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Abstract

This article is to study the asymptotically equivalent kernel method for least squares
splines and its asymptotic behavior. This equivalent kernel is derived from an L, projection
onto a certain spline space. The pointwise bias and variance of this equivalent kernel
estimator display an interesting dependence on the distance from a knot. It is well known
that the least squares spline has no dominant boundary effect (Agarwal and Studden,
1980). This equivalent kernel method gives some insight into the boundary behavior of

the least squares spline.



1. Introduction
Consider the regression problem where we have observations Y; following the model
(1.1) Y =g(t:) + ¢, i=1,...,n.

Assume that the design points ¢; are on a finite interval [0,1] and ¢; are uncorrelated
random errors with zero mean and common variance 0?. The cubic smoothing spline

estimator § of the regression curve is the minimizer of
1< 2 ! 2
1.2 — ) {Yi—g(t; A "(t)*dt
(1.2) n;:lﬁ{ 9(t:)}" + /0 g (%)

over functions g in the Sobolev space W2 = {g : g and ¢’ are absolutely continuous on
[0,1] and fol g"(t)?dt < co}. The minimizer § of (1.2) is a natural cubic spline with knots

at each design point ¢;. This spline smoother can be written as (Silverman, 1984)
() = 5™ Gls, t)Y:
gS)_TLX; (Sa z) LX)
1=

where G(s, t) is certain weight function depending on the design points ¢; and the smoothing
parameter A. Silverman (1984) showed that the weight function is approximately of a
form corresponding to smoothing by a translation kernel function with bandwidth varying

according to the local density f(t) of the design points. The approximation is given by

1 1 s—t
Gt = 7oy wn X ( a0 )

with effective bandwidth A(t) = A1/4£(t)~1/4 and K a certain kernel.

In the discussion to a paper by Silverman (1985), Drs. R.L. Parker and J.A. Rice
inquired and comment on their use of a least squares spline (a spline with fewer knots than
there are data points, fitted to the data by least squares) and a penalized version of it.

The least squares spline can be written as

(13) i(s) = = 3 N (M (m)N(E)Y,
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where N'(s) = (N1(8),..., Nm(8)) consists of the B-spline basis (see Schumaker (1981),
§ 4.3) and M(n) depends on the design points t; as follows. The (2, j)-th entry of M(n) is

1 n . .
M;j(n) = ~ Z Ni(te)N;(tr), 4,j=1,...,m.
k=1

Denote the weight function involved in the least squares spline smoothing as K155(s, ),

(1.4) KI55(s,t) = N'(s) M~} (n)N(2).

Parker and Rice also comment in the same paper that the asymptotically equivalent kernel
of the least squares spline was unknown, and that the amount of smoothness, controlled

by the number of knots used, could not be adjusted continuously.

The main purpose of this paper is to study the asymptotically equivalent kernel for
least squares spline smoothing and the asymptotic behavior of this equivalent kernel. Qur
study of KL55(s,t) will show that, under certain conditions, the weight function will be
approximately of a form corresponding to smoothing by a spline projection kernel, which
will be explicitly derived in section 2. This projection kernel, denoted by K (s, ), is involved
in the Ly projection of functions onto certain linear space of splines. The L, projection of

f, for Lebesque measure, can generally be written as

fp(t) = / K(s,t)f(s)ds.

We will be studying here spaces of cubic splines with a knot sequence becoming dense
over the interval of interest. For a fixed ¢, the kernel K(s,t) integrates to one and should
approach a “delta function” at ¢ as the knot sequence becomes dense. The kernel is not
of a translation type, i.e. K(s,t) # k(s —t). However, for fixed t, the kernel K(s,t) can
be written as a convex combination of translation type kernels. The weights, depending
on t, are certain non-negative splines adding to one. For the interior of [0,1] we will use
a scaled version of the projection kernel onto the space of cubic splines on (—o00, 00) with

integer knots.

The dominant boundary effects on bias are well known for estimators like smoothing
splines, interpolating splines and kernel estimators. See Gasser and Miiller (1979), Rosen-

blatt (1976, 1981), Rice and Rosenblatt (1983), and Rice (1984). It is noteworthy that
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a least squares spline approximation has no such dominant boundary effects regardless
of the boundary behavior of g (Agarwal and Studden, 1980). Gasser and Miiller (1979)
suggested modified boundary kernels to correct the boundary effects. We will show that
the spline projection kernel for the interval [0, 1] with equally spaced knots can be used as
equivalent boundary kernels. This phenomenon gives insight into the boundary behavior

of the least squares smoother and also explains well its absence of boundary effects.

The rest of the paper is organized as follows. The derivation of the spline projection
kernels along with some properties is in section 2. Section 3 shows the asymptotically
equivalent kernels for least squares spline smoothing. Section 4 deals with the asymptotic
behavior of the spline projection kernel. Some discussions on boundary behavior, variable
knots and design, and local behavior are in section 5. Most of the proofs are in the

appendices.

2. The spline projection kernels

We will demonstrate how the cubic spline projection kernels on (—o0, 00) are derived.
The derivation of spline projection kernels of other orders is parallel to the cubic one. For

simplicity of notations and formulas, we may choose the knot sequence to be {:};cz. Let
(2.1) N'(t) = (-, Nea (£), No(8), N1 (8, )

be the normalized B-spline basis indexed in such a way that each N;(t) is centered at 1.
(See Schumaker (1981), § 4.3.) Let

5% = {s(z) : s(z) = N'(z)d with 6 =(6;)icz € £2}.

That is, S? is the Ly(R) subspace of cubic splines with integer knots. Here R = (—oo0, o).
It is well known that the B-spline basis N(t) constitutes an unconditional basis for $2, in

the sense that, there exist positive constants A and B such that

(2.2) Allellz, < IN'®0IIZ, ) < Bl6IZ,

for all 8 € £;. Define
M= / N@N'()dt,
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that is, the (7,7)-th entry of M is given by

M,'j = /°° Ni(t)Nj(t)dt.

This inner product matrix, whose figures are listed below, is a bi-infinite symmetric band

matrix with bandwidth 7.

2416 1191 120 1
1191 2416 1191 120 1

1
(2.3) M=go=|- 120 1191 2416 1191 120
1 120 1191 2416 1191
1 120 1191 2416

0 . . . .

Regarding M as linear operator in £, the inequalities in (2.2) become
Allolz, < <6,M0> < BJ9|2,

where <,> denotes inner product in £;. Therefore M = 0 implies that § = 0 . Hence
M~ exists in the range of M. The inverse of M is obtained by solving Mz = e, where

e = (ei)iez with e; = 6p;. That is, we solve the following difference equations.
Tpn-3 + 120.1)"_2 + 1191:12,;_.1 + 2416.’1:,—, + 1191$n+1 + 120-77n+2 + Tpy3 = 504050,,,
forn=...,-2,-1,0,1,2,... . The result is given below.

Lemma 2.1. The solution to the above difference equations is

3

T "—E C |n]
n — [Tl .

=1

The values (up to nine decimal places) of the constants ¢, and ry are listed below.

¢ = 6.0162 84002

cz = -1.0558 20294
cs = 0.0042 69179
ry = -.5352 80431
ro = -.1225 54615
r3 = -.0091 48695.
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Proof. See Huang (1990).

Since each row of M is simply a shift of the previous row one entry to the right,

Proposition 2.1 is an immediate result of Lemma 2.1.

Proposition 2.1. The (2, j)-th entry of M~1 is given by

3
~1 _ z: li—Jl
Ml] - C[Te .

=1
Theorem 2.1. The projection of f € L,(R) onto S? can be written as
(2.4) A= [ KGO,
where K(s,t) = N'(s)M~1N(¢).

Proof. Since f, € S?, fp(t) = N'(t)8 for some 6 € £3. The normal equations are

/ " NN (£)6dt = / T N@F)t.
Then, we have -
=M1 / N(t)f(t)dt.
Therefore

B(6) =N'eM [~ N
- /_ T K(s 1) f(t)dt.

|

We name the kernel K(s,t) in (2.4) the spline projection kernel. For a fixed ¢, the

kernel K(-,t) is not of translation type and its shape depends on the position of ¢ relative

to knots. Plots of K(-,t) for various values of ¢ are given in Figure 2.1.

Figure 2.1 here

Though K(-,t) is not of translation type, it can be written as a convex combination

of translation type kernels as will be presented below. Define

(2.5) H(t) = f: (ngrLﬂ) Ni(t).

i=—0c0 \f=1
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Then we have

Kit)= Y Y cery N (NG ()

i,j=—o00 {=1

o S e TIN (- 5)N(8)

i,j=—o00 f=1

= Y NjHH(-)j)
j=—o00

(1+2

= ) N;(OH(-j).

i=ld-1

Let w =t — [t]. Then we have

K(,t)= 3 Ne(w)H(- — [f] - £).

=-1

Proposition 2.2. The spline projection kernel can be written as

[1]+2

(2.6) K(,t)= Y NtH(-—j)

j=[t]—1

or

= ) Ne(w)H(- -] - 0),

£=-1

where w = ¢ — [t]. Note that Ne(w) >0 and 37__, Ne(w) = 1.

All the above discussions are based on splines with integer knots. Consider the knot

sequence {th}icz. The normalized B-spline basis becomes

§)= (o ()9 6). ().

The inner product matrix then becomes

/_Z N (%) N (%) dt = hM.

And then the projection kernel is given by
1 s t
(27) Kh(s,t) = EK (E, "-l') .
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Following is a list of properties of the L,(R) spline projection.

Property 1. The Ly(R) subspace of cubic splines with knots {ih};cz given by
2
S2 = {s(t) : s(t) = N’ (E) 6, 6cts)

is a reproducing kernel Hilbert space with reproducing kernel Kj(s, ).

Property 2. The integral transform

f(s) = /_ " Ki(s,t)f(t)dt

is well-defined for functions satisfying the following two conditions:
fe Lllocal ={f: / |f| < oo for all measurable A with finite measure }
A

and

f(t) = O(|t|*) for some « as |t| — oo.

This desirable property enables us to apply the “projection” to a larger class of functions
than Ly(R).

Property 8. Define
S = {s(2) : s(t) = N’ (%) 6, 6¢ctlu).

The kernel reproduces S;° in the sense that

/ Ku(s,O)f(t)dt = f(s) for f € S
Property 4. The kernel Kj(s,t) reproduces polynomials of order 4 (degree < 3). Especially,
/ Kn(s, t)dt = 1.
Property 5. H(t) is an order 4 kernel, i.e.
/ HE)t™dt = bgmy,  m=0,1,2,3

/ ” H(t)t*dt # 0



Property 6. The kernel decays to zero at an exponential rate; i.e.
|Kr(s,t)| < ev",
where n = |[£] — [£]|, is the number of knots between s and ¢, and ¢ >0, 0 < vy < 1 are
some constants.
Property 7.

/ Ki(s,t)t*dy = s* — By(w)h?,

where w = § — [$] and By(w) = w* — 2w? 4+ w? — & is the 4-th Bernoulli polynomial.
The above equality says the error of approximating the polynomial ¢* by its “spline pro-
jection” behaves exactly as the 4-th Bernoulli polynomial in each cell between knots. The

magnitude of the error is of order O(h*).

We refer to Huang and Studden (1990) for the proofs of the above properties.

3. Asymptotically equivalent kernel for least squares spline smoothing

In section 2, the L,(R) spline projection kernel was derived. Here we will introduce the
L,[0, 1] spline projection kernel. Notations K and K7, I = [0, 1], will be used throughout
to distinguish them. We will show that K ,If' is an asymptotically equivalent kernel for least
squares spline smoothing in the interior of [0,1]. However this approximation deteriorates

near the boundary. The asymptotically equivalent kernel near boundary will be shown to
be K ,{ .

It is convenient first to establish some notations and to state the assumptions under

which the main results will be proved. The main assumptions are:

(3.1) The design points {t;}2_, are uniformly spaced over I = [0, 1].

(3.2) The knot sequence is taken to be {ih};cz with h = + and k a positive integer. Then

{ih}E_, are knots in I.

(3.3) The smoothing parameter h = h(n) depends on n in such a way that A — 0 and

nh — oo as n — oo.

Define the following notations and some results are immediate.
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(3.4) Let Nz(t) = (N_l(%),No(%), ooy Ni41($)) for t € I = [0, 1], where Ni(-) is as defined
in (2.1). Then Ny(t) constitutes a basis for the space of cubic splines in I with interior
knots {ih}F].

(3.5) The inner product matrix of Ny is My = fol N;(t)Ni(t)dt. The dimension of My is

m X m with m =k + 3.

(3.6) The projection kernel of L,[0,1] onto the space of cubic splines with interior knots
{ih}*=1 is then given by

=1
Ki(s,t) = Nj(s)M; N(t).
(8.7) The weight function of the least squares spline with interior knots {ih}¥=] is denoted

by KF55(s,t), i.e.
K;%5(s,t) = Ny(s)M; ' (n)N1(2)

with

MI(n) = %iNI(tk)N}(tk)-
k=1

The main results are stated below.
Theorem 3.1. For fixed ¢ € (0,1), we have
1
|hK,f’SS(t + hz,t) — K{z(w +z,w)] < O (E + |7‘1|#)

as n — oo, for all z such that ¢ 4+ hz € [0,1], where w =  — [£], the distance of ¢ to the

left nearest knot scaled by &, and r; is the constant given in Proposition 2.1.

Theorem 3.1 says that, for large n and small & and ¢ not too close to the boundary,

the approximation of the weight function corresponding to the observation at ¢ is

: 1 t t 2 4

LSS ~iprR[L _|L L 2
K ”°(t + hz,t) ~ hKI (h [h] +2, o [h])
1_p(t t
= EKI (Z-’"m, _) .

Setting s = ¢t 4+ hz, we have the approximation
(3.8) K95 (s,t) > K (s,1).
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The above approximation deteriorates as ¢ approaches the boundary. The next theorem

gives the asymptotically equivalent kernel near the boundary.

Theorem 3.2. For fixed t € [0, 1], we have
|RKFSS(t 4 zh, t) — RKi(t + hz, t)] < O (nh)
as n — 00, for all z such that ¢t + zh € [0, 1].
Set s =t + zh, we have the approximation
KF55(s,t) ~ Ki(s,1).

We will show in a later section that K](-,t), for ¢t € [0,1], behaves like some boundary
kernels proposed in Gasser and Miiller (1979).

Proofs of Theorems 3.1 and 3.2 are in Appendix A.

In order to illustrate how well the approximation (3.8) works out, some explicit calcu-

lations were done. One hundred design points {%OL 100 were used and 19 interior knots

19

were placed at {20 9, The weight function KF55(s,t;), together with approximation

KE(s,t;), for various values of t; = .025,.045,.095, .495 are shown in Figure 3.1.

Figure 3.1 here.

4. Asymptotics
We will study the asymptotic behavior of the estimator given by
1 n
(1) 305) = 1 L KF(, )T
=

Suppose g € Lip*©[0,1] = {g € C4[0,1] : |¢®(z + 6) — ¢ (z)| < M6* forall 0<z <
z+ 6 < 1} for some a >0 and h —» 0, nh — co as n — oco. We have the following

theorems.
Theorem 4.1. For a fixed s € (0,1), we have
1
Ej(s) —g(s) = ¢ (3)34( )t + 0 (h4+°‘ + ;)

12



as n — 0o, where w = £ —[{].
Theorem 4.2. For a fixed s € (0,1), we have
2
i(s) = KR 1
Var §(s) = nhKl (w,w)+ O (n)
as n — 00, where w is defined as above.

The pointwise bias and variance display an interesting dependence on the distance

from a knot. The bias and variance plots are presented in Figure 4.1.

Figure 4.1 here.

Suppose g is periodic with period 1 (otherwise use the finite support kernel Ki(s,t)
for (4.1)). The integrated mean square error (IMSE) is given below.

Theorem 4.3. As n — oo, we have

| Bs|

IMSE = TN

"g(4)”2 h8+ i_l_o h8+2a+ l
2 nh nj)’

where Bg is the 8-th Bernoulli number, which has value _516'

Proofs are in Appendix B.

5. Some remarks

1. Boundary kernels. In a kernel smoothing problem, the bias near the boundary is of
a larger order of magnitude than in the interior, unless a periodicity assumption is made.
Therefore the IMSE is dominated by the boundary effects. Similar problems arise from
smoothing splines also, unless again a periodicity assumption is made or the boundary
behavior is known and imposed. Gasser and Miiller (1979) studied the asymptotics of
kernel estimators near the boundary. They considered kernel smoothing using kernels

with finite support [—1,1]. Suppose s(n) is a sequence of points satisfying

s(n) = gh(n),  ¢q€][0,1),

where A is the bandwidth. They introduced order d boundary kernels K,. Here we let
d = 4, since the cubic spline projection kernel is an order 4 kernel. The order 4 boundary

kernels have the following properties.
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I. Moment conditions.

11 s—t s—t\™
7 =6ma =71,2’a
[ () ()t -0t

which can be converted to fiq K, (t)t™dt = 6o,m, m=0,1,2,3.

a.

b. Uniformly bounded bias.

(5.1) /01 %Kq (s;t) (s;t)4dt=aq,

oy # 0 and o, is uniformly bounded for ¢ € [0,1). Note that (5.1) can be

converted to

1
/ K, (t)ttdt = ay.
-9

II. Uniformly bounded variance.

[l (5 =3 f o

i K2(t)dt has to be uniformly bounded for ¢ € [0,1).
9 19

ITII. The kernels depend continuously on ¢ and
K,—> K as ¢—1,

where K is the kernel for the interior. The idea of boundary kernels is to continuously
modify the kernels toward the boundary to meet the moment conditions in such a way

that the pointwise bias and variance are uniformly bounded.

The cubic spline projection kernels satisfy the moment condition

1 —t m
/K,{(s,t)(sh ) dt =680,m, ™m=0,1,2,3 ,
0

since it reproduces polynomials up to order 4 (degree < 3). The 4-th moment

/01 K,f(s,t)(s;t)4dt

14




is uniformly bounded for all s € [0, 1], since K ,1; (s,t) is uniformly continuous in I x I. The

“uniformly bounded variance” condition is also met, as
1
|| Kis,02de= Ko,
0
by the reproducing property. KJ(s,s) is uniformly bounded for all s € [0,1].

2. A locally weighted kernel estimate. We have, from equation (2.6)

Kf(s’ti) =% KIR (%’ %)
1 2 8 t;
=7 D Ne(w)H (ﬁ - [Z] —e)
=-1
1 ¢ s —&ie
3 3 Myt (2554),
B Y B

where w = Ehk — [ihL] and & ¢ = ([1,:-] + £)h. The points {¢; ¢}7__, range over the 4 nearest
knots from #;. Along with the remark made previously, the least squares spline smoothing
is asymptotically a locally weighted kernel (translation type) smoothing for data points
not too close to the boundary, and a boundary kernel smoothing for data points near

boundary.

3. Variable knots and design. Suppose the design points {¢;}7, have a limiting density
f(t) and that the sequences of knots T = {0 = &,...,£ = 1} are given by

&
(5.2) /p(t)dt:l, i=1,...k
i1 k

where p(t) is a positive continuous density function on [0,1]. By the mean-value theorem,

we have from (5.2) that
1
p(ric)(i — &) = £

for some 7; € (£;-1,€&:). Then (& — &i—1) = h/p(7;), with b = . Asn — oo (then h — 0),
the effective local bandwidth at the point ¢ is h(t) = h/p(t). The right kernel to use,

corresponding to an observation at t;, should be

L gr( st
) R (h(ti)’ h(t;-))’
15



where the factor ﬁ can be replaced by n(t; — t;—1) if f() is not known.

The choice of optimal design, number of knots and their positions are discussed in

Agarwal and Studden (1980).
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Appendix A.

This section is devoted to the proofs of Theorems 3.1 and 3.2 by bounding the L,
norms of some inverse matrices and by bounding some entrywise differences of matrices.

The following lemmas will be needed.

Lemma A.1. Let

(2416 1191 120 1 0 1 120 1191 1
1191 2416 1191 120 1 . 1 120
120 1191 2416 1191 120 - - 1

1 120 1191 2416 1191
1 0 1 120 1191 2416

5040 .
1 . . e . 120
120 1 . T 1191

L1191 120 1 -1 120 1191 2416 |

mxm
Then the (4, j)-th entry of A! is

3
(A2 )ij = Z cgm)(ry_]l + ,,,;n—l'—.ﬂ),

=1

where ry; are given in Proposition 2.1 and cgm) are some constants with limit

¢ = limy, oo cgm), which is also given in Proposition 2.1.

Proof. See Huang (1990).

The next lemma is an immediate consequence of Lemma A.1 and Proposition 2.1.
Lemma A.2. For fixed j € Z, let j' = [%] + j, we have
(Az")iir — M5! = O(lrs ™)
foralli=1,2,...,mas m — oo.

Lemma A.3. For fixed j € Z, let j' = (5] + 7, we have

mf2
047 =) < 0 (PE2)

17



where M has dimension m X m, m =k + 3, and h = £ as indicated in (3.2) and (3.5).

Proof.
(A.1)v Mp'—hTTALY = M7 (hAm — M)RYAZL.
Let D = hA,, — Mj. Tt is easy to check the following statements.
|Degl < h for £,geA={1,2,3,4,m—3,m—2,m—1,m),

and

Dyg=0 for (£,9) € A xA.

Therefore the (2, j')-th entry in (A.1) can be bounded by

R I(M7 e (AR 5|

L,qEAN
<M oo D I(AZ g |

gEA
<Moo O (I ]%).

The proof can then be completed by the next lemma.

Lemma A.4.
h| Moo < p

where p is some constant independent of .
Proof. See deBoor (1976).
Proposition A.1. For fixed ¢ € (0,1), we have
i) ~ Kffel < 0 (172)
as m — oo (or equivalently h — 0) for all s € [0,1] .

Proof. |K](s,t) — K§(s,t)]
k+1 5 y
(A.2) =) N (',;) N; (;;) (M7 )i; = 7 MY

i,j=-1

18



Since ¢ is a fixed point in the interior, we may apply Lemmas A.2 and A.3 and get

M., By <0 |,,.1|m/2
I( I )'J - ij '—— h

as m — oo (or equivalently k¥ — oo or h — 0), for all ¢ and those j such that N; (%) # 0.
This completes the proof.

Lemma A.5.
WM (n)]leo < p%,

where p* is some constant independent of A and the data points {#;}2_,.
Proof. Let D = M — Mj(n). We have
Mp'(n) = (M- D)™ = M;'(I - M;' D)™
Thus
(43) WM @lloo < AIMT oo (L = M7 D)™ oo
Let B = M;'D. Since [|Blloo < £||D|loo = £0(}) = O (215), we have from (A.3)

RIM7 (0o < o)1) B¥lloo
k=0

p
< —F
" 1—-|Bllec

<2p, when n is large enough

Letting p* = 2p completes the proof.

Proposition A.2. For all s,t € [0,1] we have

1
KLISS(s,t) — Kl(s,t)| < O —
|Ky=7(s,1) a(s:t) < 0 nh? )’
as n — oo.
Proof. We have
k+1 s t
ES(ot) - KF 0l < 3 Ne(5) M5 () 10470 - 37l
i)j=_1

19



Proof can be completed by bounding (M;*(r) — Mf');j, since 0 < 3°

k
0< Ej:il Nj(%) <l

(M7 (n) = M7 )ij| = (M7 (n)(M7 — Mi(n))M7)s;]

k+1
(A.4) = > (M7 (n))ie(My — My(n))eg (M7 )]

l;q=_'l
Since (Mr — M1(n))e; = O(L) for all £, g,

(A.4) < [IM7 (n)lloo 1M1 oo O (%)

1
< —_—

Theorems 3.1 and 3.2 are immediate from Propositions A.1 and A.2.

and the proof is complete.

20
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Appendix B.

Proof of Theorem 4.1.

(B.1) Ey(s) - 9(s) = 5 3 K (s, t)a(t:) — (o)

- / KE (s, at)dt + 0 (i) —g(s)

Extend g to the whole real line in such a way that g € Lip¥*(R). Then
(B1)= [ K090t~ [ Ko, 00(t)dt - o(s) + 0 (3)
—oo R\[0,1] n
e 1
d—fIl Iz —_ g(S) + O (;)

(B2) I —g(s)= /_Z K&(s,t) (g(s) +g'(s)s—t)+...+ g (6)( - t)4) dt — g(s),

where £ is some point between s and ¢. Since K f reproduces polynomials up to degree 3,

@)= [ k5,0 C 0 -t

/ K}?( t)g ( )(S )4dt+/ KR(S t) (9(4)(6)4' 9(4)( )) (S—t)4dt

(B3) = (S)B J(w)h? + / KR (s,) (9(4)(5) 9(4)(3))(s—t)4dt,

by Property 7 in section 2. The proof can be completed by showing I, = o (%) and the
second term in (B.3) is O(h*+*). We have

1 R s t
151 < lolls | ol (:5) le
= |lgll oo KE dt'.
lob= [, 162 (0)

Since s € (0,1) is fixed and K{ (£, t') decays to zero at an exponential rate as |[$—t'| = oo,
it is clear fR\[O 1 |KE(£,¢)|dt =0 (). We also have
'

| /_°° o) (L20=00)
/r+mh KP(s.4) (9(4)(5) - 9(4)(3)) (s — byt

m——oo r+(m—1)h 4!
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where 7 = [£]h,

= erlm=1 mp)e
< Z - | 4!| (mh)*h, by Property 6

m=-—o0o

= O(h*+),

Proof of Theorem 4.2.
N o & R 2
Var §(s) =— Z K (s, i)
i=1

o [ . 1
——;A Kh(.s,t) dt-l—O(;)

o [ & 2 o? R 2 1
= Kh(.s,t) dt + — Kh(s,t) dt+0 | -
N J_x N JR\[0,1) n
0'2 R 0'2 R 2 1
(B.4) =Z_KE(s,8) + — / KR(s,t)%dt + O (—) .
n " Jr\]o,1] n
Note that

Kfo =Lxr (1)

1
=ZKf(wa w)
where w = # — [$]. Proof can be completed by showing the second term in (B.4) is o(£).

0.2

2 1 s 2
7 KR(s,0)2dt = L “KE(Z ¢) ar
n JR\jo,1] v(s:t) n Jmpo,a b (h )

Since s € (0,1) is fixed and K lR(%,t’) approaches zero at an exponential rate as |5 —t'| —
0o, it is easy to see that fR\[O 1 %KIR(%,t’Ydt' = o(1) as h — 0, which completes the
'

proof.

To show Theorem 4.3 we will need the following lemmas.

[y

Proof. See Ghizzetti and Ossicini (1970).

Lemma B.1.
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Lemma B.2.
1
/ KE(w,w)dw =1
0

Proof. .
/ KE(w, w)dw

/ Z Ne(w)H(w — £)dw

£=—o00

/ Ne(w)H(w — £)dw

=—o00

/ No(w)H(w ~ €)dw

{=—o00

= / No(w)H (w)dw
- [~ ) Z Ni(w) (2%)

= Z / No(w)N;(w) (ch[ )
= Z MOz(M_ )01 =1.

Note that we exchanged the order of integration and summation, which is Jjustified because

the sum is actually a finite sum.

Theorem 4.3 is an immediate consequence of Theorems 4.1 and 4.2 and Lemmas B.1

and B.2.
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