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Abstract

The Maximum Entropy process with autocorrelations specified on a finite lattice is iden-
tified to be a Gaussian autoregressive process with a special structure in its coefficients. The
autoregressive coefficients can be obtained by means of a fast algorithm. This result extends
Burg’s well known Maximum Entropy theorem, where the autocorrelation is constrained
for consecutive lags.
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I. Introduction

Let {X,,n € Z} be a wide-sense stationary stochastic process with mean EX; = 0, and
autocovariance y(k) = EX(X¢yk, k € Z, and assume for simplicity that ¥(0) = 1. Suppose

that the first p autocorrelations of the process are known, i.e., that

7(i):Ci5i:1""ap (1)

where the given constants ¢;,7 = 1,...,p constitute the beginning of some positive definite
sequence.

To obtain a full picture of the second moment structure, a model should be assumed in
order to somehow extrapolate the unknown autocorrelation values 4(%), ¢ > p. A popular such

model is the AR(p) autoregressive Gaussian model
Xt + alXt_l + ...+ apXt_p = Zt (2)

where the sequence {Z,} is a sequence of independent, identically distributed, normal N (0,0?)
random variables, and the coefficients a1,...,a, are chosen (via the Yule-Walker equations)
such that the constraints (1) are satisfied. The AR(p) model (2) has the additional feature (cf.
Burg [2]) that it is the Maximum Entropy (i.e., most ‘unpredictable’) process that satisfies the
constraints (1).

For motivation consider now a simple example that does not fall in the above framework,
namely that it is known that v(3) = 1, and that no other information is available regarding the
autocorrelation sequence. By the Cauchy-Schwarz inequality, |v(3)] < v(0) = 1 with equality
if and only if X; and X;_3 are linearly dependent, for any ¢. Hence in our case, because of the
assumption of zero mean and stationary variances, v(3) = 1 implies that X; = X;_g3, for any ¢,
which can be viewed as an extreme case of an autoregressive AR(3) model, with a; = a2 =0,
asz = —1, and noise variance 02 = 0. Similarly, if it is known that v(3) = ~1, it follows that
Xi = —X;_3, for any ¢, which is also an extreme case of an AR(3) model.

It is natural to ask what happens if the value of 7(3) = ¢3 # £1 is known, and no other
information about the autocorrelation sequence is given. Intuitively, one would expect an

AR(3) model to still be applicable, and hopefully that in addition a; = a3 = 0. Indeed this



guess is true, and it is shown in the next section (as a part of a more general result) that the

Maximum Entropy process satisfying v(3) = ¢s, is the AR(3) model X; = ¢3X;—3 + Z;.



II. The Maximum Entropy process with autocorrelation specified on a lattice

The Maximum Entropy problem with non-consecutive or missing autocorrelation values
was discussed in Papoulis [5] where a numerical (steepest ascent) algorithm was proposed for
its solution. It was also addressed in [6] in the context of MA (moving average) processes, but
again its solution involved a system of non-linear equations.

However, if there is a particular structure in the missing values, the solution to the Maximum
Entropy problem with missing autocorrelations takes on a very simple form. The following
result shows that, if the autocorrelation sequence is known on a finite lattice of the form
{r,2r,3r,...,pr}, then the Maximum Entropy problem has an intuitive AR (autoregressive)
solution, with coefficients that vanish for lags that are not on the lattice. The remaining
non-zero coeflicients are easily obtainable from Yule-Walker type linear equations using a fast
algorithm.

Theorem. Suppose that {X,,n € Z} is the Gaussian autoregressive process satisfying the
difference equation -

X: + ZakXt—k =2 3)
k=1

where r,p are two positive integers, and the sequence {Z,} is a sequence of independent, iden-

tically distributed, normal N(0,0?) random variables. Also suppose that v(0) = 1, and that

7(Ti):cri,i= L...,p (4)

where ¢, Car, . .., Cpr GTE SOME given constants.
Ifa; = 0 for all i g {r,2r,3r,...,pr}, then the process {X,} has Mazimum FEntropy rate

among all wide-sense stationary processes whose autocovariances satisfy the constraints (4).

Proof. The fact that the maximum entropy process turns out to be Gaussian with mean
zero is a consequence of the fact that equation (4) represents a constraint on the second order
moments only. As is well known [3] among processes with identical autocovariance function,
the mean zero Gaussian such process has maximum entropy rate.

Now the conditions that a Gaussian process should satisfy in order to have Maximum



Entropy rate subject to the constraints (4) are (cf. [4], [6], [7])

3(3) = 0,Vi & {r,2r,3r,...,pr} (5)

where §(k), k € Z, is the inverse autocorrelation sequence of the process { X;}, which is defined
as the sequence satisfying > 2_  4(¢)y(: + k) = 0 for all k # 0, >-2_ o 7(2)y(3) > 0, and
3(0) = 1.

Because (i) = 0 for all ¢ > pr, it follows (cf. [1], [6], [7]) that the Maximum Entropy
process satisfying (4) is an AR process of order pr satisfying the difference equation (3), and

hence its inverse autocorrelation can be easily calculated as

3 S aiaigk
V(k) = =S5 (6)
i=1 %
fork=1,...,pr.
A direct calculation now shows that, if a; = 0 for all 7 ¢ {r,27,3r,...,pr}, then the maxi-

mum entropy conditions (5) are indeed satisfied, and the theorem is proven.O

The above theorem includes as a special case (with 7 = 1) the original Maximum Entropy
result of Burg [2]. As another special case (with p = 1 and r = 3), the AR(3) example
Xi = c3X;—3+ Z; of the Introduction is shown to have Maximum Entropy among all processes
satisfying v(3) = cs.

The theorem does not immediately extend to the case where there is no such lattice pattern
in the missing autocorrelation values. To see this, consider the following simple example.
Suppose it is given that

YD) =ci#0,i=3,4 (7)
Then the Maximum Entropy process subject to constraint (7) is certainly an AR(4) Gaussian
process, but its coefficients can not satisfy a; = ag = 0; for if a; = a3 = 0 were satisfied, then
the maximal condition 4(1) = 0 would imply that either a3 or a4 is zero, and consequently that
either c¢3 or ¢4 should be zero, which is a contradiction.

To turn to the practical problem of solving for the AR coefficients in the Maximum Entropy

model of the theorem, that is,
Xe+ar Xsr +ag Xeor+ -+ aert—p'r = Z4 (8)
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using the given information y(0) = 1, and y(r¢) = ¢5,% = 1,...,p, one would proceed the usual
way, i.e., multiply both sides of equation (8) with X;_,;,i = 0,1,...,p, and take expectations
to obtain the following Yule-Walker type system of equations

7(0) + ary(r) + a2y (2r) + « - - + apy(pr) = 0°

7(T) + a'l‘7(0) + 0'27'7(7') +---+ llpr’)/(p’l" — ’I') =0

Y(2r) + ary(r) + a2, 7(0) + -+ - + apry(pr —2r) = 0 (9)

v(pr) + ary(pr — ) + az.y(pr—2r) + -+ apy(0) = 0

The linear system of equations (9) can then be solved for a,,aar,. .., ayr, and o2, without
a matrix inversion by using one of the well known fast algorithms (Burg’s or Levinson’s [1]).
To see this, observe that if we define the new stationary process {Y,} by Y, = X,,, for all
n € Z, then the autocovariance yy(k) = EY;Y;1x of the {Y,} sequence coincides with the
autocovariance of the {X,} sequence on the lattice {0, £r,£2r,...}, that is, vy (k) = y(kr),
for all k£ € Z. Hence, solving the system (9) is tantamount to fitting the AR(p) model

Yi+a.Yi 1 +axyYio+...+ a’p’l‘}ft—p =27 (10)

to the {Y, } sequence, using the information that vy (0) = 1, and yv () = ¢,2 = 1,...,p, which
can be done by one of the fast algorithms.

Looking at the sequence {Y,}, which is actually the original sequence {X,} sampled at
a reduced rate, points to a practical situation where our theorem might be useful. For an
example, consider a daily time series {X,}, where X,, is a certain random quantity at day n,
and suppose that the time series was observed weekly (instead of daily) over a year (=52 weeks),
i.e., the data were Xg, X7, X14,...,X357. In other words, the weekly time series Y,, = X7, was
observed for n = 0,1,2,...,51.

Since the {Y,,} observations are consecutive and complete, the {Y,} autocovariances vy (k)
can be estimated from the data for k¥ = 0,1,...,p, (with p << 52), and an AR(p) model
(10) can be fit by solving the Yule-Walker system of equations (9). If however the objective



was to model the daily time series {X,,} using the incomplete Xg, X7, X14, ..., X357 data, our
theorem could be invoked to infer that the Maximum Entropy model for the {X,} sequence is
the AR(pr) model (8), with the same AR coefficients as in the AR(p) model for {Y,,}. Note
that model (8) specifies uniquely a probability model for the {X,} sequence, and can be used

for all the practical purposes of spectral estimation, prediction, interpolation, and so forth.

III. Conclusions

The Maximum Entropy problem with autocorrelation specified on a lattice of the form
{r,2r,3r,...,pr} was discussed, and its solution was found to be a particular Gaussian AR(pr)
model (cf. equation (8)), characterized by coefficients fha,t vanish for lags not on the lattice. The
remaining non-zero coeflicients were shown to be obtainable from Yule-Walker type equations
using a fast algorithm. This finding (which extends the well known Maximum Entropy result
of Burg [2]) might be applied in situations where the stationary process of interest is sampled

at a rate smaller than the desirable one.
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