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Abstract

A well-known result of Burg (1969) and Woods (1976) identifies a Gaussian discrete
Markov random field with autocovariance specified on a finite part L of the 2-dimensional
integer lattice, as the random field with Maximum Entropy among all discrete random
fields with same autocovariance values on L. In this correspondence, an intuitive informa-
tion theoretic proof of a version of the Maximum Entropy theorem for random fields in n

dimensions is presented, where n is any positive integer.

Index Terms. Autoregression, Gaussian random fields, Maximum Entropy Spectrum.



I. Introduction

Suppose {X(t),t = (t1,t2,...,%,) € Z"} is a homogeneous (strictly stationary, shift invari-
ant) random field in n dimensions, with n € N, i.e., a collection of real-valued random variables
X (t), defined on a probability space (2,.A, P), and indexed by the variable t € Z". The ran-
dom field {X(t)} will be assumed to possess finite second moments, and its autocovariance
function will be denoted as yx(s) = Cov{X(t), X(t + s)}, for any t,s € Z".

It will be assumed that the marginal distribution function of X(t) possesses a density f
with respect to Lebesgue measure v on R. In general, it will be assumed that for any finite
set A C Z", with cardinality m, the marginal distribution function of {X(t),t € A} possesses
a density with respect to the product Lebesgue measure ¥™ on R™, and the generic notation

for this density will be f. The entropy of the set of variables {X(t),t € A} is defined by [4]
H(X(t),te A) = —/f(X(t),t € A)log f(X(t),t € A)dv™ (1)

Similarly, the conditional entropy of the random variable X(u) given {X(t),t € A} is defined
by

H(X(wIX(),t € A) = - [ (X (w),X(t),t € Alog (X (W|X(t),t € ™ (2)

where f(X(u)[X(t),t € A)is the conditional density of X (u) given the values of {X(t),t € A}.
The random field {X(t),t € Z"} is said to have an entropy rate

‘m H(X(t),te Cn)

hx = 1
X~ Nooo |Cn|

3)

provided the limit exists, where Cp is the cube of points t € Z™ whose coordinates satisfy
|tx] < N, and has cardinality |Cn| = (2N + 1)". For homogeneous random fields it can be

shown [7] that the limit exists in [—00, 0], and can alternatively be calculated as

. H(X(t),t € Cf)

hx = 1 4
X Ngnoo N7 ( )

where C]'\F, is the cube of points t € Z™ whose coordinates satisfy 0 < tx < N.
Following [11], we define quarter-plane purely non-deterministic (q.p.n.d.) zero-mean, ho-

mogeneous random fields {X(t),t € Z"}, as the fields that possess the causal-type unilateral



innovations representation

Xt)=2(t)+ > h(u-t)Z(u) (5)

ucPasi(t)
where Past(t) = {u : u; < ¢;,Vj} — {t}, and PZyepasio) [R(w)|* < co. The random field
{Z(t),t € Z"} is a zero-mean ‘white noise’, i.e., E[Z(t)Z(u)] = 0, if t # u, and FZ(t)? = o2
The term ‘quarter-plane’ is chosen because, in the case n = 2, Past(t) is the quarter-plane
‘south-west’ of point t.

Now with w = (uy,...,u,), define a notion of the ‘past’ of point t in the direction n by
Past,(t) = Ul {u:u; <tj,up =15, j <k <n} (6)

= {u Up < tn}U{u PUp = fn, Up—1 < tn—l}U' : 'U{u PUp = lny Un—1 = tp—1,...,U2 = 12, U1 < tl}

The Past,(t) can be thought of as an ‘augmented’ half-space in the direction n, because it
mainly consists of the half-space {u: u, < t,}. Of course, because the labelling and numbering
of coordinates is arbitrary, it is straightforward to define the ‘past’ Past;(t) in the direction j,
forany j =1,...,n (cf. [10]).

By analogy to [8], we define half-space purely non-deterministic (h.p.n.d.) zero-mean, ho-
mogeneous random fields {X(t),t € Z"}, as the fields that possess the causal-type innovations

representation

X(t)=2Z(t)+ D h(u-1t)Z(u) (7)

u€Pastn(t)
where {Z(t)} is a zero-mean, white noise, and 3 yepast,(0) [R(W)]* < 0.

It is apparent that the class of q.p.n.d. random fields is a subset of the class of h.p.n.d.
random fields. In other words, a random field possessing the q.p.n.d. representation (5), also
possesses the h.p.n.d. representation (7), with h(u) = 0, for u € Past,(0) — Past(0).

Now let

IO () = {u:0 < dy(t,u) < r} (8)

be the set of r-close neighbors of point t, and

L{(t) = T (t) N Pasta(t) | (9)



where ‘closeness’ is measured by the [, distance in Z™ given by d,(t,u) = (3; [t; — u;|P)!/?, for
1 < p < 00, and deo(t,u) = sup; |t; —u;|. For simplicity, we will focus on convex neighborhoods
of the H,(,T) type, although more general neighborhoods are possible.

The Burg-Woods theorem [2], {12] indicates that, at least for the case n = 2, a Gaussian
discrete Markov random field with autocovariance specified on the set I = L,(,T)(O) U {0} is the
random field with Maximum Entropy among all discrete random fields with same autocovari-
ance values on L. Note that, due to the symmetry of the autocovariance (yx(s) = vx(-s)),
if vx is specified on L = L,(,T)(O) U {0}, then it is also specified on H,(,T)(O) U {0}. In the next
section, an information theoretic proof of the Maximum Entropy theorem for random fields in
n dimensions is presented, where n is any positive integer.

The method of proof used will require to limit the search for the Maximum Entropy Spec-
trum to the class of half-space purely non-deterministic homogeneous random fields, and the
process with Maximum Entropy will be found to be a Gaussian, h.p.n.d., linear unilateral

autoregression {W(t)} satisfying for t € Z",

W)+ Y. a(t-wW(t—u)=Z(t) (10)
uerL{"(t)
where {Z(t)} is some zero-mean, Gaussian, white noise field, and a(t) are some constants.
It is important to point out however that the classes of q.p.n.d. or h.p.n.d. homogeneous
random fields satisfying equation (5) or (7) are quite large, and both contain all linear autore-

gressive stationary processes in n dimensions that are given by a recursion of the type

Uity + >, a(t—uw)U(t-u)=Z(t) (11)

uelly)(t)
for any p > 1 and r € N, under the usual condition that the spectral density of the process
{U(t)} is bounded. The Gaussian Markov random field that is the solution of the Burg-
Woods Maximum Entropy theorem turns out [12] to be a Gaussian linear autoregression {U(t)}
satisfying (11).
In general, a sufficient condition for a homogeneous random field to be quarter-plane purely
non-deterministic is [11] that the random field possesses a continuous and strictly positive

spectral density on the compact n-torus (—m,7]*. This is also a sufficient condition for a
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homogeneous random field to be half-space purely non-deterministic, since a q.p.n.d. random
field is also a h.p.n.d. random field. For the case n = 2, a necessary and sufficient condition for
a homogeneous random field to be half-space purely non-deterministic, is [8] that the random
field possesses a spectral density whose logarithm is absolutely integrable over the compact
n-torus (—m,w]™. This latter result shows the direct analogy of h.p.n.d. random fields to
stationary sequences (n = 1) that are purely non-deterministic, that is, sequences whose Wold

decomposition has no deterministic component.



II. Information Theoretic Proof of the Maximum Entropy Spectrum in

n Dimensions

The proof given below is patterned after the information theoretic proof of the maximum
entropy spectrum in one dimension by Choi and Cover [3], to which it reduces in the case

n=1.

Theorem 1 Consider a h.p.n.d., zero-mean, Gaussian homogeneous random field {W(t),t €
Z"}, that has the unilateral autoregressive representation (10) for some p> 1 and r € N.

If the random field {W(t)} satisfies the constraints
1w (t) = E[W(u)W(u + )] = B(t) (12)

for t € Lz(,r)(O) U {0}, and some constants B(t), then {W(t)} has mazimum entropy rate
among all k.p.n.d. homogeneous random fields {X(t),t € Z™} that have the following uni-
lateral representation, where {Z(t)} is a zero-mean, white noise, with variance EZ(t)? = o2,

Y uePastn(0) (W)]? < 00, and C is some constant,

Xt)=C+2z(t)+ >, hu-t)Z(u) (13)
U€EPastn(t)

and whose autocovariance satisfies the constraints
1x(t) = Cov{X(u), X (u+t)} = A(t) (14)
fort € L (0)u {0}.

Proof. Let {X(t),t € Z"} be a h.p.n.d. homogeneous random field possessing the repre-
sentation (13), with autocovariance satisfying (14). Also let {Y(t),t € Z"} be given by

Yt)=2*(t)+ Y. h(u—t)Z*(u) (15)
u€Pasty(t)

where the h(u) coefficients are exactly the ones appearing in (13), and {Z*(t),t € Z"} is a
zero-mean, Gaussian white noise, with E[Z*(t)Z*(u)] = 0, if t # u, and EZ*(t)? = 0. Tt is
apparent that the autocovariance 1y (t) = E[Y (u)Y (u+t)] is identical to yx(t), for all t € Z".
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Let an integer N > 7, and consider the positive cube Cf;. Looking at the multivariate

probability densities of (X (t),t € Cf;), and (Y (t),t € Cf;), it is immediate [4] that
H(X(t),t € C¥%) < H(Y(t),t € CF) (16)

since the mean-zero, multivariate normal distribution of (Y (t),t € C¥) has maximum entropy
among all multivariate distributions with same covariance matrix.

It is apparent that an ordering (sometimes called the ‘lexicographical’ ordering [6], [7])
of the elements of Cf; is induced by defining s << t if |C} N Past,(s)| < |CF; N Pasty(t)],
for s,t € C]T,, where |A| denotes the cardinality of set A. Using this ordering, the density
f(Y(t),t € C%) can be expanded in a chain rule as follows.

fx@),teck)= [ f(Y(®)Y(u),u€ Cfn Past,(t)) (17)
tecy;
This immediately yields the following chain rule for entropies
HY(t),t € C)= > HY(t)[Y(u),u€ Cf N Pasty(t)) (18)
tech

Using the fact that H(A|B,C) < H(A|B) for any three random elements A, B, C (‘conditioning

reduces entropy’ [4]), we have that

ST HY®)Y(u),ue CFNnPasty(t)) < Y HY®)|Y(u),ue CHnLi(®)  (19)

tect tect
Note that, due to homogeneity of the {Y'(t)} field, the computation of the right-hand-side of
(19) requires knowledge only of the multivariate distribution of the set of variables {Y (0)} U
{Y(t),t € L§,”(0)}. However, the distribution of {Y(0)} U {Y(t),t € Lg)(O)} is zero-mean,
multivariate normal, with covariance matrix completely determined by (14). By constraint
(12), this multivariate normal distribution is identical to the distribution of the set of variables
{W(0)}u{W(t),t € LY (W(0))}.

It follows that

Y. HY®)[Y(u),ue CHnLt) = Y BHWE)|W(u),ue CHn LI(t)) (20)
tecy; tecy



Observe that by a chain rule expansion of the density f(W(t),t € C) one obtains

H(W(t),t e C]"\}) = Z H(W(t)|W(u),u € Cf; N Past,(t)) (21)
tect

Note also that due to (10) and the h.p.n.d. assumption, the random field {WW(t)} possesses the
following Markov-type property (see also [10])

F(W(t)[W(u),u € Pasta(t)) = f(W(t)[W(u),u € L{(t)) (22)

for any t € Z". Hence, the sum in the right-hand-side of (21) differs from that in the right-
hand-side of (20) only in the contributions of the 7(2N)"~1 points that are r-close to the sides
(boundary) of C¥ that are parallel to the direction n, i.e., the points whose L,(,T) neighborhood
is not completely included in C]'{',. However, the entropy rate hy can be explicitly calculated
(cf. [1], [6], [7]) as hw = H(W(0)|W(u),u € L,(,T)(O)) and is finite; thus the contribution to
the entropy rate of each of these 7(2N)"~! points must be bounded. It follows that

H(Y(t),t € CH) < H(W(t),t € CF) + O(rN™ 1) (23)
Combining (23) with (16) we can write
H(X(t),t € CH) < H(Y(t),t € C) < HW(t),t € CF) + O(rN™ 1) (24)

Dividing by N™ and taking limits in the above asymptotic inequality it is seen that hx < hw,

and the theorem is proven. O

To apply the theorem in practice, one could possibly use data to estimate the autocovariance
vx(s) of X(t),for sin theset L = Lg)(O)U{O}, (for some chosen p and r), and then extrapolate
the remaining autocovariance values by invoking the Maximum Entropy principle and fitting a
unilateral autoregression of the form (10) to the data by Yule-Walker type equations or some
other method. However, this intuitive approach might fail for dimensions n > 1 (cf. [5]),
although it is well known that it works fine in the case n = 1. In general, the abovementioned
estimation and fitting procedure will be valid provided the estimated autocovariance values

coincide with those of some true positive definite autocovariance function [12], that is, if the



estimated autocovariance admits a positive definite extension to the whole of Z™. For a review
of algorithms related to the practical problem of multidimensional spectral estimation, see [9]
and the references therein.

As a further point, consider the possibility that yx(s) is known (measured) only in a subset
L*CL= Lgf)(O) U {0}. The following theorem can be proved by the same arguments used in
the proof of Theorem 1.

Theorem 2 Consider a h.p.n.d., zero-mean, Gaussian homogeneous random field {W(t),t €

Z™}, that has, for any t € Z™, the unilateral autoregressive representation
W(t) + Z a(t —a)W(t — u) = Z(t) (25)
u

where the summation is over all u such that u—t € L*, and {Z(t)} is a zero-mean, Gaussian,
white noise field.

Ifthe random field {W (t)} satisfies the constraints (12) fort € L*, and some constants ((t),
then it has mazimum entropy rate among all h.p.n.d. homogeneous random fields {X (t),t €
Z"} that have the unilateral representation (13), and whose autocovariance satisfies the con-

straints (14) for t € L*. O



III. Conclusions

An information theoretic proof of a general Maximum Entropy theorem (Theorem 2) for
random fields in n dimensions was presented, where n is any positive integer.

The interpretation of Theorems 1 and 2 is that a Gaussian, half-space purely non-deterministic
(h.p.n.d.), linear unilateral autoregression {W(t)}, has maximum entropy among all h.p.n.d.
homogeneous random fields with autocovariance which is the same as the autocovariance of
{W(t)} on a finite part L of the discrete lattice Z™.

The restriction of the search to the class of h.p.n.d. homogeneous random fields makes it

possible to have a unilateral autoregressive representation of the form (10) for {W(t)}.
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