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Abstract

This article extends the smoothing spline probability density estimation techniques developed
by Gu and Qiu (1991) and Gu (1991) to Vardi’s (1985) selection bias models. The estimation is
via estimating the log density in a reproducing kernel Hilbert space by the standard penalized
likelihood method. The existence of the estimator is discussed and the asymptotic convergence
rates in an properly defined symmetrized Kullback-Leibler and in a related weighted mean
square error are obtained. A computable adaptive semiparametric estimator is proposed which
shares with the original estimator the same asymptotic convergence rates. The computation of
the estimator with an automatic smoothing parameter is also discussed. A simulation study is
presented to illustrate the relative effectiveness of the automatic smoothing parameter selection
and the best and the worst cases in the simulations are presented to illustrate the absolute
performance of the techniques.
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1 Introduction

Let X;, ¢ =1,..-,n, be independent observations on a domain X sampled from probability den-
sities proportional to w;(z)f(x), where w; > 0 are known biasing functions and f is an unknown

probability density assumed to be “smooth”. The purpose of this article is to propose and study a
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penalized likelihood estimator of f based on the data (w;, X;). Let 7 be an index set and w(t,z)
a known function on 7 X X such that the set {w(t,-),t € 7} includes all possible biasing functions
and w(t,-) # w(t',-) when t # t/. The “observed” biasing function w; can then be denoted as
w(t;,-) for some ¢; € 7 and the data are now (#;, X;). Assume 0 < [, w(t,2)f(2)dz < o0, Vt € T,
so that the densities w(t,z)f(2)/ [, w(t,z)f(z) are well defined. Take ¢; as observations from a

probability density m(t) on 7. The data (¢;, X;) can then be treated as from a two-stage sampling.

Example 1.1 Ordinary sampling. Let 7 = {1} and w(1l,z) = 1. X; are i.i.d. observations from
f(z). O

Example 1.2 Length-biased sampling. Let 7 = {1}, X = [0,1], and w(1l,2) = z. X; are i.i.d.
length-biased observations from the probability density  f(z)/ fol zf(z). O

Example 1.3 Ordinary and length-biased sampling. Let T = {1,2}, & = [0,1], w(l,z) = 1,
and w(2,2) = 2. X;|t; = 1 are ordinary observations from f(2) and X;|t; = 2 are length-biased
observations from zf(2)/ fy «f(z). Examples 1.1 and 1.2 are special cases with m(1) = 1 and

m(1) = 0, respectively. O

Example 1.4 Finite “strata” biased sampling. Let T = {1,---,s} and X = Ugm(p)>ofe : w(t, ) > 0},
where w(t,z) > 0 but otherwise arbitrary. X;|{¢; are from w(t;, @) f(2)/ [y w(ti,¢)f(z). Example 1.3

is a special case with s = 2. O

An early reference on length-biased sampling and its applications is Cox (1969). The empiri-
cal distribution for Example 1.3 was derived and its as‘ymptotic properties were studied by Vardi
(1982). Vardi (1985) further investigated the existence and uniqueness of the empirical distribu-
tion in the more general models of Example 1.4 and derived an algorithm to compute it when it
exists. Gill, Vardi, and Wellner (1988) developed a large sample theory for Vardi’s (1985) empiri-
cal distribution. Practical applications of the biased sampling models are discussed by the above
authors and further references cited by them. Note that the probability density corresponding to
the empirical distribution is a delta sum and hence is ultimately rough. Some attempts have been

made to smooth the empirical distribution via the kernel method when 7 is a singleton; see, e.g.,

Jones (1991).



For the ordinary sampling model of Example 1.1, Good and Gaskins (1971) proposed to estimate
f via the penalized likelihood method. Further developments on the line have been made by Leonard
(1978) and Silverman (1982), among others, and recently by Gu and Qiu (1991) and Gu (1991). In
this article, I shall apply the techniques emerged in the recent developments to study the estimation
of f in the biased sampling models.

The penalized likelihood method estimates f by the minimizer of a functional L( f|data)+AJ(f),
where L(f|data) measures the lack of fit, J(f) measures the roughness, and A > 0 controls the
tradeoff. Assume f > 0 on X. Leonard (1978) introduced the logistic density transform f =
e/ [y €9 where g is to be estimated, which is constraint-free and assures the estimate to be a
genuine density. To make the transform one-to-one, Gu and Qiu (1991) excluded the space span{1}
of constant functions from the model space of g. The smoothing spline estimate of f for ordinary

sampling defined by Gu and Qiu (1991) is thus e/ [, €9 where the § is the minimizer of
1 & A
— =3 g(X) +1og [ &+ 5(g) (1.1)
n =1 X 2

subject to g € H, where H A span{l} is a Hilbert space of functions on X and J is a square
(semi)norm in H with a finite dimensional null space J; C H. The first term in (1.1) is simply
the standard minus log likelihood. For (1.1) to be well defined at ¢ = 0, X has to be finite. For
the first term of (1.1) to be continuous in g, it shall be assumed that an evaluation [z]g = g(z) is
continuous in H. A Hilbert space in which evaluation is continuous is known to be a reproducing
kernel Hilbert space possessing a reproducing kernel R(2,y), a positive-definite bivariate function
on X X X, such that span{R(z, ),z € X} = H and (R(z,-),9(-)) = f(z); see Aronszajn (1950).
Since (R(x,), R(2,-)) = R(z,z), |[z]g] £ RY?*(z,2)||g|]| by Cauchy-Schwartz and the equality holds
when g = R(z,-), so the norm of [z] is R'/?(x,2). When R(z,y) is continuous, ¢ € H is continuous,
e Riemann integrable, and R(z,x) bounded on a bounded X, and in turn the second term of (1.1)
is continuous in ¢ via the Riemann sum approximation of the integrals. By estimating ¢ in H, one
implicitly assumes that the truth go is a member of H, whose smoothness is characterized by the
square (semi)norm J. Let SKL(g,h) be the symmetrized Kullback-Leibler between €9/ [, €9 and
e"/ [, e*. Under appropriate conditions, Gu and Qiu (1991) obtained the asymptotic convergence
rate of § in SKL(g, go) and derived an adaptive semiparametric estimator §, such that SKL(4y, go)

shares the same rate as SKL(g, go). Gu (1991) developed an automatic algorithm to calculate g,



with a properly chosen A.

Note that although the integration measure in f, €9 of (1.1) is usually understood as the uniform
measure on A’, neither the theory of Gu and Qiu (1991) nor the algorithm of Gu (1991) discriminate
against other measures. By the chain rule of the Radon-Nikodym derivative, the biased samples
from w(z) f(z) under the uniform integration measure are simply ordinary samples from f(z) under
the integration measure v,,(A) = [, w(z)dz. So for a singleton 7 such as the length-biased model of
Example 1.2 there is nothing to be done. The remaining of this article documents the extensions of
the theory and the algorithm to a general 7 where one has to combine information from different
types of sources. The development parallels those of Gu and Qiu (1991) and Gu (1991) and is
organized as follows. In Section 2, I shall define the penalized likelihood estimator § and discuss
its existence, define a symmetrized Kullback-Leibler SKL(g, k) properly modified according to the
sampling structure, and discuss the smoothness assumptions. In Section 3, SKL(g, go) is calculated.
In Section 4, a semiparametric §,, is proposed and SKL(§y, go) calculated. Section 5 discusses the

calculation of §, with an automatic A and Section 6 presents simulation results.

2 Penalized Likelihood Estimation

Assume f > 0 on a bounded A'. Based on independent observations (t;, X;), ¢ = 1,---,n, where
Xilt; ~ w(ts,z) f(z)/ [ w(ts,z) f(z), the likelihood of f = €9/ [, e is
n

H{w(ti,Xi)eg(X")//X’w(ti,ﬂ«’)eg(x)}- (2.1)

=1
Define the penalized likelihood estimator of f as €9/ [, 9, where the § minimizes
1 1¢ o) 4 A
PA(9) = —5 2o0(X0) + 7 Ylog [ u(t, )@ + 55(9), (2:2)
=1 =1 ’

subject to g € H 2 span{l}, and H is a reproducing kernel Hilbert space with a continuous
reproducing kernel R and J is a (semi)norm in H with a finite dimensional null space J,. The
functional (2.2) reduces to (1.1) for the ordinary sampling model of Example 1.1. Examples of
(X, H,J) can be found in Gu and Qiu (1991, §2).

Theorem 3.1 of Gu and Qiu (1991) states that, if the likelihood part of (2.2), L(g) say, is

continuous and strictly convex in g € H, then the minimizer of (2.2) in H exists whenever it exists



in Jy. For L(g) to be continuous in g, it suffices to further assume that w(¢;,z) is bounded. For

L(g) to be strictly convex in H 2 span{1}, it is necessary and sufficient (by Holder’s inequality)

to have X = Ui<icn{z : w(#;, ) > 0}, which essentially means that the data do carry information
about f on the whole domain X.

I now derive an appropriate score for assessing the estimation precision. It is easy to verify that
the symmetrized Kullback-Leibler between we?/ [, wed and we?/ [, we” is

wed

weh
SKLu(9,0) = [ (0= W s~ T

Given data from we?°/ [, we9°, SKL,(§, go) defines a proper measure for the estimation precision.
In the general two stage sampling setup,

w(t,z)ed®) w(t, z)e®)

SKL(5 W) = [ m(0) [ (006) = Mot~ Towt e

) (2.3)

defines a weighted average of SKL,,’s with the weight function m(%) proportional to the resources
allocated to w(t,z)e*(®/ [, w(t, 2)es(®), and hence SKL(§,go) makes an adequate criterion for
assessing the quality of ef/ [, €9 as an estimator of 92/ [, €% under the biased sampling structure.

Let pg(h) = [rm(t)ug(h|t) where pg(hlt) = [y h(z)w(t,)e9@)/ 1 w(t,z)e?®). Using the
boundedness of R(z,z) and the Riemann sum approximation of integrals, it can be shown that

Eg+af(h) is continuously differentiable as a function of the scalar « for ¢, f,h € H, and

dﬂgzoolzf(h) - [rm(t){/igmf(fhﬁ) — bgtaf (flt)igras(hlt)}. (24)

By the mean value theorem,

SKL(§,90) = ne(d — 90) — tgo(d — go0)

/]_ m(t){/u'go+oz(§—go)((ﬁ - gO)Qlt) - (l"go+a(§—go)(g - gOlt))2}

L’m(t){ﬂgo((g - 90)2|t) - (Ngo(g - g0|t))2}

‘/(g - gO)a

X

where o € [0,1] and

V(h) = V(h,h) = Voo (h, h) = | m(t)vg(hft) = | m(t){sgo(h*[t) — (hge(hI1))?}, (2.5)
T T

and vy(hft) = vg(h, h|t) = pg(h?}t) = (pg(hlt))%. V(§ — go) is a properly weighted mean square

€rror.



Under the condition &' = Upm(s)>o{z : w(t,2) > 0}, V(g) defines a square norm in H 2 span{1}
which is of direct interest under the stochastic structure. J(g) defines the notion of smoothness.
The characterization of smoothness is via an eigenvalue analysis of J with respect to V. A bilinear
form B is said to be completely continuous with respect to another bilinear form A, if for any ¢ > 0,
there exist finite number of linear functionals I3, - -, Iy, such that I;(n) = 0, 5 = 1,---, k, implies

that B(n) < €A(n); see Weinberger (1974, §3.3).
Assumption A.1. V is completely continuous with respect to V + J.

Under A.1, using Theorem 3.1 of Weinberger (1974, p.52), it can be shown that there exist ¢, € H
and 0 < py T o0, ¥ = 1,2,--+, such that V(,,¢,) = 8,, and J(¢,,¢,) = p,6,,, where §,, is
the Kronecker delta; see Gu and Qiu (1991, §4). Fourier expansion ¢ = 5, g,¢, also exists for
g € H when convergence is defined in the (V + J) norm. Since J(g) = ¥, gZp, and p, T o0, A.1
implies that the term AJ(g) in (2.2) for any fixed X restricts the model space to an effectively finite
dimension in terms of the V norm, which is necessary for any possible noise reduction, and that
the effective model space dimension can be expanded by letting A\ — 0 as n — oco. The rate of

growth of p, quantifies the smoothness of members of H.
Assumption A.2. p, = ¢,v", where r > 1, ¢, € (31,2), and 0 < 1 < B < 0.

The asymptotic behavior of the estimator depends on n, A, and 7.

3 Asymptotic Convergence

Assume gg € H. Let ¢; be the minimizer of

02(0) = =3 0060 + 1 Dbl + V(6 = )+ 310). (3.1)
Substituting in the Fourier expansions g = 3", 9,4, and go = Y, 9,00, , the Fourier coefficients of
g1 can be easily solved to be g,,1 = (B, +9.,0)/(1+Ap,), where B, = 0= 30 (A (Xs) — pgo (D0 ]t:))-
It is obvious that £S, = 0 and EB2 = n~1. Theorem 4.1 of Gu and Qiu (1991) holds verbatim but

with the modified definitions of V' and ¢y in the current more general setup.

Theorem 3.1 Under A.1 and A.2, asn — o0 and A — 0, V(g1 — go) = Op(n~'A7Y" 4 X) and
M (g1 = go) = Op(n™1 A7 1 2.



Let Ay n(@) = Pra(g + ah) and By r(a) = Qa(g + ah). It is clear that

0= Ag5-4(0) = “% Zn:(!] - g1)(Xi) + %Zn:#g‘(g —qilt:) + AJ(§,9 — 91) (3.2)

=1 i=1

and

. 13, 1& . , \
0= By 5-6:(0) = == > (§—91)(X)+ =D 0o (§—01lt:) +V (91 =90, §— 1) + M (91, §—91). (3.3)

Subtracting (3.3) from (3.2), some algebra yields

13 . . . . 13 ) )
p > {ug(d—g11t:) —pg, (§—a11t:)} AT (G—g1) = V{g1~g0,9=91)—~ D {1t (§—911t:) —pgo (§—g118:)}-
=1 =1
(3.4)

Assumption A.3. For g in a convex set By around g containing § and ¢,

Jeq, e € (0,00) such that cjvgy(h|t) < ve(h|t) < covgy(hft), VE € T.
A .3 assures the equivalence of the V distance and the SKL in By.

Assumption A.4. 3e3 < 0o such that [ m(t)(vg,(4,[t))? < c5, V.
A 4 is trivial when 7 is finite, noting that V(¢,) = 1.

Theorem 3.2 Under A.1 - A.4, as A — 0 and A" — oo, V(§ — g1) = Op(n A~V 4 X) and
A(§ = g1) = Op(n~A7Y" 4 X). Consequently, V(§ — go) = Op(n~IA"Y" £ X), MJ(§ — go) =
Op(n~ A" 1 X), and SKL(g,g0) = Op(n~1AY/7 4 )).

Proof The second part of the theorem follows from the first part, Theorem 3.1, and A.3. Below is

a proof of the first part. By A.3 and the mean value theorem,
1 & 1 &
c1— Z Vg0 (§ — 91t:) < ~ Z{lbg(ﬁ = g1lt:) — pg, (§ — qulti)} (3.5)
i=1 i=1
Via the Fourier expansion (§ — ¢1) = >, (6 — 9v,1)%0,

1 .
=22 00 (§ = alts) = V(5 = g0
=1

|30 300 = 00— 91 3 a1 8ult) ~ V(61,0

i=1

DD L+ 2L+ 20) (G0 = 901)2 (0 = 911)T?

IN



Do+ 0+ Apu)—l{%‘f: g0 (B0, Bults) = V(4u, 6) T2
v ou i=1
(V + )3 = 91)0,(n~1/2A7")

(V+ AT)(§ = g1)0p(1), (3.6)

where 3°,(1 4 Ap,)™! = O(A~Y/7) (Gu and Qiu, 1991, Lemma 4.2) and {n=1 "%, v, (¢, dults) —
V(¢u,du)}? = Op(n~1) (by A.4). Similarly,
1 & . ) 18 )
= 2 {10 (8 = 91lts) = o (3 — alt)} = ¢ 3 5 (91 ~ 90,9 — g lt), (3.7)
=1 =1
where ¢ € [c1, ¢9], and
1< ) . X
|;Z"go(gl—go,g—gl|ti)—v(91—go,g—gl)| = (VA2 (G=g1)(V +2AI)2(g1 - go)o,(1). (3.8)
=1

Combining (3.5) through (3.8), (3.4) leads to
(eV + A1) — g1)(L+ 0p(1)) S (V + ATV /3G = g1)(V + AT) (g1 = go)(Je — 1] + 05(1)). (3.9)

The first part of the theorem follows from (3.9) and Theorem 3.1. O

Note that for a singleton 7, A.3 can be reduced to c;vg,(Alt) < vy(hjt) only, nA%" — oo to
nAl/" — oo, yet the first part of Theorem 3.2 refined to (V4 A= g1) = op(n~ 1A 1)),
SKL(9,g0) = Op(n~'A=Y/" + X) then needs a separate proof under the reduced A.3. See Gu and
Qiu (1991, §4).

4 Semiparametric Adaptive Estimator

The space H is in general infinite dimensional and § not computable. I shall propose and justify a
computable semiparametric adaptive estimator in this section. Given a norm in J,, H has a tensor
sum decomposition such that J is a square norm in ¥ & J;. Let H, = Jy @ span{Ry(X;,-),i =
1,---,n} where Ry is the reproducing kernel of (K& J., J). Define §, to be the minimizer of (2.2)
in H,.

Assumption A.5. [r m(t){ve, (S Pult) + (tgo(Srbult) — tge($8,))%} < s < 00, Vo, 1,

Lemma 4.1 Under A.1, A.2, A.4 and A.5, as A — 0 and A" — oo, V(h) = AJ(h)o,(1),
Yh € H O Hn.



Proof: Forhe HO&H, CHO JL, h(X;) = J(Ry(Xi,+),h) = 0. Similar to (3.6),
V(h) <L l‘go(hz) = Zzhuhu{ﬂgo(¢u¢u) - %Z¢V(Xi)¢#(Xi)} <V + AT)(h)op(1),
v o =1

where h = Y, h, ¢, is the Fourier expansion and {n=1 % ¢,(Xi)du(Xi) —pigo (90 8,)}% = Op(n71)
by A.5. O

Theorem 4.1 Let g, be the projection of § in H,. Under A.1 - A.5, as A — 0 and n\2/" — oo,
V(G — gn) = 0p(n" A" £ ) and AJ(§ — gn) = Op(n=2A"Y7 4 }).

Proof. From Az 3-,.(0) = 0 (cf. (3.2)) and J(gn,§ — gn) = 0,
5 1N, 5 1 N 5
/\J(g - gn) = ; Z{(g - gn)(Xi) - :ugo(g - gn|ti)} + ;{ Z{:u‘go(g - gnlti) - :Ué(g - gnlti)}' (41)
i=1 =1
Using the technique of (3.6),

234G = 90)(X0) — o8 = gt} = 1 (0 = )l < (V4 ATP2(G = 9a)0p(n /20712,
= ’ (4.2)
Similar to (3.7) and (3.8),

1< R R . . » . o
|= > a0 (§=9nt:) =15 (3=0nlt)}] = €V (§=9n, §=090)+(V + AT )2 (= ga)(V+2T)2(g ~g0)oy(1).
1=1
(4.3)
Combining (4.1) - (4.3) and Theorem 3.2,

A (G = gn) < (V + ADM2(G — g2)0p(n~H2A712 4 N2, (4.4)
The theorem follows from (4.4) and Lemma 4.1. O

Theorem 4.2 Modify A.3 to also include g, and §, in the convex set By. Under A.1 — A.5, as
A = 0 and aX" — 00, V(g ~ gn) = Op(n A7 1 X) and M(n ~ ga) = Op(n™"X~1/7 4 1),
Consequently, V (§n — go) = Op(n~ A=Y+ 0), AJ(§n — g0) = Op(n~'A"Y7 4+ X), and SKL(gn, go) =
Op(n=IA7 4 ).

Proof: Tt suffices to prove the first part. From Aj, 5. ,.(0) = A;5,-5(0) = 0 (cf. (3.2)), noting
that J(g - gnagn) = J(g ~ gn;, .an) =0s0 J(ﬁ,ﬁn - g) = '](gm gn - gn) - J(ﬁ - gn), it can be shown



that

R . . R
oy Z{ﬂﬁn(gn — gnlts) — Bgn(Gn = gnlt:)} + AT (Gn — gn) + AJ(§ — gn)

= %i{ﬂﬁ(gn - gnlti) - :u‘gn(gn - gnlti)} + %Zn:{/-"ﬁ(gn - gltl) - iu‘yo(gn - f]ltz)}
LS o (n — 318) = (92 ~ )], (45)
i=1

Similar to (3.5) and (3.6),

n

e1tV(gn — gn) + (V + AJ)(Gn = gn)op(1) < %Z{,"'ﬁn(gn ~ gults) = tg, (Gn — gnlts)}. (4.6)

=1

Noting that V(§ — gn) = AJ(§ — gn)op(1),
1& R . R A
|; E{.U'!?(gn - gnlti) - /‘gn(gn - .‘]nlti)}l = (V + /\J)l/Z(gn - gn)(’\J)l/2(g - gn)op(l) (4'7)
i=1
and

I% zn:{ﬂg(gn — §lti) ~ pgo(gn — Gt} = (V + ANV = g0)(A)2(G — gn)op(1). (4.8)

=1

Combining (4.6) through (4.8) and (4.2), (4.5) leads to
(V4AT)(Gn=g)(1+05(1)) € (VT2 (G ga)op(n= A/ 4 A12) 10, (n= LAV 1), (4.9)

The first part of the theorem follows. O
For a singleton 7, Theorem 4.2 remains valid when A.3 is reduced to ¢;v4,(h|t) < vy(h|t) only,

but SKL(§n,go) = Op(n~2A~1/" 4+ X) needs a separate proof; see Gu and Qiu (1991, §5).

5 Computation

Let {¢,,v = 1,---,M} span J; and & = Ry(X;, ). By definition, a function in M, has an

expression

n M
g=> cli+> dp, =€Ec+¢Td, (5.1)

=1 v=1

where £ and ¢ are vectors of functions and ¢ and d are vectors of coefficients. Substituting (5.1)

into (2.2), g, can be calculated via minimizing

Py(e,d) = —%1T(Qc + Sd) + ;I;Zlog/x w(t;, z) exp{€Fec + ¢Td} + %CTQC (5.2)
=1

10



with respect to ¢ and d, where Q is n x n with (4, 7)th entry &(X;) = Ry(X;, X;) and Sisn x M
with (i,v)th entry ¢, (X;).

Let § = £T¢ + ¢Td be the current estimate of g. For fixed A, the one-step Newton update for
minimizing (5.2) satisfies

Vee+ A V c 1/n — pe + Vo
eetAQ Ve _ Q1/n —pe+ Ve ’ (5.3)

Ve V.o d STa/n — py + Vy
where V¢ is of size n x n with (¢, 7)th entry n™! 37 v5(&i, &51t0), Veg n X M with (4,7)th entry
n~l Y v5(& dult), Ve M x M with (v, p)th entry n™t Y1) v5(du, dults), Veg n x 1 with ith
entry n~' 370 v5(6i, §ltr), Vg M x 1 with vth entry n=1 1) vz(dy, §iti), pe 7 X 1 with ith entry
=l Y ws(&iltr), and pe M X 1 with vth entry n=t %1 ps(é,|t).

The choice of A is crucial to the performance of the estimator. Among natural performance
criteria are SKL(gn, g0) and V(§n, go), where the mixing function m(t) is to be substituted by the
empirical distribution of ¢; as in (5.3). From §, the one-step Newton update provides a group of
estimates with a variable A, and it is natural for one to try to calculate a better performing update
by selecting a proper A. Based on §, L3(g,90) = V5(9)/2 — V;(g,5) + 13(9) — 1e(g) is a proxy of
SKL(g, go) or V(g — go), where p4,(g) may be estimated using some variate of the sample mean and
other terms can be calculated directly. A performance-oriented iteration can then be conducted to
jointly update (A, g) by choosing A to minimize L;(g,go) for g in the group of the one-step Newton
updates, where f,g(g,gg) is Ls(g,g0) with an estimated pg,(g). Relevant discussions, formulas,
and an algorithm for a singleton 7" can be found in Gu (1991, §§3-4), which hold verbatim in the
more general setup of this article with the modified definitions of quantities in (5.3). Note that
the algorithm does not require the paired data (¢;, X;), but only the samples X; and the empirical

distribution of the biasing functions indexed by ¢;.

6 Simulations

The simulations in this section augment the univariate simulations of Gu (1991, §5). The test

density was chosen to be proportional to

fo((L) - %6—50(3:—.3)2 + %e--SO(a:—J)2 (61)

11
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Figure 6.1: Efficacy of Automatic Algorithm on Length-Biased Data.

on X = [0,1]. As specified in Gu (1991), J. = {(- — .5)} and Ry(z,y) = k2(2)ka(y) — k(|2 — ¥|)
which correspond to cubic spline smoothing, where ky = (k3 —1/12)/2, ky = (k$—k}/2+7/240)/24,
and k; = (- —.5). The simulations of Gu (1991) were on the ordinary samples of Example 1.1. The
simulations presented here are on the length-biased samples of Example 1.2 and on the mixture of
ordinary and length-biased samples of Example 1.3.

For Example 1.2, I generated 100 sets of length-biased data of sizes n = 100 from (6.1). The
performance-oriented iteration converged on 99 data sets. Fixed-A solutions of (5.2) were also
calculated on a grid log;q A = (—7)(.2)(—3) for all the data sets. In the computation, the integrals
appearing in the quantities in (5.3) were approximated by summations over 300 equally spaced
points on (0,1); see Gu (1991, §4) for the motivation and justification of such a practice. The
symmetrized Kullback-Leibler SKL(§n,g0) and the mean square error (MSE) V(§, ~ go) were
calculated for all the automatic and fixed-A estimates, where the integrals were also approximated
by the summations over the 300 points.

For the 99 data sets on which the automatic algorithm converged, the minimum SKL and the
minimum MSE of the fixed-\ estimates on the grid were identified. The SKL of the automatic

estimate is plotted against that of the best estimate on the grid in the left frame of Figure 6.1.
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Figure 6.2: A Good Estimate and a Poor Estimate from Length-Biased Data.
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Figure 6.3: Efficacy of Automatic Algorithm on Mixture Data.

Two cases, the best and the worst performances of the automatic algorithm on the 99 data sets,
are marked differently. A point on the dotted line indicates a perfect performance of the automatic
algorithm. The efficacy of the automatic algorithm in SKL and MSE, defined by the ratio of the
minimum score on the grid and the score of the automatic estimate, are summarized in the right
frame of Figure 6.1 in box-plots. The best automatic estimate corresponding to the plus in the
left frame of Figure 6.1 is plotted in the top frame of Figure 6.2 as the dashed line, superimposed
with the true density as the solid line and the raw data as the finely-binned histogram in dotted
lines. The worst automatic estimate corresponding to the star in the left frame of Figure 6.1 is
similarly plotted in the bottom frame of Figure 6.2, where the best possible estimate on the grid is
also superimposed as the dashed line with long dashes.

For Example 1.3, I generated 100 sets of mixed samples of sizes n = 100. In each of the data sets,
50 samples were drawn directly from (6.1) and 50 were drawn with a biasing function w(z) = =.
The automatic algorithm converged on 99 data sets. The counter parts of Figures 6.1 and 6.2 are

presented in Figures 6.3 and 6.4.
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Figure 6.4: A Good Estimate and a Poor Estimate from Mixture Data.
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