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ABSTRACT

For compact surfaces of negative curvature it is shown that most closed geodesics of
length = £ have about C¢? self-intersections, for some constant C > 0, and these self-
intersections are approximately equidistributed on the surface. For surfaces of constant
negative curvative —« the value of the constant C is k/2w2(g — 1), where g is the genus.



1. Introduction and Statement of Main Results

The geodesic flow on a compact, negatively curved surface is perhaps the simplest ex-
ample of a smooth flow for which typical orbits exhibit “random” behavior. Periodic orbits
(i.e., closed geodesics) are not typical — there are only countably many, and they account
for only a set of measure zero in the phase space. Nevertheless, the overall randomness of
the flow is reflected in the sequence of periodic orbits (see, e.g., [L1], [L2]) in certain ways.
The purpose of this note is to record some statistical regularities in the self-intersections
of closed geodesics.

Let S be a compact, C*° Riemannian manifold of dimension 2 with strictly negative
curvature at every point. There are countably many closed geodesics v1,72,... (one in
each free homotopy class) with lengths £; < £, <---. A celebrated result of Margulis [M]
states that if 7(t) = max{n:£, <t} then ast — oo

eht

w(t) ~ o

where h > 0 is the topological entropy of the geodesic flow (for surfaces with constant
curvature —1,h = 1).

Define s, to be the number of (transversal) self-intersections of the closed geodesic
Tn-

Theorem 1: For each compact, negatively curved surface S there is a constant C = Cs > 0
such that for every e > 0,

(1.1) tlim 7r(t)_1|{n < w(t):|sn — CE| < 66,2,}| =1

If S has constant curvature — k and genus g > 2 then

K

(12) Cs = m

Thus, “most” closed geodesics of length ~ £ have “about” Cgf? self-intersections.
This result is consistent with the statement that “typical” closed geodesics are similar
statistically to “generic” geodesics. Observe that if one randomly threw down £ geodesic
segments of length 1 on S’ then the number of intersections would be about C#2.

Theorem 1 seems to contradict Theorem 5 of [P], which states that most closed
geodesics of length =& £ have about C/ self-intersections. Apparently, the formula in remark
(i), p. 212 of [P] is incorrect: the singularity in the zeta function is not a simple pole,
as stated, but rather a logarithmic singularity, so the Ikehara Tauberian theorem does not

apply.

If s, > 0 define oy, to be the probability distribution on S that assigns mass 3— to
each point of self-intersection of 7,; if s, = 0 define a,, to be the zero measure.

2



Theorem 2: For each compact, negatively curved surface S there is a Borel probability
measure o on S such that for each continuous f:S - R ande >0

n(t)
(1.3) Jim () Y 1] / fdon — / fda] <&} =1.

n=1

If S has constant curvature then a = v = normalized area measure on S.

Thus most closed geodesics on S of length about £ experience about Cgf? self-
intersections and these self-intersections are approximately distributed according to a.
In fact the proof will show that « is the projection to S of the maximum entropy invariant
probability measure for the geodesic flow. Theorem 1 is proved in sec. 3, Th. 2 in sec. 4.
Both theorems are in fact corollaries of the strong equidistribution result, Theorem 7, of
[L1]. This result is explained in sec. 2.

Simple closed geodesics (closed geodesics with no self-intersections) are of interest
for both topological and number-theoretic reasons (see [S]). Theorem 2 shows that simple
closed geodesics are atypical of closed geodesics. Results of Birman and Series {BS] suggest
that at least for a noncompact surface with finite area and free fundamental group, the
number of simple closed geodesics with period < ¢t grows no faster than polynomially
in ¢; thus simple closed geodesics are very atypical. It would be interesting to have an
asymptotic formula for simple closed geodesics analogous to Margulis’ formula.

2. Equidistribution of Closed Geodesics
We begin by discussing Theorem 7 of [L;], from which Theorems 1-2 will be deduced.

Let A = A(z,j) be an irreducible, aperiodic £ X ¢ matrix of zeros and ones, where
£ > 2, and define

Sa={z€ X {1,2,...,0}:A(@n,ens1) =1 Vn}.

The shift 0:$4 — X4 is defined by (0z)n = Zp41. Let 1124 — R be a strictly positive
function which is Lipschitz relative to the metric d, on L4 defined by

dp(z,y) = Z Hz, # yn}PlnI
n=—o00
for some p € (0,1). Define the suspension space

Y% ={(z,s):z € L4 and 0 < s < r(z)}

with the points (z,r(z)) and (oz,0) identified. The suspension flow (£7,07),—oc0 <t <
00, is defined as follows. Starting at any (z,s) € X7, move at unit speed up the fiber
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(z,8'),s < s' < r(z), until reaching (x,r(z)), then jump instantaneously to (oz,0) and
proceed up the vertical fiber (oz,s'), etc. Equivalently,

oi(z,8) =(z,s+t) V0<s<s+t<r(z),

Observe that the periodic orbits of the suspension flow (£7,07) are precisely those
orbits which pass through some (z,0) with  a periodic sequence. Since there are countably
many periodic sequences, there are countably many periodic orbits of (7 ,0"). These may
be labelled 77,73, .. and there periods £] < £5 < ... . The distribution v} of v} may be
defined by

£n
i@ = [
0
where B C X7 is a Borel set. Set n*(t) = max{n: ¢, < t}.
Theorem 7 ([L1]): Ast — oo,
7*(t) ~ €M /ht

where h is the topological entropy of (X7,,0"). For each continuous f:£7, — R and each
€>0,ast— o0

T*(#) " {n < ()| / fdvt — / fdv*| < e} — 1,

where v* 18 the mazimum entropy invariant measure for (X% ,0").
A

Now consider the geodesic flow & = ®; on the unit tangent bundle T} S of a com-
pact, negatively curved surface. This flow is of Anosov type [A], hence also Axiom A, so
the results of [Bz] (also [R]) apply. Thus, there exists a suspension flow (£7,,0") and a
continuous map 7: X% — 7175 such that

(a) m is surjective;
(b) 7 is at most N to 1 for some N < oo;
(c) moa] =®;0m for allt;

(d) all but finitely many of the periodic orbits {7,} of ® have the property that
771(Y,) consists of a single periodic orbit of o™ with the same least period.

See [L3), sec. 1 for an explanation of (d). Note that the periodic orbits ¥, of ® are just the
lifts to 115 of the closed geodesics «v,. For each ¥, the probability distribution ¥, may be
defined by

1 [,
[ gam= g [T s o)

for f:T1S — R continuous. By (a)-(d) above, 7, pulls back (via 7~!) to v* , with

my?
only finitely many exceptions. Furthermore, the maximum entropy invariant probability
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measure 7 for the geodesic flow @ pulls back to the maximum entropy measure v* for the
suspension flow 7. Therefore, Theorem 1 implies

Corollary 1: For each continuous f:T1.S — R and each ¢ > 0,

lim w_(lt-l{n < 7r(t):|/fd'17n —/fd17| <e}l=1L

t—o0 )

3. The Number of Self-Intersections

Recall that 7 is the maximum entropy invariant probability measure for the geodesic
flow on TS, and that v is the induced measure on S.

Lemma 1: For any nonempty, open set U C Ty S,7(U) > 0. For any orbit ¥(t) of the
flow, if T = {F(t): —oo < t < oo} then T7(T') = 0.

Note: This is part of the folklore, but the proof is not easy to find.

Proof: It suffices to prove corresponding statements for an arbitrary suspension flow, by
(a)—(c) of sec. 2. Let v* be the maximum entropy measure for a suspension flow (X%, 0");
define a probability measure u on ¥4 by

w(F) =v*{(z,s):z € Fand 0 < s < r(z)}.

Then p is the equilibrium state (sometimes called Gibbs state) for the function —hr(z),
by [BR], Prop. 3 (see [Bs], Ch. 1 for the definition).

We will prove that any Gibbs state y is nonatomic. From this it follows immediately
that v* assigns measure zero to each individual orbit of the flow. Suppose p has an atom
z, i.e., p({x}) = p > 0. Since p is o-invariant ([B1], Th. (1.2)), u({e"z}) = p V n; as
p is a finite measure, it must be that z = o™z for some n > 1. But p is mixing ([B;],
Prop. (1.14)) so it must be that x({z}) = 1 and z = oz. This is impossible, however,
because by [B1] Th. (1.2) a Gibbs state u gives positive mass to every cylinder set.

It remains to show that v*(W) > 0 for every open W C 7. If W is open then it
contains a rectangle R = F x [k/m,(k + 1)/m), where k,m are positive integers and F is
a cylinder set F = {y € Za:yn = zn V |n| < n.}. By [B1] Th. (1.2), u(F) > 0. Since v*
is of-invariant,

v*(F x [0/m,1/m)) =v*(F x [1/m,2/m)) = ...
(with the obvious convention about what happens when you get to the “ceiling” {(z,r(z))}:

see Fig. 1). Let k. be the smallest integer larger than min,er r(z); then

ke—1

W(EF) < Y v*(F x [ifm, (i +1)/m)) — ku(R)

i=0



(see Fig. 1 again) so v*(R) > 0. O

Figure 1
Lemma 2: For any geodesic v(t), if G = {7(t): —oo < t < 00} then v(G) = 0.

Proof: The maximum entropy measure 7 is ergodic for the geodesic flow on T1S (this
follows from (a)—(c) of sec. 2, because the maximum entropy measure for a suspension
flow is unique and consequently ergodic). Hence, if #(G) > 0 then for 7-a.e. orbit B(t) =
(¢(2), ¢'(t)) of the geodesic flow

T—o0

T
lim 7! /0 La(e(8)dt = ¥(G) > 0.

Now ¢(t) has at most countably many transversal intersections with G, and each transver-

sal intersection contributes zero to the integral fOT 1g(¢(t))dt. Therefore ¢(t) must in-
tersect G tangentially. But ¢(¢) and () are both geodesics, so it follows that for some
s € R,p(t) =v(t+s) Vit This is impossible, because by Lemma 1 7 assigns zero mass to

the orbit {7() = (1(8), 7 (). 0
Each (z,v) € T\ S determines a geodesic 4(%) in S emanating from v(0) = z and with
7'(0) = v. For any 6§ > 0 let Gs(z,v) be the segment {y(¢):0 < ¢ < §} of this geodesic,

considered as a subset of S. Let 7 x 7 denote the product measure on T} S x T} S determined
by 7 X ¥(B1 X B3) = U(B;)7(Bz). Define

Us = {((za 'U), (xla v,)): Ga(.’l), 'U) N Gﬁ(‘TI’ vl) 7é ¢}’
then 7 x 7(Us) is the probability that two independent, randomly chosen geodesic segments

of length 6 cross. (Note that the 7 X T-probability of a nontransversal intersection is zero,
by Lemma 1.)



Lemma 3: For each 6§ > 0,7 x 7(Us) > 0.

Proof: Each Us,6 > 0, contains a nonempty open subset of 71 S x T1.S, consequently also
a rectangle A X B where A, B are nonempty open subsets of 71.S. Therefore, by Lemma
1, Us has positive 7 X U-measure. O

When 7z is close to 7 in the weak-* topology then 17 X [ is close to ¥ X ¥ in the weak-*
topology, and consequently |fZ x E(Us) — 7 x 7(Us )| should be small. The following lemma
justifies this assertion (cf. [Bi], Th. 2.1, statement (v)).

Lemma 4: Let OUs denote the (topological) boundary of Us in T} S X T1S. Then

U X 7(6U5) =0.

Proof: If ((z,v),(2',v')) € OUs then an endpoint of Gs(z,v) lies on Gs(z',v'), or an
endpoint of Gs(z',v') lies on Gs(z,v). Consequently, to prove the lemma it suffices to
show that for each (z',v") € T} S,

7{(z,v): Gs(z,v) has an endpoint on G5(z',v")} = 0.

For (z,v) € T1 S, one endpoint of Gs(z,v) is z; call the other z,. By Lemma 2, 7{(z,v):z €
Gs(z',v")} = 0. But 7 is invariant under time reversal, and the segment Gs(z,v) reversed
has initial endpoint z., so 7{(z,v): z. € Gs(z,v)} =0. O

Geodesics, being smooth curves, look like straight lines in the small. Therefore, if
8 > 0 is sufficiently small then two geodesic segments Gs(z,v) and Gs(z',v") of length
6 will have at most one transverse intersection (this also uses the compactness of T}S).
Choose éy sufficiently small that this is true for all 0 < § < §y. For the remainder of this
section, fix § with 0 < § < .

Let 75 be a closed geodesic with length £,,. Recall that s, is the number of (transversal)
self-intersections of 7y, and that 7, is the distribution of 7; = (yn,7,) in T1S. For

k=1,2,...let mp(= mscn)) be the least integer > k€, /§. Define
Tjk = w_(7,nk) = 7”(]6/k)7] =0,1,2,...,mp — 1;
Vjk = ’U;r;c) = 7:1,(.76/19)1.7 =0,1,2,...,mp — 1;

Un,k = uniform probability distribution on{(z;,v;r):5 =0,1,...,ms — 1}

(i-e., E,S,k is the probability measure that puts mass 1/m on each z;,vr,j =0,1,...,
mg —1).

Lemma 5: weak-*+ lim 7, ; = 7,.
k—o00

This is immediate from the definition of the weak-* topology and elementary properties
of the Riemann integral.



Lemma 6: For each k=1,2,...,

(Mm% /2k*)(Tn k. X Tnk)(Us) — 2ms [k <
sn < (M} /2k%)(Tn,k X Tn,k)(Us)-

Proof: Define G; to be the segment of v, from z;; to zj41 for j =0,1,...,m; —2, and
Gm,—1 to be the segment of v, from zm,_1,x to 9. Note that if 0 < j < my — 2 then
G; = Gsk(xjk,v5,k), whereas Gm, -1 = Gr(Tmy —1,k, Vm,—1,k) for some 0 < r < §/k. Since
6 < by, each intersection G; N Gj,% # j, consists of at most a single point. Consequently,

sn=%z El{G,‘ﬂGj;é(ﬁ}.

(8,5):i#5

Next, define G} = Ga(:l:,',k,v,',k). If0<:<mip—kthen G =GiUGi+1U.. . UGiyk—-1,
whereas if my —k < i <mj —1 then G} D G;UGi41U...UGijpg—1 but Gf C G;UG;41 U
.. UGt (with the convention that if 7 + j > my then i + j should be reduced mod m).
As before, each intersection G N G}, | — j| > k, consists of at most one point. Each G; is
contained in k distinct G}, so by the result of the previous paragraph,

1 * *
$n < o3 ) HGinG; # ¢}
(i,J') li—j|=k

< 2k2 (Vn k X Unk)(Us).

Moreover, each G; intersects only k distinct G} unless 0 < ¢ < k, in which case G; may
intersect k + 1 distinct ;. Consequently,

1 . .
ﬁZZHQ”Q#fﬁ} _S"S—Zk—2=T'

(6,7):li—3] 2k

Finally,

2k2(1/nk X VUp k)(U&)— 2k2 Z Z 1{G*nG* 7é¢}

(%,5):1i—-351>k
mp—1
(2k —Dmp _ my
—— < —_—
2k2 Z (2k - 7 =% -

Proof of (1.1): Corollary 1 implies that for most closed geodesics v, with length £, <t
the distribution 7, is close to ¥ in the weak-* topology. Consequently, by Lemma 5, for k
sufficiently large 7,  is close to 7 and therefore Un,k X Un,k is close to ¥ X 7 in the weak-*
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topology. It follows, by Lemma 4 and [Bi], Th. 2.1, that [Tpx X Ta x(Us) — 7 x 7(Us)| is
small. Thus, by Lemma 6, s,/¢2 is close to

C =7 x 7(Us)/8% > 0. O

Since § < 6o was arbitrary in this argument, the quantity 7 x 7(Us)/é2 is independent
of 6, and so C can, in principle, be evaluated by letting § — 0.

Lemma 7: If S has constant negative curvature then

4

. e — 2
(3.1) }I—I»I(I)V x7(Us)/8" = 27 area (.5)

Observe that area (S) = 4n(g — 1)/« where g = genus (S) and —k = curvature, by
the Gauss-Bonnet theorem, so Lemma 7 implies (1.2).

Proof of Lemma 7: The measure 7 has a simple structure for a surface S of constant
curvature. Elements of 715 may be represented as (z,8), where z € S and —7 < 6 < =;
in these coordinates

dv(z,0) = dv(z)db/2x
where dv(z) is the normalized surface area measure on S.

Recall that 7 x 7(Us) is the probability that two independent, randomly chosen
geodesic segments of length § will intersect. To prove (3.1) it suffices to show that for
any fixed geodesic segment G; of length 6

7{(z,0): Gs(z,0) N Gs # ¢} ~ 46% /27 area (S)

as § — 0 (uniformly for all choices of G5). To compute this probability, condition on the
value of 8 (the angle with G5); then the set of z for which Gs(x,0)NGs # ¢ is approximately
a rhombus of side § and interior angle 6 (at least when § is small). Consequently,

7{(z,0): Gs(z,0) N Gs # ¢}
~ 6%|sin 6|d§/2x area (S). O

-

4. Distribution of Self-Intersection Points

In sec. 3 we showed that 7 x 7(Us) = C§? for all sufficiently small § > 0. Thus we
may define Borel probability measures pus on 715 x T} S by

/Lg(B) =7 X 7(U5 n B)/062
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for Borel sets B C T1S. Since TS x T\ S is compact, the Helly selection theorem (cf. [RS],
Th. IV.21, which they call the “Banach-Alaoglu” theorem) implies that there is a weak-*
convergent subsequence us_, 6, — 0. Define

a = weak-* lim ps,
n—oo

(it will not matter which subsequence 6, is used).

The measure @ induces on S X S a measure « via the natural projection p x p: 71 S —
S x §, in particular,
a(B) =a((p x p)"*(B)), B C S Borel.

The measure « is supported by the “diagonal” D = {(z,z): z € S}, because ps is supported
by the set Us, and if ((z,v),(z',v")) € Us then distance (z,z') < 2§. Thus o may be
regarded as a probability measure on S. We will not bother to distinguish between S and
D in the subsequent arguments.

Let V be an open subset of S x S; define

Vit = {(z1,22) € S x S: distance (z;,V) < 6},
Vi ={(z1,22) € V: distance (z;,V°) > 6}.

Lemma 8: If a(0V) = 0 then

Tim s, ((p x )7 (V35,)) = (V) and

Tim ps, ((p x p)7'(V5,)) = V).
bf Proof: This is a standard argument. For any € > 0 there exist open V; C V C V, such
that a(V2\V1) <eand Vi CV;,V2 D VE+ for some é > 0 (this follows from the dominated

convergence theorem), and also such that a(9V2) = a(8V;) = 0. Since pus, — @ it then
follows ([Bi], Th. 2.1 (v)) that

ps,((p x )71 (V1)) — a(Vh),
ps,.((p x p)7'(V2)) — a(Va).

The result then follows by monotonicity, because for large n, V; C Vi, CV C Vz_*.s-,, c V.00

Now let v, be a closed geodesic with length £,, and let ¥, ¢, mg, etc. be as in Lemma
6. If V is any closed subset of S x S let s,(V) be the number of self-intersection points z
of v, such that (z,z) € V.

Lemma 9: For each k=1,2,...,

(mz/2k*)(Tn e X T, k) (Us 0 (p x p) 7} (V;7)) — 2ma/k
< sa(V) < (m/2k)(Tak X Tnk)(Us 0 (p x p) (V).
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Proof: This is virtually the same as the proof of Lemma 6. The only novelty is in keeping
track of where the geodesic segments cross. Observe that if geodesic segments G;,G2 of
length § intersect transversally at = such that (z,z) € V then the (initial) endpoints zy, z;
of G1,G; are such that (z1,z2) € V6+. Similarly, if G, G intersection at z and the initial
endpoints 1, z2 are such that (z1,z2) € V;, then (z,z) € V. O

Proof of Th. 2: Let V be any open subset of S x S such that «(0V) = 0. By Th. 1,
Lemma 5, and Lemma 9, for any € > 0 there is a t. < oo large enough that for all ¢t > ¢,
and all but at most en(t) closed geodesics v, with length <,

Cus((p x p) 7' (V5 )) — € < sa(V)/£;, < Cuus((p x p) 7' (V) + e

The quantities £ and § are both arbitrary, but affect how large ¢ must be so that the
preceding statement is true. By letting 6 — 0 through the subsequence §,, and appealing
to Lemma 8, we see that for any € > 0 there exists {. < 0o such that for all ¢ > ¢, and all
but at most en(t) closed geodesics v, of length < ¢,

Ca(V) —2¢ < 5,(V)/E2 < Ca(V) + 2¢.

Together with Th. 1, this implies that for most closed geodesics v, with ¢, < t the
distribution a,, of self-intersection points is close to a in the weak-* topology. (]
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