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Abstract

A generalization of the notion of a stationary Markov chain in more than one dimensions
is proposed, and is found to be a special class of homogeneous Markov random fields.
Stationary Markov chains in many dimensions are shown to possess a maximum entropy
property, analogous to the corresponding property for Markov chains in one dimension. In
addition, a representation of Markov chains in many dimensions is provided, together with

a method for their generation that converges to their stationary distribution.
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1. Introduction

Stationary Markov chains have long been among the most favorite models for sequences
{X(3),i € Z} of random variables. Stated in words, a stationary sequence is said to be Markov
if the conditional distribution of X (0) given the values of X () with 7 < 0, depends only on the
value of X(-1).

Supposing that, for any m € N, the random variables X(1),...,X(m) possess a density
f with respect to some o-finite measure, the Markov chain property for stationary sequences

reads: for any m € N,
FX(0)X(8), -m < i < 0) = F(X(0)|X(-1)) (1)

where f(X(0)|X(¢), -m < ¢ < 0) denotes the conditional density of X (0) given the values of
X(~1),...,X(—=m+ 1). If instead of (1) the sequence satisfies f(X(0)|X(7),—m < i < 0) =
F(X(0)|X(¢), —r < i < 0), for any m > r, then it referred to as a Markov chain of order .

For homogeneous random fields in the plane {X(¢,5),i € Z,j € Z}, a slightly different
definition applies. In particular, a homogeneous random field is said to be Markov if the
conditional distribution of X (0,0) given the values of X (¢, ) with (¢,7) # (0,0), depends only
on the immediate neighbors of point (0,0), where the set of ‘immediate neighbors’ is the set
of points closest to (0,0) in some metric. For the rigorous definition and extension to higher
order Markov random fields, see Dobrushin (1968).

Again assuming that the X (7, 7) random variables possess densities, the Markov property

for homogeneous random fields reads: for any m € N,

F(X(0,0)[X (%, 5), 2] < m, 3] < m, (3,5) # (0,0)) = f(X(0,0)]X(-1,0),X(0,1), X(1,0), X(0,-1))
(2)
where Euclidean distance was used to find the points closest to (0,0). An analogous definition of
the Markov property holds for general homogeneous fields in n dimensions, i.e. {X(t),t € Z"}.
For a stationary sequence X(¢), (which is a homogeneous random field in one dimension),

to be a Markov random field according to Dobrushin’s definition it must satisfy
FX(0)[X(8),0 < [¢] < m) = f(X(0)]X(-1),X(1)) (3)
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for any m € N. It is apparent that the Markov random field property (3) is weaker than
the Markov chain property (1), and a stationary sequence X (i) might satisfy (3), without
necessarily being a Markov chain. Consider Dobrushin’s example where a (non-stationary)
sequence has only two and equiprobable sample paths, namely (...,0,0,0,0,0,0,...) and
(..,0,0,1,2,0,0,...). For a stationary example, consider a binary (taking on the values 0
and 1) stationary sequence having only three and equiprobable sample paths, i.e., assume
that {X(0),X(1),X(2),...} can be {0,1,1,0,1,1,0,1,1,0,,...}, {1,1,0,1,1,0,1,1,0,1,...},
or {1,0,1,1,0,1,1,0,1,1,...} with equal probability. It is immediate that this stationary se-
quence is a Markov chain of order 2, satisfying (3), without satisfying (1). In contrast, it can
be easily checked (using the chain rule of probabilities) that a stationary sequence satisfying
the Markov chain property (1), satisfies also the Markov property for random fields (3).
Specifically, the Markov chain property (1) is a ‘predictive’ property, while (3) is an ‘in-
terpolative’ property. The situation is also illustrated if we consider the case where X (¢) is a

Gaussian Markov chain of order r, generated by the linear autoregressive model
T
X(8)+ Y aX(t—i) = 2(t) (4)
i=1

where Z(t),t € Z, is a sequence of i.i.d. N(0,1) random variables. Then the optimal (in the
Hilbert space sense) predictor of X(0) given the values of X (7) with 7 < 0 is

E(X(0)|X(i),i < 0) = E(X(0)|X(i),—r <i<0)=—) a;X(—i)
1=1
and the optimal interpolator given the values of X (i) with ¢ # 0 is

E(X()|X(i),i # 0) = E(X(OIX([),0< il <) =~ ¥ pX(-i)

o<|t|<r

where §; is the inverse autocorrelation sequence (see e.g. Politis (1992)). It is then easy to see

that the sequence X (2) also satisfies the ‘interpolating’ Markov equation

XM+ Y mX(t-i)=UQ) (5)

o<i|<r

where U(t),t € Z, is a sequence of mean zero, normal random variables, independent of the



X (t) sequence, and with autocovariances satisfying

1 fort=0
E[U(@u)] _ ) .
= <
EU(0) pr for0<|t|<r
0 forlt]>r

In his pioneering paper, Whittle (1954) considered both the ‘predictive’ and the ‘interpola-
tive’ Markov models (4) and (5), and argued philosophically that, because time has a natural
‘direction’, model (4) is suitable for time series, while a generalization of model (5) to the
random field case (in the spirit of (3)) is more suitable for spatial processes. A different philo-
sophical position was expressed by H. G. Wells in his novel ‘The Time Machine’, where he
claimed that the only distinction between time and space is that we can not move in time,
whereas we do move in space.

Of course, a more pragmatic approach is to just consider model (4) as more restrictive
than model (5) and study its properties. In fact, Tjgstheim (1978, 1983) studied the extension
of the ‘predictive’ (unilateral) autoregressive model (4) to the case of random fields in many
dimensions, and obtained many important results concerning estimation of parameters and
prediction, that are in parallel to the one-dimensional case. Since autoregressive processes are
special cases of Markov processes, an extension of the general Markov chain property (1) to the
case of random fields in many dimensions might also be worth-while, taking into account the

popularity of Markov chain models for sequences. This is the subject of the following sections.



2. Some definitions

Suppose {X(t),t = (t1,%2,...,%,) € Z™} is a homogeneous (stationary, shift invariant)
random field in n dimensions, with n € N, i.e. a collection of random variables X (t) taking
values in the set § C R, defined on a probability space (2,.4, P), and indexed by the variable
t € Z™. In the particular cases where n = 1 or 2, we might equivalently denote the random
field by {X (¢),7 € Z}, and {X(¢,7),% € Z,j € Z} respectively.

It will be assumed that the marginal distribution function of X(t) possesses a density f
with respect to a measure v on R. In general, it will be assumed that for any finite set A C Z",
with cardinality m, the marginal distribution function of {X(t),t € A} possesses a density
with respect to the product measure »™ on R™, and the generic notation for this density will
be f.

We will now recursively define a certain notion of the ‘past’ of X(t) in the direction 7 (where
1 < j £ n) in many dimensions. So, let u = (u1,...,%,), and for n = 1 (and hence j = 1 too)
define

Past (X (1) = {X(u) 1wy < 11} (6)

For a general n > 1 define

Past{™ (X (t)) = {X (u) : 4j < ;} U Past{ (X (tle;=u;)) (7)

J-1]*

where (X (t|;=v,)) is the random field in » — 1 dimensions obtained by observing the random

field {X (t} only at points in the hyperplane t; = u; in Z", and the function [-]* is defined by

_ j=1 ifl<j<n
[1—1]*={ o
n ifj=1

For example, in two dimensions (n = 2)
PastP(X(4)) = {X(0) : u; < t;}U{X(u) s uj = tj,ux < ti, k # 7} (8)
We will also define
Future{ (X (1)) = {X(u) : X (u) & Past{" (X (1))} - {X(t)} 9)

to be the ‘future’ of X (t) in the direction j.



The general ‘past’ of point X (t) in n dimensions is defined to be
Past™ (X (t)) = N’y Pastt™ (X (t)) (10)

In all cases, if the dimension n is apparent, the superscript (n) will be omitted.
The reason behind the above definition of Pastg-")(X (t)) is to construct a particular ordering

of the elements of a cube of points in Z".

Lemma 1 Let N be any positive integer, and let Cn the cube of points t € Z" whose coordi-

nates satisfy |[tx| < N. Ift,u are two points in Cy, (with t # u), then
|Past{™ (X (£))N Cn| # |Pastt™ (X (w)) N Cw|

for any ‘direction’ 1 < j < n, where | - | denotes cardinality. In particular, IPastg-n)(X(u)) n
Cn| < |Past{™ (X ()) N Cn| if and only if X(u) € Past{™(X(t)) N C.

Proof. (Induction.) For n = 1 (or 2) the Lemma is obviously true. Suppose it is true
for n = k—1 > 1. From equation (7) it follows that if u; < t;, then Pastg-k)(X(u)) is
strictly included in Pastgk)(X(t)). Similarly, if u; > t;, Pastg-k)(X(t)) is strictly included in
Pastg-k)(X(u)). If finally u; = t;, then |Past§-k)(X(t)) NCN| # |Past§-k)(X(u)) N Cn| by the

induction hypothesis. O

The above Lemma shows that the notion of ‘past in the direction j’ can be used to construct
an ordering of the elements in Cy. The following chain rule of probabilities using this ordering

will be the main tool in dealing with Markov chains in many dimensions.

Lemma 2 (Chain rule ‘in the direction j’.)

The joint density of the random variables X (t),t € Cn can be ezpanded as

fX(),teCn) = [ FAX()ICn N Pastj(X(t))) (11)
teCy

The ordering ‘in the direction j’ and the associated chain rule in two dimensions (n = 2) have
been used previously (cf. Anastassiou and Sakrison (1982)), in the context of the computation

of the entropy rate of a random field in the plane (see Section 4 for a definition).
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We will also make use of the [, norm and distance in Z", and for any two points t and u

in Z", define for 1 < p < o0

dy(t,u) = (X It - usf?)1 7 (12)

and

doo(t, u) = sup |t; — u;] (13)
J

and for two sets E;, E; in Z", define for p € [1, o0]

dp(El,Ez) = inf{dp(t, u) :teEj,ue Eg} (14)
Let
(X (1) = {X(u): 0 < dy(t,u) < 7} (15)

be the set of r-close neighbors, and II,(X(t)) = H,(,l)(X(t)) the set of immediate neighbors of
X(t). Also let
LI(X (1)) = ID(X(t)) N Past™ (X (1)) (16)

be the set of r-close neighbors contained in the past of X(t), and L,(X(t)) = L,(,l)(X(t)).
We will say that the homogeneous random field {X(t),t € Z"} is a Markov chain in the
direction jif

F(X(¥)[Pastj(X(t))) = f(X(t)|Lp(X(1))) (17)

and a Markov chain of order v in the direction jif

F(X()|Past;(X (1)) = F(X(B)ILT(X(t))) (18)

We will also say that {X(t)} is a Markov chain if it is a Markov chain in all directions, and a
Markov chain of order r it is a Markov chain of order r in all directions. Note that the Markov
neighborhoods depend on the norm [, chosen, so that a more accurate statement would include
the value of p if it is not apparent.

We close this section with an example of a Markov chain in the plane (more examples will
be given in Section 5). For any fixed i, let {X(4,7),7 € Z} be a stationary Markov chain, and
let the Markov chains {X(i,-),¢ € Z} be independent and identically distributed. Then X (3, 5)

can be verified to be a Markov chain in two dimensions (with respect to Euclidean distance).



3. Markov chains and Markov random fields

We now show that if the homogeneous random field {X(t),t € Z™} is a Markov chain, then

it is also a Markov random field in the sense of Dobrushin (1968), for any n € N.

Theorem 1 Suppose the homogeneous random field {X(t),t € Z"} is a Markov chain of
order r. Let N be any positive integer with N > r, and let Cy the cube of points t € Z™ whose

coordinates satisfy |ty| < N. Then it is true that

F(X(0)|X(u),u € Cy - {0}) = F(X(0)IN(X(0))) (19)

Proof. We will repeatedly make use of the chain rule ‘in the direction j’ expansion of

probabilities that was given in Lemma 2. Let M = N + r, and write
f(X(u)au € CM)
f(X(u),ue Cy — {0})
[ f(X(0) = z,X(u),u € Cy — {0}|Sp)dv(z)
X=X u € Oy — (0)5)
f(X(u),ue Cn|Sp)
where Sp = {X(u),u € Cy — Cn}, and we have assumed without loss of generality that
F(X(u),u € Cur - {0}) > 0.
The reason for adding this extra conditioning on Sp is to have all points in Cy have full
L, neighborhoods in their (limited by Civ) ‘past’. Define Past® (X(t)) = Cn N Past;(X(t)),

and Future;-v(X(t)) = Cn N Future;(X(t)). Then, using the chain rule ‘in the direction j’ to

f(X(0)|X(u),ue Cy - {0}) = (20)

dv(x)] ™! (22)

expand the joint (conditional) density
f(X(u),ue Cn|Sp) = [] F(X(u)|SpU Past) (X (u)))
ueCy

in both numerator and denominator in (22), and after cancellations between numerator and

denominator, it is immediate that the quantity in (22) is equal to

/ f(X(0) = 2|Sp U Past} (X (0))) [Tee puturey (x (0y) S(X (£)|SP U Pasty (X (t)), X(0) = z)
f(X(0)|Sp U PastY (X(0))) HtEFutu're;-V(X(O)) f(X(t)ISp U Past) (X(t)))

dv(z)]™

(23)



where Past) (X(t)) = Cn N Past;j(X(t)), and Futurel (X (t)) = Cy N Future;(X(t)).

Observe that points t € F utm'e;-v (X (0)) are of three kinds:

(a) Sa = {t € FuturelY(X(0)) : Lg)(X(t)) ¢ Cn}, i.e. points that are r-close to the ‘side’
(boundary) of Cn that is parallel to the direction j;

(b) Sy = 5S¢ {t € FuturelY (X(0)): X(0) ¢ L,(,T)(X(t))}, where 5¢ = {t € Futurel (X(0)) :
L,(X(t) C Cn},i.e. points that are not r-close to the boundary, and whose L;T) neighborhood
does not involve X (0);

(¢) Sc = 8cn{t € Futurel (X(0)): X(0) € Lg)(X(t))}, i.e. points that are not r-close to the
boundary, and whose Lg) neighborhood does involve X (0).

Using the Markov chain property ‘in the direction j’ it is obvious that contributions from
points in S, cancel out between the numerator and denominator in (23). The points in S,
are a nuisance, but note that their contributions also cancel out between the numerator and
denominator, because of the added conditioning on Sp. Thus, the quantity in (22) is a function
of only the variables in S, U {X(0)} and their respective L, neighborhoods, that notably are
either in II,(X(0)) U {X(0)}, or can be obtained by points in II,(X(0))U {X(0)} by ‘moving’
a distance of at most r, in a direction other than j.

Now repeating the above procedure by taking chain rule expansions in all directions 1 <
Jj < n, (and using the symmetries of H;T)(X (0)) around any hyperplane defined by setting one
coordinate of Z™ to zero), it is shown that the quantity in (22) is a function of only the variables

in II,(X(0))U {X(0)}. This implies that the extra conditioning on Sp is immaterial, and that
F(X(0)|X(u),u € Cy — {0}) = f(X(0)|X(u),u € Car — {0}) = F(X(O)TI{(X(0)) (24)

and the theorem is proven.O
As an illustration, consider the case n = 2,7 = 1, and p = oo, in which case the II,
neighborhood is of square form (see Figure 1). Then the chain rule ‘in the direction 2’ is

associated with the ordering ‘in the direction 2’
(-N,-N),(-N,-N +1),...,(—N,N),

(=N +1,-N),(=N+1,-N +1),...,(=N + 1, N



(N,=N),(N,-N +1),...,(N,N)

and by a chain rule ‘in the direction j’, (with j = 1 or 2), we see that the quantity in (22) is a
function of only the variables in IIo(X(0)) U {X(0)}.

To further elaborate, consider also the case where n = 2,7 = 1, and p < oo, in which case
the II, neighborhood is of diamond shape, (it is essentially a /; neighborhood). This case is of
practical significance because it leads to a dependence structure associated with the well-known
Ising model for random fields.

In the same fashion, using the chain rule expansion ‘in the direction 1°, it is obtained that
the quantity in (22) is a function of only the variables IT; (X (0))U{X(0,0), X(1,1), X(-1,-1)}.
Using the chain rule ‘in the direction 2’, the quantity in (22) is shown to be a function of only
the variables IT; (X (0))U{X(0,0),X(1,-1),X(~1,1)}. Hence the quantity in (22) is a function
of only the variables II; (X (0)) U {X(0,0)} as desired.

Remark. Dobrushin’s (1968) definition is actually more restrictive than (19), in that the
conditional distribution of {X (t),t € A} given the values of {X(t),t & A} should depend only
on the immediate neighbors of set A, for any finite set A. This stronger property can be seen
to follow from a stronger (involving any finite set A) definition of the Markov chain property
of equation (17).

From the proof of Theorem 1 it is apparent that even if the homogeneous random field
{X(t),t € Z"} is a Markov chain in at least one direction, then it is also a Markov random field
in the sense of Dobrushin (1968), although the Markov random field dependence neighborhoods
are larger and not necessarily symmetrical. The following Corollary can be proved by a simple

chain rule expansion in the direction j, analogously to Theorem 1.

Corollary 1 Suppose the homogeneous random field {X (t),t € Z"} is « Markov chain of order
r in the direction j. Let N be any positive integer with N > 2r, and let Cy the cube of points

t € Z™ whose coordinates satisfy |ty| < N. Then it is true that

FX(0)IX (u),u e Cy - {0}) = f(X(0)LE(X(0))) (25)
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Remark. As a matter of fact, the Markov random field dependence neighborhood will
be a subset of H§,2T)(X (0)), and this subset can be identified given the specifics of the prob-
lem. For example, consider the case where n = 2,r = 1, and p = 1, and the random field
{X(t)} is a Markov chain in the direction 2. Using the chain rule ‘in the direction 2’, it
was shown that the quantity in (22) is a function of only the set of variables IT;(X(0)) U
{X(0,0),X(1,-1),X(-1,1)}. This implies, in the particular case, that

F(X(0)IX(u),u € Cn ~ {0}) = £(X(0)|A)

where A=II;(X(0)) U {X(1,-1),X(—1,1)}, which is quite smaller than the set H@(X(O)).
An analog to Corollary 1 was proved in Abend et al. (1965), for a type of binary random
field on a finite grid on the plane called a Markov ‘mesh’. Their definition of a Markov ‘mesh’
is related (with a different notion of the ‘Past’) to the definition of a Markov chain in one (of
the two) directions in the plane. That the notion of the ‘Past’ as defined in equation (7) is a

most useful one will be demonstrated in the next section.
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4. The maximum entropy property of Markov chains

In the literature of Gibbs measures (see for example the very thorough exposition in Georgii
(1988) and the references therein), it is well known that homogeneous Markov random fields
(in the sense of Dobrushin) possess a certain maximum entropy property. However, in the case
of random fields in one dimension (i.e. sequences), it has been shown (cf. Spitzer (1972)) that
it is actually stationary Markov chains that possess the maximum entropy property. In this
section it is shown that the maximum entropy property is intimately associated with our notion
of a Markov chain in many dimensions.

Some definitions are in order. Let A be a finite set in Z™ with cardinality m. The entropy

of the set of variables {X(t),t € A} is defined by (cf. Pinsker (1964))
H(X(),t € A) = —/f(X(t),t € A)log F(X(t),t € A)dv™ (26)

Similarly, the conditional entropy of the random variable X (u) given {X(t),t € A} is defined
by

H(X(u)|X(t),te A) = —/f(X(u),X(t),t € A)log f(X(u)|X(t),t € A)dy™"! (27)

where f(X(u)|X(t),t € A)is the conditional density of X (u) given the values of {X (t),t € A}.
The random field {X(t),t € Z™} is said to have an entropy rate

H(X(t),t € Cn)
|ICn|

= (25)

provided the limit exists, where C is the cube defined in Theorem 1, with cardinality |Cn| =
(2N + 1)™. For homogeneous random fields it can be shown (cf. Georgii (1988)) that the limit
exists (in [—o00, 0]), and can alternatively be calculated as

H(X(t),te Cf)
Nn

= (29)

where CJ"\} is the cube of points t € Z™ whose coordinates satisfy 0 < £, < N.

Theorem 2 Suppose the homogeneous random field {X (t),t € Z"} has the same L,(,T) marginal
density with the homogeneous random field {W(t),t € Z™}, i.e. suppose the distribution of the

12



set of variables {X(0)} U {X(t),t € L,(,T)(X(O))} is identical to that of {W(0)} U {W(t),t €
L;T)(W(O))}. Assume also that —oco < H(X(0)) < oco. If the field {W(t)} is a Markov chain
of order v in the direction j (with respect to the neighborhood L;T)), then hx < hw.

Proof. The proof uses a combination of methods from Anastassiou and Sakrison (1982),
Choi and Cover (1984), and Politis (1991).

Let an integer N > 7, and consider the density f(X(u),u € Cf;), and expand it using a
chain rule ‘in the direction j’ (cf. Lemma 2). This would yield the following chain rule for

entropies

H(X(t),te CH)= > H(X(1)|CH N Past;(X(t))) (30)
tecy

However, using the fact that H(A|B,C) < H(A|B) for any three random elements A, B,C

(‘conditioning reduces entropy’, cf. Pinsker (1964)), we have that
Y. H(X®)ICK N Past;(X(1)) < Y H(X(®)ICH N LP(X(+))) (31)
tecf tec};
Note that the computation of the RHS of (31) requires knowledge only of the distribution of
the set of variables {X(0)}U{X(t),t € L;,T)(X(O))}, which is (by assumption) identical to that
of {W(0)} U{W(t),t € L) (W(0))}. It follows that
2 HXMICENIPX ) = 3 HW®ICKn L (W (1)) (32)
tec tect
To complete the proof, observe that by a chain rule ‘in the direction j’ expansion of the

density f(W(u),u € Cf;) one obtains

H(W(t),t e C¥) = Z H(W(t)|CX N Past(W(t)) (33)

tecy
Note that, due to the Markov assumption, the sum in the RHS of (33) differs from that in
the RHS of (32) only in the contributions of the rN™~! points that are r-close to the sides
(boundary) of Cy that are parallel to the direction j, i.e. the points whose Lg) neighborhood
is not completely included in C3; (see Figure 2 for a two-dimensional illustration). Because of

the assumed boundedness of the entropy we can then write
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H(X(t),t € C) < HW(t),t € CF) + O(rN™1) (34)

Dividing by N™ and taking limits in the above asymptotic inequality the theorem is proven. O
The interpretation of Theorem 2 is that a stationary Markov chain {W(t)} in n dimensions

has maximum entropy among all homogeneous random fields that share with {W(t)} the same

‘local characteristics’, with respect to the neighborhood Lg).
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5. Stationary distributions and recursive generation of Markov chains

A natural question to ask regarding a Markov chain is whether it has a stationary dis-
tribution. Although, under regularity conditions, Markov sequences have unique stationary
distributions, the situation for Markov random fields on the plane (or higher dimensions) is
quite different (cf. Kindermann and Snell (1980)).

For example, consider a Markov Ising (that is, satisfying equation (2)) binary random field
on the square Cy in the plane (n = 2). Under some conditions, the dependence of the value
X(0,0) on the initially chosen boundary conditions (on the outside of Cy) does not diminish
as N — oo. Intuitively, this is due to the fact that the boundary increases in size as N — oo,
as well as to the ‘interpolative’ character of equation (2).

The situation is a bit more straightforward for Markov chains in many dimensions, essen-
tially because the chains can be generated in a certain ‘direction’ (the main diagonal), and are
not interpolated.

Consider a binary (taking on the values 0 and 1) homogeneous Markov chain X (¢, 7) on the

plane that satisfies
f(X(0,0)|Past;(X(0,0)) = f(X(0,0)]X(-1,0), X(0,-1)) (35)

for j =1 or 2. Note that, by Theorem 1, the Markov chain X(¢,7) is also an Ising model, i.e.
it also satisfies (2).
Let Yy be the sequence {X(7,5) : i+j = k}, i.e. an infinite ‘strip’ of X (¢, 7) points, running

along a line of 135° angle with respect to the first axis. Also let Yj be a real number in [0,2]

that has as a binary expansion the sequence Yy; for instance, let ¥, = > >°_ c,(ff) 2™™  where
we define

*) {X(—m/?,k+ m/2) if m is even

Cyy) =

X(2H k- =) if mis odd
Obviously, the sequences {Y,k € Z} and {Y;,k € Z} are in one-to-one correspondence with
each other, and they are both stationary.

Observe that, given the value of Yy, the values of Y1, Y5,... can be recursively generated.

As a matter of fact, the sequence {Y,k € Z}, is a Markov sequence, and hence so is the
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sequence {Yi,k € Z}. But, under regularity conditions (cf. Doob (1953)), the real-valued
Markov sequence {Y;,k € Z} possesses a unique stationary distribution. Hence, so does the
sequence {Y,k € Z}, as well as the homogeneous Markov chain X (¢,5) that is generated
recursively in the above manner.

Now consider another binary homogeneous Markov chain X (¢, j) on the plane that satisfies

(for j =1or 2)
f(X(0,0)|Past;(X(0,0)) = f(X(0,0)|X(-1,0), X(0,-1), X (-1,-1)) (36)

Defining the sequences {Y,k € Z} and {Yi,k € Z} as before, it is immediate that these
two sequences are now Markov of order 2. Thus, given the value of Yy and Y, the values of
Y2,Y3,...can be recursively generated, and (under some regularity conditions) the sequence
{Yi, k € 2}, as well as the field X (¢,7), will tend to the unique stationary distribution.

Both examples suggest that Markov chains in many dimensions can be generated recursively
along the main diagonal in Z", using the values of the chain on hyperplanes perpendicular to
the main diagonal. This property of directional generation along the main diagonal makes [,
the ‘natural’ choice for distance on Z™. Of course, if a homogeneous field {X(t),t € Z"} is a
Markov chain of order ' with respect to distance I, then there is a smallest r > 7’ such that
the field is also a Markov chain of order » with respect to distance /;. By the above discussion

we have proven the following theorem.

Theorem 3 Let {X(t),t € Z"} be a homogeneous random field. If {X(t)} is Markov chain
of order r with respect to distance ly, then it can be put in one-to-one correspondence with
a Markov (of order r) sequence {Yy,k € Z}. The value of Yy, is the set of values {X(t) :
ti+t2+ ...+ 1, =k}, ie., values of the {X(t)} field found on a hyperplane perpendicular to
the main diagonal. Hence, {X(t)} can be recursively generated along the main diagonal, and
questions regarding the stationary distribution of {X(t)} can be answered by investigating the
stationary distribution of {Y,k € Z}. In particular, if {X(t)} takes on a finite set of values,
then {Yi} is essentially real-valued, and it will have a unique stationary distribution under the

usual regularity conditions, (Doeblin’s condition, or an equivalent weak dependence condition,

cf. Doob (1953)).
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It might seem at first that this method of recursive generation of the {X(t)} field is not
practical because Y is an infinite ‘strip’ of points. However, to generate the {X(t)} field on
a finite grid, only a finite number of initial values are required. For example, consider the two
dimensional field satisfying (35). To generate it on the positive cube C§;, (for any N € N),
only the values of {X(¢,5):i4 j =0,|i| < N} are required (see Figure 3).

As a final example, consider the unilateral Gaussian autoregression (in the plane) of Whittle
(1954). That is, let {Z(i,5),(%,5) € Z?} be a random field of i.i.d. normal N(0,1) random

variables, and define X (7, ) by the linear autoregression

X(i’j):a'X(i_17j)+b‘X(i’j—l)+Z(i7j) (37)

with |a| + 8] < 1.
It can be shown (cf. Woods (1972)) that the X(z,7) field also satisfies the ‘interpolating’

equation
X(4,5) = —pou[X (7 + 1)+ X(4,5 - D] = p1o[X G+ L, )+ X - L)+ UG, 5)  (38)
where U(3,7),(i,7) € Z?, is a field of mean zero, normal random variables, independent of the
{X(4,7)} field, and satisfying
1 for (i,j) = (0,0)
E[U0,00U(,5)] _ ) o for (3,5) = (0,%1)

E[U(0,0)]? pro for (i,7) = (£1,0)

0 otherwise

It is apparent that the X(i,7) field satisfies (35), and thus can be generated recursively
using the Y sequence which is defined as before. Existence (and uniqueness) of a stationary
distribution for the X (z,7) field is now shown by Whittle’s ‘solution’ of equation (37) in the

infinite moving-average unilateral form

.. o (m+k) . .
X(i,7)= Z Z(nT')a W Z(i—m,j— k) (39)
m=0 k=0 o .
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Figure 1. The point t with its past ‘in the direction 2’, its general past, and its Lo (X (t))
neighborhood.
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Figure 2. The positive cube CI"\}, and the N™~1, (with n = 2), points that are r-close to

the (left) boundary.
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Figure 3. The positive cube C5, and the values of {Y} required to generate it.
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