Self-Intersections of Closed Geodesics on a Negatively Curved Surface: Statistical Regularities

by

Steven P. Lalley
Department of Statistics
Purdue University

Technical Report # 92–08

Department of Statistics Purdue University

February 1992

SELF-INTERSECTIONS OF CLOSED GEODESICS ON A NEGATIVELY CURVED SURFACE: STATISTICAL REGULARITIES

by

Steven P. Lalley
Department of Statistics
Purdue University

ABSTRACT

For compact surfaces of negative curvature it is shown that most closed geodesics of length $\approx \ell$ have about $C\ell^2$ self-intersections, for some constant C > 0, and these self-intersections are approximately equidistributed on the surface. For surfaces of constant negative curvative $-\kappa$ the value of the constant C is $\kappa/2\pi^2(g-1)$, where g is the genus.

1. Introduction and Statement of Main Results

The geodesic flow on a compact, negatively curved surface is perhaps the simplest example of a smooth flow for which typical orbits exhibit "random" behavior. Periodic orbits (i.e., closed geodesics) are not typical – there are only countably many, and they account for only a set of measure zero in the phase space. Nevertheless, the overall randomness of the flow is reflected in the sequence of periodic orbits (see, e.g., $[L_1]$, $[L_2]$) in certain ways. The purpose of this note is to record some statistical regularities in the self-intersections of closed geodesics.

Let S be a compact, C^{∞} Riemannian manifold of dimension 2 with strictly negative curvature at every point. There are countably many closed geodesics $\gamma_1, \gamma_2, \ldots$ (one in each free homotopy class) with lengths $\ell_1 \leq \ell_2 \leq \cdots$. A celebrated result of Margulis [M] states that if $\pi(t) = \max\{n: \ell_n \leq t\}$ then as $t \to \infty$

$$\pi(t) \sim \frac{e^{ht}}{ht}$$

where h > 0 is the topological entropy of the geodesic flow (for surfaces with constant curvature -1, h = 1).

Define s_n to be the number of (transversal) self-intersections of the closed geodesic γ_n .

Theorem 1: For each compact, negatively curved surface S there is a constant $C = C_S > 0$ such that for every $\varepsilon > 0$,

(1.1)
$$\lim_{t \to \infty} \pi(t)^{-1} |\{n \le \pi(t) : |s_n - C\ell_n^2| < \varepsilon \ell_n^2\}| = 1$$

If S has constant curvature – κ and genus $g \geq 2$ then

$$(1.2) C_S = \frac{\kappa}{2\pi^2(g-1)}.$$

Thus, "most" closed geodesics of length $\approx \ell$ have "about" $C_S\ell^2$ self-intersections. This result is consistent with the statement that "typical" closed geodesics are similar statistically to "generic" geodesics. Observe that if one randomly threw down ℓ geodesic segments of length 1 on S then the number of intersections would be about $C\ell^2$.

Theorem 1 seems to contradict Theorem 5 of [P], which states that most closed geodesics of length $\approx \ell$ have about $\tilde{C}\ell$ self-intersections. Apparently, the formula in remark (iii), p. 212 of [P] is incorrect: the singularity in the zeta function is not a simple pole, as stated, but rather a logarithmic singularity, so the Ikehara Tauberian theorem does not apply.

If $s_n > 0$ define α_n to be the probability distribution on S that assigns mass $\frac{1}{s_n}$ to each point of self-intersection of γ_n ; if $s_n = 0$ define α_n to be the zero measure.

Theorem 2: For each compact, negatively curved surface S there is a Borel probability measure α on S such that for each continuous $f: S \to \mathbb{R}$ and $\varepsilon > 0$

(1.3)
$$\lim_{t\to\infty} \pi(t)^{-1} \sum_{n=1}^{\pi(t)} 1\{|\int f d\alpha_n - \int f d\alpha| < \varepsilon\} = 1.$$

If S has constant curvature then $\alpha = \nu = normalized$ area measure on S.

Thus most closed geodesics on S of length about ℓ experience about $C_S\ell^2$ self-intersections and these self-intersections are approximately distributed according to α . In fact the proof will show that α is the projection to S of the maximum entropy invariant probability measure for the geodesic flow. Theorem 1 is proved in sec. 3, Th. 2 in sec. 4. Both theorems are in fact corollaries of the strong equidistribution result, Theorem 7, of $[L_1]$. This result is explained in sec. 2.

Simple closed geodesics (closed geodesics with no self-intersections) are of interest for both topological and number-theoretic reasons (see [S]). Theorem 2 shows that simple closed geodesics are atypical of closed geodesics. Results of Birman and Series [BS] suggest that at least for a noncompact surface with finite area and free fundamental group, the number of simple closed geodesics with period $\leq t$ grows no faster than polynomially in t; thus simple closed geodesics are very atypical. It would be interesting to have an asymptotic formula for simple closed geodesics analogous to Margulis' formula.

2. Equidistribution of Closed Geodesics

We begin by discussing Theorem 7 of $[L_1]$, from which Theorems 1-2 will be deduced.

Let A=A(i,j) be an irreducible, aperiodic $\ell \times \ell$ matrix of zeros and ones, where $\ell \geq 2$, and define

$$\Sigma_A = \{x \in \underset{n=-\infty}{\times} \{1, 2, \dots, \ell\} : A(x_n, x_{n+1}) = 1 \ \forall n\}.$$

The shift $\sigma: \Sigma_A \to \Sigma_A$ is defined by $(\sigma x)_n = x_{n+1}$. Let $r: \Sigma_A \to \mathbb{R}$ be a strictly positive function which is Lipschitz relative to the metric d_ρ on Σ_A defined by

$$d_{\rho}(x,y) = \sum_{n=-\infty}^{\infty} 1\{x_n \neq y_n\} \rho^{|n|}$$

for some $\rho \in (0,1)$. Define the suspension space

$$\Sigma_A^r = \{(x,s) : x \in \Sigma_A \text{ and } 0 \le s \le r(x)\}$$

with the points (x, r(x)) and $(\sigma x, 0)$ identified. The suspension flow $(\Sigma_A^r, \sigma_t^r), -\infty < t < \infty$, is defined as follows. Starting at any $(x, s) \in \Sigma_A^r$, move at unit speed up the fiber

 $(x,s'), s \leq s' \leq r(x)$, until reaching (x,r(x)), then jump instantaneously to $(\sigma x,0)$ and proceed up the vertical fiber $(\sigma x,s')$, etc. Equivalently,

$$\begin{split} &\sigma^r_t(x,s) = (x,s+t) \quad \forall \ 0 \leq s \leq s+t \leq r(x), \\ &\sigma^r_{t+t'} = \sigma^r_t \circ \sigma^r_{t'}. \end{split}$$

Observe that the periodic orbits of the suspension flow (Σ_A^r, σ^r) are precisely those orbits which pass through some (x,0) with x a periodic sequence. Since there are countably many periodic sequences, there are countably many periodic orbits of (Σ_A^r, σ^r) . These may be labelled $\gamma_1^*, \gamma_2^*, \ldots$ and there periods $\ell_1^* \leq \ell_2^* \leq \ldots$. The distribution ν_n^* of γ_n^* may be defined by

$$\nu_n^*(B) = \int_0^{\ell_n} 1_B(\gamma_n^*(t)) dt$$

where $B \subset \Sigma_A^r$ is a Borel set. Set $\pi^*(t) = \max\{n: \ell_n \leq t\}$.

Theorem 7 ($[L_1]$): As $t \to \infty$,

$$\pi^*(t) \sim e^{ht}/ht$$

where h is the topological entropy of (Σ_A^r, σ^r) . For each continuous $f: \Sigma_A^r \to \mathbb{R}$ and each $\varepsilon > 0$, as $t \to \infty$

$$|\pi^*(t)^{-1}|\{n \leq \pi^*(t): |\int f d\nu_n^* - \int f d\nu^*| < \varepsilon\}| \longrightarrow 1,$$

where ν^* is the maximum entropy invariant measure for (Σ_A^r, σ^r) .

Now consider the geodesic flow $\Phi = \Phi_t$ on the unit tangent bundle T_1S of a compact, negatively curved surface. This flow is of Anosov type [A], hence also Axiom A, so the results of [B₂] (also [R]) apply. Thus, there exists a suspension flow (Σ_A^r, σ^r) and a continuous map $\pi: \Sigma_A^r \to T_1S$ such that

- (a) π is surjective;
- (b) π is at most N to 1 for some $N < \infty$;
- (c) $\pi \circ \sigma_t^r = \Phi_t \circ \pi \text{ for all } t;$
- (d) all but finitely many of the periodic orbits $\{\overline{\gamma}_n\}$ of Φ have the property that $\pi^{-1}(\overline{\gamma}_n)$ consists of a single periodic orbit of σ^r with the same least period.

See [L₃], sec. 1 for an explanation of (d). Note that the periodic orbits $\overline{\gamma}_n$ of Φ are just the lifts to T_1S of the closed geodesics γ_n . For each $\overline{\gamma}_n$ the probability distribution $\overline{\nu}_n$ may be defined by

$$\int_{T_1S} f d\overline{\nu}_n = \frac{1}{\ell_n} \int_0^{\ell_n} f(\overline{\gamma}_n(t)) dt$$

for $f: T_1S \to \mathbb{R}$ continuous. By (a)-(d) above, $\overline{\nu}_n$ pulls back (via π^{-1}) to $\nu_{m_n}^*$, with only finitely many exceptions. Furthermore, the maximum entropy invariant probability

measure $\overline{\nu}$ for the geodesic flow Φ pulls back to the maximum entropy measure ν^* for the suspension flow σ^r . Therefore, Theorem 1 implies

Corollary 1: For each continuous $f: T_1S \to \mathbb{R}$ and each $\varepsilon > 0$,

$$\lim_{t\to\infty}\frac{1}{\pi(t)}|\{n\leq\pi(t):|\int fd\overline{\nu}_n-\int fd\overline{\nu}|<\varepsilon\}=1.$$

3. The Number of Self-Intersections

Recall that $\overline{\nu}$ is the maximum entropy invariant probability measure for the geodesic flow on T_1S , and that ν is the induced measure on S.

Lemma 1: For any nonempty, open set $U \subset T_1S, \overline{\nu}(U) > 0$. For any orbit $\overline{\gamma}(t)$ of the flow, if $\Gamma = {\overline{\gamma}(t): -\infty < t < \infty}$ then $\overline{\nu}(\Gamma) = 0$.

Note: This is part of the folklore, but the proof is not easy to find.

Proof: It suffices to prove corresponding statements for an arbitrary suspension flow, by (a)-(c) of sec. 2. Let ν^* be the maximum entropy measure for a suspension flow (Σ_A^r, σ^r) ; define a probability measure μ on Σ_A by

$$\mu(F) = \nu^* \{ (x, s) : x \in F \text{ and } 0 \le s \le r(x) \}.$$

Then μ is the equilibrium state (sometimes called Gibbs state) for the function -hr(x), by [BR], Prop. 3 (see [B₃], Ch. 1 for the definition).

We will prove that any Gibbs state μ is nonatomic. From this it follows immediately that ν^* assigns measure zero to each individual orbit of the flow. Suppose μ has an atom x, i.e., $\mu(\{x\}) = \rho > 0$. Since μ is σ -invariant ([B₁], Th. (1.2)), $\mu(\{\sigma^n x\}) = \rho \ \forall n$; as μ is a finite measure, it must be that $x = \sigma^n x$ for some $n \geq 1$. But μ is mixing ([B₁], Prop. (1.14)) so it must be that $\mu(\{x\}) = 1$ and $x = \sigma x$. This is impossible, however, because by [B₁] Th. (1.2) a Gibbs state μ gives positive mass to every cylinder set.

It remains to show that $\nu^*(W) > 0$ for every open $W \subset \Sigma_A^r$. If W is open then it contains a rectangle $R = F \times [k/m, (k+1)/m)$, where k, m are positive integers and F is a cylinder set $F = \{y \in \Sigma_A : y_n = x_n \ \forall \ |n| \le n_*\}$. By [B₁] Th. (1.2), $\mu(F) > 0$. Since ν^* is σ_t^r -invariant,

$$\nu^*(F \times [0/m, 1/m)) = \nu^*(F \times [1/m, 2/m)) = \dots$$

(with the obvious convention about what happens when you get to the "ceiling" $\{(x, r(x))\}$: see Fig. 1). Let k_* be the smallest integer larger than $\min_{x \in F} r(x)$; then

$$\mu(F) \le \sum_{i=0}^{k_*-1} \nu^*(F \times [i/m, (i+1)/m)) - k_*\nu_*(R)$$

(see Fig. 1 again) so $\nu^*(R) > 0$.

Figure 1

Lemma 2: For any geodesic $\gamma(t)$, if $G = {\gamma(t): -\infty < t < \infty}$ then $\nu(G) = 0$.

Proof: The maximum entropy measure $\overline{\nu}$ is ergodic for the geodesic flow on T_1S (this follows from (a)–(c) of sec. 2, because the maximum entropy measure for a suspension flow is unique and consequently ergodic). Hence, if $\nu(G) > 0$ then for $\overline{\nu}$ –a.e. orbit $\overline{\varphi}(t) = (\varphi(t), \varphi'(t))$ of the geodesic flow

$$\lim_{T\to\infty} T^{-1} \int_0^T 1_G(\varphi(t)) dt = \nu(G) > 0.$$

Now $\varphi(t)$ has at most countably many transversal intersections with G, and each transversal intersection contributes zero to the integral $\int_0^T 1_G(\varphi(t))dt$. Therefore $\varphi(t)$ must intersect G tangentially. But $\varphi(t)$ and $\gamma(t)$ are both geodesics, so it follows that for some $s \in \mathbb{R}, \varphi(t) = \gamma(t+s) \ \forall t$. This is impossible, because by Lemma 1 $\overline{\nu}$ assigns zero mass to the orbit $\{\overline{\gamma}(t) = (\gamma(t), \gamma'(t))\}$.

Each $(x,v) \in T_1S$ determines a geodesic $\gamma(t)$ in S emanating from $\gamma(0) = x$ and with $\gamma'(0) = \nu$. For any $\delta > 0$ let $G_{\delta}(x,v)$ be the segment $\{\gamma(t): 0 \le t < \delta\}$ of this geodesic, considered as a subset of S. Let $\overline{\nu} \times \overline{\nu}$ denote the product measure on $T_1S \times T_1S$ determined by $\overline{\nu} \times \overline{\nu}(B_1 \times B_2) = \overline{\nu}(B_1)\overline{\nu}(B_2)$. Define

$$U_{\delta} = \{((x,v),(x',v')): G_{\delta}(x,v) \cap G_{\delta}(x',v') \neq \phi\};$$

then $\overline{\nu} \times \overline{\nu}(U_{\delta})$ is the probability that two independent, randomly chosen geodesic segments of length δ cross. (Note that the $\overline{\nu} \times \overline{\nu}$ -probability of a nontransversal intersection is zero, by Lemma 1.)

Lemma 3: For each $\delta > 0, \overline{\nu} \times \overline{\nu}(U_{\delta}) > 0$.

Proof: Each U_{δ} , $\delta > 0$, contains a nonempty open subset of $T_1S \times T_1S$, consequently also a rectangle $A \times B$ where A, B are nonempty open subsets of T_1S . Therefore, by Lemma 1, U_{δ} has positive $\overline{\nu} \times \overline{\nu}$ -measure.

When $\overline{\mu}$ is close to $\overline{\nu}$ in the weak-* topology then $\overline{\mu} \times \overline{\mu}$ is close to $\overline{\nu} \times \overline{\nu}$ in the weak-* topology, and consequently $|\overline{\mu} \times \overline{\mu}(U_{\delta}) - \overline{\nu} \times \overline{\nu}(U_{\delta})|$ should be small. The following lemma justifies this assertion (cf. [Bi], Th. 2.1, statement (v)).

Lemma 4: Let ∂U_{δ} denote the (topological) boundary of U_{δ} in $T_1S \times T_1S$. Then

$$\overline{\nu} \times \overline{\nu}(\partial U_{\delta}) = 0.$$

Proof: If $((x,v),(x',v')) \in \partial U_{\delta}$ then an endpoint of $G_{\delta}(x,v)$ lies on $G_{\delta}(x',v')$, or an endpoint of $G_{\delta}(x',v')$ lies on $G_{\delta}(x,v)$. Consequently, to prove the lemma it suffices to show that for each $(x',v') \in T_1S$,

$$\overline{\nu}\{(x,v):G_{\delta}(x,v) \text{ has an endpoint on } G_{\delta}(x',v')\}=0.$$

For $(x, v) \in T_1 S$, one endpoint of $G_{\delta}(x, v)$ is x; call the other x_* . By Lemma 2, $\overline{\nu}\{(x, v): x \in G_{\delta}(x', v')\} = 0$. But $\overline{\nu}$ is invariant under time reversal, and the segment $G_{\delta}(x, v)$ reversed has initial endpoint x_* , so $\overline{\nu}\{(x, v): x_* \in G_{\delta}(x, v)\} = 0$.

Geodesics, being smooth curves, look like straight lines in the small. Therefore, if $\delta > 0$ is sufficiently small then two geodesic segments $G_{\delta}(x,v)$ and $G_{\delta}(x',v')$ of length δ will have at most one transverse intersection (this also uses the compactness of T_1S). Choose δ_0 sufficiently small that this is true for all $0 < \delta < \delta_0$. For the remainder of this section, fix δ with $0 < \delta < \delta_0$.

Let γ_n be a closed geodesic with length ℓ_n . Recall that s_n is the number of (transversal) self-intersections of γ_n , and that $\overline{\nu}_n$ is the distribution of $\overline{\gamma_n} = (\gamma_n, \gamma'_n)$ in T_1S . For $k = 1, 2, \ldots$ let $m_k (= m_k^{(n)})$ be the least integer $\geq k\ell_n/\delta$. Define

$$\begin{split} x_{j,k} &= x_{j,k}^{(n)} = \gamma_n(j\delta/k), j = 0, 1, 2, \dots, m_k - 1; \\ v_{j,k} &= v_{j,k}^{(n)} = \gamma_n'(j\delta/k), j = 0, 1, 2, \dots, m_k - 1; \\ \overline{\nu}_{n,k} &= \text{ uniform probability distribution on}\{(x_{j,k}, v_{j,k}): j = 0, 1, \dots, m_k - 1\} \end{split}$$

(i.e., $\overline{\nu}_{n,k}$ is the probability measure that puts mass $1/m_k$ on each $x_{j,k}, v_{j,k}, j = 0, 1, \ldots, m_k - 1$).

Lemma 5: weak-* $\lim_{k\to\infty} \overline{\nu}_{n,k} = \overline{\nu}_n$.

This is immediate from the definition of the weak-* topology and elementary properties of the Riemann integral.

Lemma 6: For each k = 1, 2, ...,

$$(m_k^2/2k^2)(\overline{\nu}_{n,k}\times\overline{\nu}_{n,k})(U_\delta) - 2m_k/k \le s_n \le (m_k^2/2k^2)(\overline{\nu}_{n,k}\times\overline{\nu}_{n,k})(U_\delta).$$

Proof: Define G_j to be the segment of γ_n from $x_{j,k}$ to $x_{j+1,k}$ for $j=0,1,\ldots,m_k-2$, and G_{m_k-1} to be the segment of γ_n from $x_{m_k-1,k}$ to $x_{0,k}$. Note that if $0 \le j \le m_k-2$ then $G_j = G_{\delta/k}(x_{j,k}, v_{j,k})$, whereas $G_{m_k-1} = G_r(x_{m_k-1,k}, v_{m_k-1,k})$ for some $0 < r \le \delta/k$. Since $\delta < \delta_0$, each intersection $G_i \cap G_j, i \ne j$, consists of at most a single point. Consequently,

$$s_n = \frac{1}{2} \sum_{(i,j): i \neq j} 1\{G_i \cap G_j \neq \emptyset\}.$$

Next, define $G_i^* = G_\delta(x_{i,k}, v_{i,k})$. If $0 \le i < m_k - k$ then $G_i^* = G_i \cup G_{i+1} \cup \ldots \cup G_{i+k-1}$, whereas if $m_k - k \le i \le m_k - 1$ then $G_i^* \supset G_i \cup G_{i+1} \cup \ldots \cup G_{i+k-1}$ but $G_i^* \subset G_i \cup G_{i+1} \cup \ldots \cup G_{i+k}$ (with the convention that if $i + j \ge m_k$ then i + j should be reduced mod m_k). As before, each intersection $G_i^* \cap G_j^*$, $|i - j| \ge k$, consists of at most one point. Each G_i is contained in k distinct G_j^* , so by the result of the previous paragraph,

$$s_n \leq \frac{1}{2k^2} \sum_{(i,j):|i-j| \geq k} 1\{G_i^* \cap G_j^* \neq \emptyset\}$$

$$\leq \frac{m_k^2}{2k^2} (\overline{\nu}_{n,k} \times \overline{\nu}_{n,k})(U_\delta).$$

Moreover, each G_i intersects only k distinct G_j^* unless $0 \le i < k$, in which case G_i may intersect k+1 distinct G_i^* . Consequently,

$$\left(\frac{1}{2k^2} \sum_{(i,j):|i-j| \ge k} 1\{G_i^* \cap G_j^* \ne \phi\}\right) - s_n \le \frac{2km_k}{2k^2} = \frac{m_k}{k}.$$

Finally,

$$\frac{m_k^2}{2k^2} (\overline{\nu}_{n,k} \times \overline{\nu}_{n,k})(U_\delta) - \frac{1}{2k^2} \sum_{(i,j):|i-j| \ge k} 1\{G_i^* \cap G_j^* \ne \emptyset\}$$

$$= \frac{1}{2k^2} \sum_{i=0}^{m_k - 1} (2k - 1) = \frac{(2k - 1)m_k}{2k^2} \le \frac{m_k}{k}.$$

Proof of (1.1): Corollary 1 implies that for most closed geodesics γ_n with length $\ell_n \leq t$ the distribution $\overline{\nu}_n$ is close to $\overline{\nu}$ in the weak-* topology. Consequently, by Lemma 5, for k sufficiently large $\overline{\nu}_{n,k}$ is close to $\overline{\nu}$ and therefore $\overline{\nu}_{n,k} \times \overline{\nu}_{n,k}$ is close to $\overline{\nu} \times \overline{\nu}$ in the weak-*

topology. It follows, by Lemma 4 and [Bi], Th. 2.1, that $|\overline{\nu}_{n,k} \times \overline{\nu}_{n,k}(U_{\delta}) - \overline{\nu} \times \overline{\nu}(U_{\delta})|$ is small. Thus, by Lemma 6, s_n/ℓ_n^2 is close to

$$C = \overline{\nu} \times \overline{\nu}(U_{\delta})/\delta^2 > 0.$$

Since $\delta < \delta_0$ was arbitrary in this argument, the quantity $\overline{\nu} \times \overline{\nu}(U_{\delta})/\delta^2$ is independent of δ , and so C can, in principle, be evaluated by letting $\delta \to 0$.

Lemma 7: If S has constant negative curvature then

(3.1)
$$\lim_{\delta \to 0} \overline{\nu} \times \overline{\nu}(U_{\delta})/\delta^{2} = \frac{4}{2\pi \operatorname{area}(S)}$$

Observe that area $(S) = 4\pi(g-1)/\kappa$ where g = genus(S) and $-\kappa = \text{curvature}$, by the Gauss-Bonnet theorem, so Lemma 7 implies (1.2).

Proof of Lemma 7: The measure $\overline{\nu}$ has a simple structure for a surface S of constant curvature. Elements of T_1S may be represented as (x, θ) , where $x \in S$ and $-\pi \leq \theta < \pi$; in these coordinates

$$d\overline{\nu}(x,\theta) = d\nu(x)d\theta/2\pi$$

where $d\nu(x)$ is the normalized surface area measure on S.

Recall that $\overline{\nu} \times \overline{\nu}(U_{\delta})$ is the probability that two independent, randomly chosen geodesic segments of length δ will intersect. To prove (3.1) it suffices to show that for any fixed geodesic segment G_{δ} of length δ

$$\overline{\nu}\{(x,\theta):G_{\delta}(x,\theta)\cap G_{\delta}\neq\phi\}\sim 4\delta^2/2\pi$$
 area (S)

as $\delta \to 0$ (uniformly for all choices of G_{δ}). To compute this probability, condition on the value of θ (the angle with G_{δ}); then the set of x for which $G_{\delta}(x,\theta) \cap G_{\delta} \neq \phi$ is approximately a rhombus of side δ and interior angle θ (at least when δ is small). Consequently,

$$\overline{\nu}\{(x,\theta): G_{\delta}(x,\theta) \cap G_{\delta} \neq \emptyset\}$$

$$\sim \int_{-\pi}^{\pi} \delta^{2} |\sin \theta| d\theta / 2\pi \text{ area } (S).$$

4. Distribution of Self-Intersection Points

In sec. 3 we showed that $\overline{\nu} \times \overline{\nu}(U_{\delta}) = C\delta^2$ for all sufficiently small $\delta > 0$. Thus we may define Borel probability measures μ_{δ} on $T_1S \times T_1S$ by

$$\mu_{\delta}(B) = \overline{\nu} \times \overline{\nu}(U_{\delta} \cap B)/C\delta^2$$

for Borel sets $B \subset T_1S$. Since $T_1S \times T_1S$ is compact, the Helly selection theorem (cf. [RS], Th. IV.21, which they call the "Banach-Alaoglu" theorem) implies that there is a weak-*convergent subsequence $\mu_{\delta_n}, \delta_n \to 0$. Define

$$\overline{\alpha} = \text{weak-*} \lim_{n \to \infty} \mu_{\delta_n}$$

(it will not matter which subsequence δ_n is used).

The measure $\overline{\alpha}$ induces on $S \times S$ a measure α via the natural projection $p \times p$: $T_1S \to S \times S$, in particular,

$$\alpha(B) = \overline{\alpha}((p \times p)^{-1}(B)), B \subset S$$
 Borel.

The measure α is supported by the "diagonal" $D = \{(x, x) : x \in S\}$, because μ_{δ} is supported by the set U_{δ} , and if $((x, v), (x', v')) \in U_{\delta}$ then distance $(x, x') \leq 2\delta$. Thus α may be regarded as a probability measure on S. We will not bother to distinguish between S and D in the subsequent arguments.

Let V be an open subset of $S \times S$; define

$$V_{\delta}^{+} = \{(x_1, x_2) \in S \times S: \text{ distance } (x_i, V) < \delta\},$$

$$V_{\delta}^{-} = \{(x_1, x_2) \in V: \text{ distance } (x_i, V^c) > \delta\}.$$

Lemma 8: If $\alpha(\partial V) = 0$ then

$$\lim_{n \to \infty} \mu_{\delta_n}((p \times p)^{-1}(V_{2\delta_n}^+)) = \alpha(V) \text{ and}$$
$$\lim_{n \to \infty} \mu_{\delta_n}((p \times p)^{-1}(V_{\delta_n}^-)) = \alpha(V).$$

bf Proof: This is a standard argument. For any $\varepsilon > 0$ there exist open $V_1 \subset V \subset V_2$ such that $\alpha(V_2 \setminus V_1) < \varepsilon$ and $V_1 \subset V_{\delta}^-, V_2 \supset V_{\delta}^+$ for some $\delta > 0$ (this follows from the dominated convergence theorem), and also such that $\alpha(\partial V_2) = \alpha(\partial V_1) = 0$. Since $\mu_{\delta_n} \to \overline{\alpha}$ it then follows ([Bi], Th. 2.1 (v)) that

$$\mu_{\delta_n}((p \times p)^{-1}(V_1)) \longrightarrow \alpha(V_1),$$

 $\mu_{\delta_n}((p \times p)^{-1}(V_2)) \longrightarrow \alpha(V_2).$

The result then follows by monotonicity, because for large $n, V_1 \subset V_{\delta_n}^- \subset V \subset V_{2\delta_n}^+ \subset V_2$.

Now let γ_n be a closed geodesic with length ℓ_n , and let $\overline{\nu}_{n,k}, m_k$, etc. be as in Lemma 6. If V is any closed subset of $S \times S$ let $s_n(V)$ be the number of self-intersection points x of γ_n such that $(x,x) \in V$.

Lemma 9: For each $k = 1, 2, \ldots$

$$(m_k^2/2k^2)(\overline{\nu}_{n,k} \times \overline{\nu}_{n,k})(U_\delta \cap (p \times p)^{-1}(V_\delta^-)) - 2m_k/k$$

$$\leq s_n(V) \leq (m_k^2/2k^2)(\overline{\nu}_{n,k} \times \overline{\nu}_{n,k})(U_\delta \cap (p \times p)^{-1}(V_\delta^+)).$$

Proof: This is virtually the same as the proof of Lemma 6. The only novelty is in keeping track of where the geodesic segments cross. Observe that if geodesic segments G_1, G_2 of length δ intersect transversally at x such that $(x, x) \in V$ then the (initial) endpoints x_1, x_2 of G_1, G_2 are such that $(x_1, x_2) \in V_{\delta}^+$. Similarly, if G_1, G_2 intersection at x and the initial endpoints x_1, x_2 are such that $(x_1, x_2) \in V_{\delta}^-$, then $(x, x) \in V$.

Proof of Th. 2: Let V be any open subset of $S \times S$ such that $\alpha(\partial V) = 0$. By Th. 1, Lemma 5, and Lemma 9, for any $\varepsilon > 0$ there is a $t_{\varepsilon} < \infty$ large enough that for all $t \geq t_{\varepsilon}$ and all but at most $\varepsilon \pi(t)$ closed geodesics γ_n with length $\leq t$,

$$C\mu_{\delta}((p\times p)^{-1}(V_{\delta}^{-}))-\varepsilon\leq s_{n}(V)/\ell_{n}^{2}\leq C\mu_{\delta}((p\times p)^{-1}(V_{2\delta}^{+}))+\varepsilon.$$

The quantities ε and δ are both arbitrary, but affect how large t must be so that the preceding statement is true. By letting $\delta \to 0$ through the subsequence δ_n and appealing to Lemma 8, we see that for any $\varepsilon > 0$ there exists $t_{\varepsilon} < \infty$ such that for all $t \geq t_{\varepsilon}$ and all but at most $\varepsilon \pi(t)$ closed geodesics γ_n of length $\leq t$,

$$C\alpha(V) - 2\varepsilon \le s_n(V)/\ell_n^2 \le C\alpha(V) + 2\varepsilon.$$

Together with Th. 1, this implies that for most closed geodesics γ_n with $\ell_n \leq t$ the distribution α_n of self-intersection points is close to α in the weak-* topology.

REFERENCES

- [A] Anosov, D.V. (1967). Geodesic flows on closed Riemannian manifolds of negative curvature. *Proc. Steklov Inst.* **90**.
- [Bi] Billingsley, P. (1968). Convergence of Probability Measures. Wiley, N.Y.
- [BS] Birman, J. and Series, C. (1984). An algorithm for simple curves on surfaces. J. London Math. Soc. (2) 29, 331-342.
- [B₁] Bowen, R. (1975). Equilibrium States and the ErgodicTheorem of Anosov Diffeomorphisms. Springer Lecture Notes in Math. 470
- [B₂] Bowen, R. (1973). Symbolic dynamics for hyperbolic flows. Amer. J. Math. 95, 429-450.
- [BR] Bowen, R. and Ruelle, D. (1975). Ergodic theory of Axiom A flows. *Inv. Math.* 29, 181–202.
- [L₁] Lalley, S.P. (1989). Renewal theorems in symbolic dynamics, with applications to geodesic flows, noneuclidean tessellations and their fractal limits. *Acta Mathematica* **163**, 1–55.
- [L₂] Lalley, S.P. (1987). Distribution of periodic orbits of symbolic and Axiom A flows. Adv. Appl. Math. 8, 154-193.
- [L₃] Lalley, S.P. (1989). Closed geodesics in homology classes on surfaces of variable negative curvature. *Duke Math. J.* 58, 795–821.
- [M] Margulis, G. (1969). Applications of ergodic theory to the investigation of manifolds of negative curvature. Funct. Analysis Appl. 3, 335-336.
- [P] Pollicott, M. (1985). Asymptotic distribution of closed geodesics. Israel J. Math. 52, 209-224.
- [R] Ratner, M. (1973). Markov partitions for Anosov flows on n-dimensional manifolds. *Israel J. Math.* 15, 92–114.
- [RS] Reed, M., and Simon, B. (1980). Methods of Mathematical Physics I. Functional Analysis. Academic Press, N.Y.
 - [S] Series, C. (1985). The geometry of Markov numbers. Math. Intell. 7, 20-29.