Statist., Univ. California, Berkeley.

[7] DononoO, D. L. and Liv, R. C. (1991a). Geometrizing rates of con-
vergence, II. Ann. Statist. 19 633-667.

[8] Donouo, D. L. and Liv, R. C. (1991b). Geometrizing rates of con-
vergence, III. Ann. Statist. 19 668-701.

[9] FaN, J. (1991a). On the optimal rates of convergence for nonparametric
deconvolution problems. Ann. Statist. 19 1257-1272.

[10] Fan, J. (1991b). Global behavior of deconvolution kernel estimates.
Statist. Sinica 1 541-551.

[11] FaN, J. (1991c). Adaptively local 1-dimensional subproblems. Preprint.

[12] Harris, I. R. (1991). The estimated frequency of zero for a mixed
Poisson distribution. Statist. Probab. Lett. 12 371-372.

[13] Jewell, N. (1982). Mixtures of exponential distributions. Ann. Statist.
10 479-484.

[14] Jounson, N. L. and KoTz, S. (1969). Discrete Distributions. Wiley,
New York.



ESTIMATING MIXING DENSITIES 16

[15] LaMBERT, D. and TIERNEY, L. (1984). Asymptotic properties of max-
imum likelihood estimates in the mixed Poisson model. Ann. Statist.
12 1388-1399.

[16] LiNDsAY, B. G. (1983a). The geometry of mixture likelihoods: A gen-
eral theory. Ann. Statist. 11 86-94.

[17] LinDsAY, B. G. (1983b). The geometry of mixture likelihoods, part II:
The exponential family. Ann. Statist. 11 783-792.

[18] LiNpsAY, B. G. (1989). Moment matrices: Applications in mixtures.
Ann. Statist. 17 722-740.

[19] MEEDEN, G. (1972). Bayes estimation of the mixing distribution, the
discrete case. Ann. Math. Statist. 43 1993-1999.

[20] RoBBiNs, H. (1964). The empirical Bayes approach to statistical deci-
sion problems. Ann. Math. Statist. 35 1-20.

[21] RorpH, J. E. (1968). Bayesian estimation of mixing distributions. Ann.
Math. Statist. 39 1289-1302.

[22) SHoHAT, J. and TAMARKIN, J. (1943). The Problem of Moments.
Amer. Math. Soc. Waverly Press, Baltimore.

[23] SiMAR, L. (1976). Maximum likelihood estimation of a compound Pois-
son process. Ann. Statist. 4 1200-1209.

[24] STEFANSKI, L. A. (1990). Rates of convergence of some estimators in
a class of deconvolution problems. Statist. Probab. Lett. 9 229-235.

[25] STEFANSKI, L. A. and CARROLL, R. J. (1990). Deconvolving kernel
density estimators. Statist. 21 169-184.

[26] TeicHER, H. (1961). Identifiability of mixtures. Ann. Math. Statist.
32 244-248.

[27] Tucker, H. G. (1963). An estimate of the compounding distribution
of a compound Poisson distribution. Theor. Probab. Appl. 8 195-200.

[28] WISE, G. L., TRAGANITIS, A. P. and THOMAS, J. B. (1977). The esti-
mation of a probability density function from measurements corrupted
by Poisson noise. IEEE Trans. Inform. Theory 23 764-766.



ESTIMATING MIXING DENSITIES 17

[29] ZuANG, C. H. (1990). Fourier methods for estimating mixing densities
and distributions. Ann. Statist. 18 806-831.

Department of Statistics
Mathematical Sciences Building
Purdue University

West Lafayette, Indiana 47907





