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1 Motivation of BSRDT Plans

1.1 Introduction

In order to produce a new product, engineers should carry out a series of experiments, which
consists of prototype, development, qualification and reliability demonstration. Reliability
demonstration is the last and a necessary step in the experimentation period. Reliability
Demonstration Testing (RDT) is often used for the purpose of verifying whether a specified
reliability has been achieved in a newly designed product. Based on a demonstration test, a
decision is made to either accept the design and start formal production, or reject the design
and send the product back for reengineering.

A serious problem with RDT is that a reliability test can be very expensive in terms of
money and time, especially in the case of products that require very high reliability and have a
long lifetime. A common solution is to take into consideration prior information, typically from
engineering knowledge or knowledge of previous similar products, and to test in a sequential
fashion.

There are several issues in the reliability demonstration. What are the suitable distributions
of lifetimes for a product? How should we use the engineer’s knowledge and knowledge of
previous similar products? How many units need to be tested to reach a decision? How long
does it take to make a decision? What are expected-losses? What are reasonable testing
procedures which are acceptable to both producers and consumers? These questions will be

discussed in this paper.

1.2 History of BSRDT

It is well known that a Bayesian Sequential Test (BST) can be a useful tool, since it can take
into consideration prior information, loss structure and the cost of testing. In many cases, use
of a BST can significantly reduce the amount of testing required. However, BST’s are often
too complex to evaluate.

Several authors have thus proposed simple Bayesian Sequential Reliability Demonstration
Tests (BSRDT). These simpler tests ignore any loss structure or costs of conducting the test.

They are based solely on the way in which consecutive observations of failures modify the



prior information on the parameter of interest to produce a posterior distribution for the
parameter of interest. Testing continues until the posterior distribution is decisive, according
to appropriate criterion, at which stage it terminates and a decision is taken on the quality of
the product.

The first BSRDT was introduced by Schafer & Singpurwalla (1970). They introduced
the following test procedure. One unit at a time is tested, where the lifetimes of units are
independently identically exponentially distributed with mean #. The unknown @ is assumed
to have an inverse Gamma prior distribution. Choose a minimum acceptable value, say 6,
and let P, = P(§ > 6;|data). The test is terminated when P, > 1 — a3, in which case a
decision to accept the product is made, or when P, < oy, in which case a decision to reject the
product is made. Schafer & Singpurwalla (1970) were primarily concerned with the acceptance
probability of this procedure, and developed approximations for it. Some related computations
and approximations for other risks were done in Schafer and Sheflield (1971) and Mann, Shafer
and Singpurwalla (1974). The extreme difficulty of all computations of this type is discussed
in Martz and Waller (1982); one of the major motivations of our recent work is to show how
such computations can be done explicitly, in closed form.

The stopping rule of Schafer & Singpurwalla (1970) is discrete, in the sense that one can
only stop the test when a failure occurs. This can be inefficient when observations are very
expensive and/or have long lifetimes. Barnett (1972) proposed a continuous BSRDT plan for
the exponential failure rate problem. By his method, one can stop the test at any time that
enough information has accumulated. Again, however, closed form answers were not obtained.

Related work can be found in Chandra and Singpurwalla (1981), Epstein and Sobel (1953),
Goel and Coppola (1979), Harris and Singpurwalla (1968, 1969), Lindley and Singpurwalla
(1991a,b), MacFarland (1971), Martz and Waller (1979), Montagne and Singpurwalla (1984),
Ray (1965), and Soland (1969).

1.3 Preview

Recently, two different approaches to the BSRDT have been considered for our purposes (see
Sun and Berger (1991) and Sun (1991)). One of them, which is still called the BSRDT,

is stimulated by the work of Barnett (1972). Testing continues until the posterior loss is



decisive according to a desired criterion, at which time testing terminates and a decision made
concerning the quality of the product. The other, the PSRDT (Predictive Sequential Reliability” .
Demonstration Tests), is based on the predictive loss of future products. Those two procedures :
and their discrete versions will be described in Section 2. l‘
In Section 3, two common testing models, with replacement and without replacement, and
their generalization, the stepwise model, are considered. In Section 4, various risk criteria and

other important features for the BSRDT and the PSRDT are presented. In Section 5, details

about the Weibull and related distributions are developed and summarized.

2 Stopping and Decision Rules

Suppose that the underliying distribution of the new product is characterized by an unknown
parameter §(> 0). Larger § provide larger mean time to failure, and 6 is assumed to have a

prior distribution 7(8).

2.1 The BSRDT

There are a variety of possible goals for sequential experimentation. The following BSRDT
plan is the intersection of two goals.

1. Let 6; be the goal to begin production, in the sense that the experiment will stop and
production begin if there is 100(1 — a1)% “confidence” that 8 > 6;. |

2. Let 6, be the mature product goal , in the sense that the experiment will stop and the
product will be rejected (sent back for reengineering) if there is 100(1 —7-’012)% “confidence”
that 8 < 6,.

Here a; and oy are two usually somewhat small numbers, and 8y < 02ﬂuarc; two prespecified
values. The region 6; < 0 < 0, is often called the indifference region.

The BSRDT also arises in formal decision models. Suppose that & p'r’oduct with small
§ < (6,) should be rejected and with large 6 > (63) should be accepted. Let I(6) be the
loss for making a wrong decision, where [(#) is nonincreasing and nondecreasing in (0, 6]

and [f2,00), respectively, and [(f) = 0 for 6§ € (61,6,). The test will stop and production

begin if the posterior loss of accepting the product (foe1 [(0)r(8|data)dd) is small enough, and



the test will stop and the product be rejected if the posterior loss of rejecting the product
(f5; U(0)m(0|data)db) is small enough. The BSRDT arises if [(6) is constant on both (0, 6] and
[02, OO)

It is easy to see that the testing plan is equivalent to

Stop and accept the product, if ¢*(o) > 01;
Stop and reject the product,  if ¢*(1 — ag) < b5, (1)

Continue testing, otherwise,

where ¢*() is the ath posterior quantile. More details about the BSRDT can be found from

Sun and Berger (1991).

2.2 The PSRDT

For the BSRDT plans, inference is made based on the information about the unknown pa-
rameter in the distribution of time to failure. This is understandable and acceptable to an
engineer. But from the viewpoint of a manager, it might be more natural to consider the time
to failure of a future product. In fact, the purpose of reliability demonstration testing is to
make a decision about a future product. Basically, it is a predictive problem. Thus we also
consider an alternative sequential procedure, the PSRDT, which makes inference based on the
predictive distribution of a new time to failure Z, given the current data. The idea is as follows.
Choose the desired lifetime, t5, and the minimum lifetime to begin production, ¢;. A product
will be rejected (accepted) if its time to fail is less then #; (more then t;). Let {(-) be the loss
function of making a wrong decision, where {(z) is nondecreasing and nonincreasing in (0, ¢1]
and [ty, o), respectively, and I(z) = 0 for z € (t1,%2). The plan is the intersection of following
two goals:

1. The experiment will stop and production begin at time t if the predictive loss of
accepting the product ([ I(2)f(z|data at t)dz) < a.

2. The experiment will stop and product will be rejected at time t (sent back for reengi-
neering) if the predictive loss of rejecting the product (f5°{(z)f(z|data at t)dz) < as.

Here a; and a; are two usually somewhat small numbers, and f(z|data at t) is the predic-



tive p.d.f. For the 0-1 loss, the predictive BSRDT plan is equivalent to

Stop and accept the product at t, if P(Z < t;]|data at t) < a,

Stop and reject the product at t,  if P(Z > t;|data at t) < as.

The BSRDT and the PSRDT describe above are actually using continuous stopping times.
In contrast, there are discrete versions, the discrete BSRDT and the discrete PSRDT, in which

the two design goals are examined only at each failure.

3 Testing Models

We have considered three testing models, with replacement, without replacement and stepwise

models.

e With Replacement. Units are independently tested on m machines. Whenever a unit
fails, it is replaced by a new unit and testing is continued until enough information has
been obtained. This model includes the case in which m machines are tested themselves
and, upon failure, a machine is repaired or rebuilt (immediately) so that the repaired

machine is as good as new.
o Without Replacement. Units are independently tested on m machines without repair.

o Stepwise Models. Suppose that, at time 0, m (> 1) machines are used to test the items
with replacement. If no decision is made at time X;(> 0), mi1(> —1) more machines are
put on test with replacement. Generally, if no decision is made at time X; (> X;-1),
m;j(> 0) more machines are put on test with replacement. The X ;s are called the

evaluation points.

The stepwise model generalizes the first two models. If m; = 0 (j > 0) then the stepwise
model is the model with replacement. If m; = —1(1 < j < m) and m; = 0(j > m) then the
stepwise model is the model without replacement.

Note that one can “accept” when accumulated nonfailure time is large enough, and this

could happen at any time, but rejection takes place only on the occurrence of a failure. Let



Ty < Ty < ---< T, be the first n ordered failure times for all the machines. A natural choice

of evaluation points is
X;=Tj, i=1,2,--. (3)

This is reasonable, since we would typically consider more machines when the failure time has

been too long to reject, but not long enough to accept.

4 Features of the BSRDT and the PSRDT

4.1 Risks

Let A and R denote the action (or, by an abuse of notation, the region) of accepting the
product and the action of rejecting the product, respectively. Several risk criteria, defined in
Chapter 10 of Martz and Waller (1982), can be used to measure the goodness of the BSRDT.
The following names of these risks are borrowed from related conventions in quality control.

1. Classical Producer’s Risk, v = P(R|6;), and Classical Consumer’s Risk, § = P(A|6;). Here

v is the probability that a product at the mature product goal will fail the BSRDT and 6 is
the probability that a product at the goal to begin production will pass the BSRDT. If the
lifetime distribution has a monotone likelihood ratio, P(.4|8) is monotonically increasing in 6.
In this case, P(R|0) < v for 6 > 6;, and P(A|f) < 6 for 6 < 6;.

2. Average Producer’s Risk, 4 = P(R|8 > 6;), and Average Consumer’s Risk, § = P(A|f <

61). Here 7 is the probability of rejecting a good product and é is the probability of accepting
a bad product. Note that computation of these risks involves the prior.

3. Posterior Producer’s Risk, v* = P(6 > 6,|R), and Posterior Consumer’s Risk, 6* = P(8 <

61]A). Here v* is the posterior probability that a rejected product is good, and 6* is the

posterior that an accepted product is bad.

4. Rejection probability, P(R) = /@P(’R|0)7r(0)d0, and Acceptance probability, P(A) =1 —

P(R). Here P(A) is the unconditional probability of the product passing the BSRDT.
Rejection probability and Acceptance probability can also be used for the PSRDT. The

choice of criteria to evaluate the BSRDT is left to the user. For the fixed sample size problem,

many papers are available concerning how to choose the criteria. For example, Balaban (1975)



favors the mixed classical/Bayesian pair (7, 6*) to determine a Bayesian reliability demonstra-
tion test. Also see Easterling (1970), Schafer and Sheffield (1971), Schick and Drnas (1972),
Goel and Joglekar (1976).

4.2 Other Design Criteria

Besides various risks, the following features are also important to design:
1. N7y, the total sample size or the total number of testing units put on test;
2. T, the total time on test;
3. N = N(T), the number of failed units at the time when testing stops.

Finding the expected stopping time, E(T') = [ E(T|6)r(8)df, and the expected sample size,
E(Nty) = [ E(Nty|0)n(6)dd, is important for design. The following relationship between the
total sample size and the number of failures follows immediately from the definition of the

stopping rule, and allows us to consider N instead of Npy.

Theorem 4.1 Consider the stepwise model. For both the BSRDT and the PSRDT,

N-I(R)
Nty =m+ Z 1+ mj). (4)
i=0
Here I(-) is the indicator function. O

Remark 4.1 1. Note that, for the model with replacement, N7y = m + N — I(R), and for
the model without replacement, N7y = m — N + I(R).

2. For the stepwise model and the discrete versions of the BSRDT and PSRDT,

N-1
Nty =mo + Z(1+mj)' (5)
j=0

5 Details for the Weibull and Related Distributions

5.1 Failure Distributions

In this section, it is assumed that the lifetime probability density function of the product has

the following form

f(z|0) = %exp{—g—g}z}, t>0. (6)

8



Here H(-) is a known increasing function satisfying H(0%) = 0 and zll»IgoH(m) =00, Q()isa
known and strictly increasing function, and 6 is the unknown characteristic life. The density
of (6) is a special form of the exponential family and encompasses many common reliability

distributions.

Example 5.1 If, in (6), Q(z) = H(z) = z#,(2 > 0) for some known positive constant £,

the density becomes

f(z|0) = ﬁxo—[;—lexp{—(%)ﬁ}, t>0, (7)

which is the p.d.f. of the Weibull distribution, W(8,3). It is well known that the Weibull
distribution encompasses both increasing (with § > 1) and decreasing (with § < 1) hazard
rates, and has been successfully used to describe both initial failures and wearout failure (Von
Alven (1964) and Lieblein & Zelen (1956)). It has been argued that when a system is composed
of a number of components and failure is due to the most severe defect of a large number of
possible defects, the Weibull distribution is often especially appropriate. It is found in practice
to be suitable for data on failure strengths and also failure times. It is also one of the stable
distributions of extreme value theory. The exponential and Raleigh distributions are obtained

when 8 = 1 and 2, respectively.

Example 5.2 Assume that, for given 6, X, X, are independent random variables and X;
has reliability function exp{—t% /68}, where B, 1, and f, are known positive constants. Then

min{ X1, X5} has the p.d.f.

¢! -1 +p zB2-1 2P + zP2
f($|0)= ! aﬁ 2 {—-—-——OT—}, t>0, (8)

which is a special case of (6).

Example 5.3  Assume that, for given 6, {X;}i>1 is a sequence of independent random
variables and X; has reliability function exp{—xﬁl /(1168 )}, where f; and f are known positive

constants. Then inf,>; X, has the p.d.f.

f(z18) =

Bz
ﬂl;ﬁ exp{-(e™* —1)/6°}, 1> 0, (9)

which is the truncated extreme value distribution, and again a special case of (6).



Example 5.4 Let H(z) = In(z + 1) (2 > 0) in (6). Then the lifetimes t;;, ¢ = 1,2,---,m,

j=1,2,-.., are iid. Pareto distributions with p.d.f.
1 +1
f(216) = 1/[QO)(= + DT, 1> 0. (10)

From Billingsley (1986) ((21.9) on Page 282), E(X) = [;° P(X > z)dz. It follows from the

assumptions on §(-) and H(-) that larger 6 provide larger expected lifetime.

5.2 Prior, Posterior and Predictive Distributions

Prior information about the unknown parameter § is assumed available in the form of a prior
density function 7(-). Schafer (1969) and Schafer and Sheffield (1971) observed that the inverse
Gamma prior distributions are often reasonable for exponential failure problems. Here, the

prior p.d.f. of @ for the family (6) will be assumed to belong to the conjugate family

b Q'(8 b
m(8) = T(a) Qa+(1(29) exp{—-c-)—-(—g—)}, for 6 > 0. (11)

Note that then (8) has an inverse gamma distribution, ZG(a,b). Methods of choosing @ and

b can be found from Sun and Berger (1991).
Let N(t) be the total number of failures at time t and define the adjusted total time on
test by

v(t) = > H(t;)
t;: observed failure time before t

+ > H(th). (12)

t1: observed test time not failed by t

Then the posterior p.d.f. of 8 given data at time t is

_ (VO+n)YO (e) Vieh
m(f|data at t) = T(N(H)+a) QNW+a+i(p) exp{— Q(6) }7

for 6> 0, i.e., Q(0) has, a posteriori, an inverse gamma distribution, ZG(N(t) + a, V(1) + b).

In particular, it follows that the posterior a* quantile is

¢*(a)=Q7! <2(V(t) + b)/xg(N(t)_i_a)(l—a)) , for0<ac<l, (13)

where @ ~1(.) is the inverse function of Q(-) and X?(l — a) is the (1 — a)** quantile of the x?

distribution with 7 degrees of freedom.

10



Assume that Z, a future time to failure, is independent of current data. From Berger (1985)

(page 157), the predictive survival function at time t is

P(Z > s|data at t) = / P(Z > s|0)n(0|data at t)df
0

(V@) 0V o QO) {_V(t)+H(s)+b}d9
TN +a) Jo (QO)NO+el P Q)

{1 + VZ)(‘:? b}—N(t)—a’ s> 0.

This implies that the a** quantile of the predictive distribution is
¢?(a) = B ([V(2) +b][(1 — @) /N O+a) _ 1]), for 0<a<1, (14)

where H~1(.) is the inverse function of H(.).

5.3 Representations for the BSRDT and the PSRDT

The stopping (and decision) rules for the BSRDT and the PSRDT are equivalent to

Stop and accept the product at t, if V(¢) +b > %Q(@l)xgw(t)_l_a)(l - a), (15)
Stop and reject the product at t, if V() +b < %Q(eg)xgw(t)_l_a)(aﬁ.
and

Stop and accept the product at t, if V(¢)+b> H(tl)/{(l — ay)"V/(N(@)+a) 1},
(16)

Stop and reject the product at t, if V() +b < H(tg)/{agl/w(t”a) - 1}.
respectively. As with certain classical sequential tests these procedures are “semicontinuous”
(see Epstein and Sobel, 1955): one can “accept” when the continuous time of accumulated

nonfailure is large enough, but can “reject” only on the (discrete) occurrence of a failure.

For¢=0,1,2,---, let

o %Q(Oz)xg(a+i)(a2), for the BSRDT,
€ = . (17)
H(t2) [{o3"/*) ~ 1}, for the PSRDT,
and
d; = %Q(01)x§(a+,~)(1 - a1), for the BSRDT, 18)

H(tr) /{(1 = a1)~/@+) 1}, for the PSRDT.
Then the stopping (and decision) rules for the BSRDT and the PSRDT have the common

form: Stop and accept (reject) the product at t, if V{(2) + b > dyyy) (< EN(1))-

11



5.4 Summary about Evaluation of Important Features

Sun and Berger (1991) found closed form expressions for all the important features of the
BSRDT defined in Section 4, for the model with replacement. Exact expressions for the
expected sample size, various risks and the distribution of total number of failures were de-
termined. Bounds on expected testing time were given. Based on a result about a Poisson
process, the exact expected testing time for exponential failure was also found. Included in
these risks and expected stopping times were frequentist versions, thereof, so that the results
also provided frequentist answers for a class of interesting stopping rules.

For the discrete BSRDT, Sun (1991) found the exact formulas for the various risks, and the
distributions of the number of failures and sample size. If only one unit at a time is tested, the
expected testing time has a closed form. Some asymptotic properties of the discrete BSRDT
plan were also discussed. For a general loss, the discrete BSRDT is asymptotically equivalent
to the Bayes sequential test when the cost per observation is small enough.

For the stepwise model, Sun (1991) gave closed form expressions for all the risks, the
expected sample size, and the distribution of total number of failures for the BSRDT and the
PSRDT.

Appendix

Here are summaries of exact form expressions which are true for both the BSRDT and the
PSRDT and all the three models. Their proofs can be found in Sun and Berger (1991) and

Sun(1991). We use the notation and assumptions of Section 5.

A1l. Technical Preliminaries

Since both @; and a; are small for the BSRDT and the PSRDT, it can be assumed that
az < 1 — . Then for ¢; and d; defined by (17) and (18), respectively, it can be shown that
¢; > d;—1 when ¢ is large enough, as long as 6; < 85 for the BSRDT or ¢; < t5 for the PSRDT.

Thus there is an 75 such that

io=min{i =1,2,....¢; > d;_1}. (19)

12



Forn=1,---,1, let

G'n, = {(y17"',yn):yj>Oacj_b<yl+'"+yj§dj—-l~b7j:17"',n}7 (20)
let ||Gol] = 1 and let [|G,]| denote the volume or Lebesgue measure of Gy, (n > 1). For
j=12,---,5=0,1,2,---, and y > 0, define

a._(y)_ (c,-+j/\dj_1)Vy—(cJ'Vy), lfiZ 17 (21)
ij =
dj_1—c¢;Vy, ifi=0,

where z V y = max(z,y) and z Ay = min(z,y). Then

Ciyj Ndj_q —cj, ifi>1,
aij(¢j) = { L (22)
d]‘_l = ¢y, ifi=20.
For n > 2, define two sets of partitions of n by
k
Vo= {(ir, oo i) 0 D ig=n, k21, 0521} (23)
i=1
and
- { 7‘17 X Z17 ) k‘) € qJ’n,ik > 2} (24)
For 1 < r < mn, (i1, -+, i) € ¥y, define
pr(bynyridy, e ik) = pr(byniriin, - ikicl,dio1, 1<) <n)
al b
n—r,'r( )’ if k= 1,
7!
= {H (@) Jaral), k22 )
a, (¢ Gy ks itk 2> 2,
H] 17'J 7=2 n !
and for 2 <! <7 < n,(i1,- 1) € U7,
p2(bimiriliin, e yik) = pa(bsnyTilitn, e ik ¢y dja, 1S5 <n)
a"ln,—r'r(dT—l) .
—’—l!———HGT_lﬂ, ifk=1,
- n Tr(c"‘ (26)
) ot (e aC-lGrl, 132
H] l'LJ 1=2
where iO = 0, 2(_7) = 7‘0+21+ . +7’J’a:]() = a::j‘_l,'r—i(j)('))a'ij( )IS glven by (21)7 n] cn—i(]')a
and]_[J o =1LFor2<m<igand 1<r<n,let
nr = Z pr(b; 15758, - o 1g) — Z Z p2(bsny ey lsy, -y i), (27)

(41,-2k )€Y 1=2 (ig,,1 )€Y}
Lemma A1 The volume of G, is ||Gp|| = &nn (n > 1).

13



A2. Exact form Expressions

Theorem A1l The rejection probability for given 0 is

PR16)=1-P(A]6)= 3 Ll exn(-

and the unconditional rejection probability is

a@ ) >0

PR)=1-P(A)=1- " %7%%)

n=0

|G-
Theorem A2 The cumulative distribution function of N for given 8 is

exp{—%%} ifn=0,
POV < wlf) = G

1-Jon+ Z:

G d; — b _ , (28)
2 et bih msnen

the expected number of failed units for given 8 is
UGl |Gl =
E(N|6) = Jon—2 - — T ex —“’ 29
10)= 3 don -2 3 grenl-Gy gt el @

the marginal cumulative distribution of N is

LA ifn =0,
P(N < n) (& (30)
=n)= ‘Tla+1i) . :
1-J, G; fl1<n<ig;
o+ 2 oG f1snci
and the expected number of failed units is
9—1 10—2 .
b® F(a+n) b°T'(a+ip—1)
E(N) Jp — 2 Gn Gig-il|—————, 31
(N)= 3 =2 3 Gl gy = WGl (31)
where 551 =0, Jgo = Jo =1,
cpVd;—b
Can b - 5(0 fnr
Jon = ex ————||G:|| + exp 32
and
20T (a+ )|Gil] | =2 6°T(a+7)
Jn = —Enrs 33
(cnvb Z “ (cnVdy) Jot+iT(a) ; &t T(a) n, (33)
for n > 1.

14
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