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Summary

The classical allocation formula of Neyman is replaced by a new formula
which can accomodate prior information on the ratio of means in two strata.
To accomplish this, a Bayesian approach is adopted and in this context partial
prior information is quantified over the spectrum from absolute certainty to

completely unknown.
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1. Introduction

It is well known that in the presence of appropriate prior information stratified sam-
pling can lead to increased efliciency over simple random sampling (SRS) for various types
of estimation problems in survey sampling. In particular consider the problem of estimat-
ing the population total when there are two strata for which the total number of units as
well as the variances of the measurement variable are known for each stratum. Further-
more suppose each of these variances is smaller than the total population variance and the
allocation of a fixed total number of samples is done in the optimal way. Then the variance
of the classical stratified estimate of the total is always smaller than the corresponding vari-
ance with SRS. The result is true under more general circumstances but the above is quite
useful in the practical situation. For a full discussion of the many ramifications possible,
see Cochran (1977, Chapter 5). The basic idea is that whatever basis for stratification
is used, it should produce variances within the strata smaller than the variance over the
total population. Thus the ability to stratify sensibly requires some prior knowledge of the

relevant parameters.



Often in the practical situation when this kind of prior information is available, it
is also the case that additional information in the form of proportions of the variable
of interest within the strata is known approximately. Examples such as the number of
stock owned by the large and small farmers, or the proportion of yearly traffic during the
weekends and the weekdays, and many other apparent applications illustrate this point.
When such information is available it is to be expected that further efficiencies are available.
However it appears that such situations have not been treated in the literature. It is the
purpose of this paper to deal with this kind of prior information. To do this, we adopt
a Bayesian approach which allows the additional information about proportions to be
quantified over the spectrum from absolute certainty to completely unknown. Appropriate
formulas for computing both the optimal allocation of the sample to the strata, which
allocation is required to minimize the posterior variance, as well as the estimates to be
used for those allocations are provided as a function of this quantification. There are two
extreme cases. If the proportion is unknown, the allocation reduces to that of Neyman
(1934). If the proportion is known exactly, then only one stratum is sampled. In Section
2 the model used will be discussed and the new allocation formula given. The appropriate
estimator for the total and a numerical example are given in Section 3. Derivations for the

aforementioned formulas are provided in Section 4.

Previous work on a Bayesian approach to stratified sampling is contained in papers
by Ericson (1965, 1988) and references therein. Whereas Ericson does use a multivariate
normal model and obtain a formula for the posterior variance similar to our Equation (6),
he does not deal with prior information as we have defined it and consequently does not
obtain the explicit formula for the allocation (our Equation (1)). Other work by Soland
(1967) deals with a general framework and discusses the resulting linear-programming
problem without carrying through the special analysis required in our case where there is

partial knowledge of the ratio of the means.

2. Mathematical Notation and Optimal Allocation

Consider two groups, or strata, of units. Associated with each unit is a real number.
Within each group these numbers are independently and identically distributed conditional

upon parameters. For group ¢ there is a known number N; of units and the distribution
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is normal with mean 6; and variance o?(: = 1,2). N, N,, 01, o2 are known; 6y, 6;
are unknown. It is proposed to take random samples of sizes n;, ng from the groups to
determine the numbers associated with the sample units, and hence estimate the grand
total N;60; + N26;. By making this association to the grand total, we will be effectively
ignoring the finite correction factor, or assuming that the N’s are large. The specific
problem discussed in this paper is that of determining, for a fixed total sample size n =
ni+ng, the optimum allocation of the sample numbers between the groups; in other words,

the choice of n3, n; being determined as n — na. There are two known results in this field.

If nothing is known about the values of #; and 65, then the optimum allocation is to
choose the ratio nj/n, to be equal to Nyo1/Nyo2 (Neyman(1934)). The latter value plays
an important role in the calculations. It will be written ¢ and referred to as the Neyman
allocation. The second result applies when the ratio N16;/N26; of the totals for the two
groups is known. This ratio will be denoted by 4 and its known value by ;. The result
says that if 77 exceeds (is less than) the Neyman allocation 7y, then all the observations
should be made on the first (second) group so that no sampling of the other group is made.
Alternatively, if v > (<)70, then nz(n;) = 0. This result, though intuitively acceptable,
does not seem to appear in the literature but will appear as a special case of our general

result.

Notice that the two results cited represent extreme situations and provide contrasting
results. In the first, nothing is known of the ratio N;6,/N268;; in the second, it is known
precisely. In the first, both groups are sampled with a familiar proportion in each. In the
second, only one group is sampled and the known value of the ratio used to make inferences
about the other. In the present paper we extend these results, offering intermediate cases

where the ratio is only partly known.

The criterion for optimality in both cases is minimization of variance. From the
frequentist sampling-theory viewpoint, the variance is that of the estimate of the grand
total. In the Bayesian approach, the posterior variance of the grand total is the relevant
quantity. Because of the assumed normality, the same result holds in the alternative view

provided our interpretation of ‘partly known’ is suitably interpreted.

There are two reasons for using the Bayesian approach, apart from the general con-



sideration that it alone provides a logically coherent attitude to problems of inference and
decision. First, this is a situation in which there is an appreciable amount of prior infor-
mation expressible in probability terms. Second, it is possible not merely to provide an
estimate of the total and its standard error, but a complete probability distribution for
it. With the distributions being normal, the distinction is relatively unimportant, but in

general it is valuable to have the more complete specification.

Before giving proofs, we give a description and commentary on the results. The partial
knowledge of N16,/N20; is described through a bivariate, normal distribution for §; and
6,, the unit means of the two groups. Only two features of this distribution are relevant
to the calculations. The first is the ratio of the means p; /ps. This is needed to evaluate
the most likely value of N;6; /N0, namely Njp;/N2pe = 71 in the notation used above.
The second is the residual variance w? of 6,, were the value of §; known. In regression
language, w? is the variance of 6; about the linear regression of 6; on 6,. We imagine that
the scientist conducting the investigation would think about the likely scatter of 6; for a
known value of 05, giving limits on #; that might be interpreted as about 4w apart (using
95% normal limits).

Using w and 7; to express the initial knowledge about v = N16, /N262, our result says

that to achieve least posterior variance of N16; + N6, the value of ny should be

n2

1+v%  w? (1 +7)
if this lies in (0,n). If the right-hand side exceeds n (is less than 0), then n, should be
n(0).

In commenting on (1), let us first notice how the two results cited above are special
cases. If nothing is known about the ratio, the uncertainty of 6; given 6, is large and
w — 00. The second term in (1) vanishes and ny = n/(1+7), or n1/n2 = v, the Neyman
allocation. If the ratio is known, the uncertainty vanishes and w — 0. The second term
in (1) therefore tends to 400 if 49 > 71, so th.at ny = n; and to —oo if 49 < 71, so that

ny = 0, again in agreement with the result cited.

The term n/(1++) in (1) provides, as we have just seen, agreement with the Neyman

allocation. The last term provides for departure from the Neyman allocation; its sign
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depending on whether or not the most reasonable value, 7;, of the ratio is greater or less
than v9. (If 41 = v we are back to the Neyman allocation.) Note that it can always
be supposed that 49 > 1 by renumbering the two groups if necessary. The magnitude of

this second term depends primarily on ¢?/w?. This is a ratio of two variances. Since o?

? is the variance of their mean,

is the variance of an individual measurement whereas w
(and then conditional upon 6; ), w? will often be much smaller than o? and hence the ratio
appreciates. The effect of the second term is to increase (decrease) the amount of sampling
in the second group if v;, the most reasonable value of vg, is below (above) the Neyman
allocation. This term does not depend on n, the total size of the sample, so that its effect
is greatest with small values of n. As n — oo, its effect is slight and we are effectively

back to allocation in proportion to the Neyman allocation. For example, if v = 2, 71 = 3,

the optimum allocation according to (1) has n; = in — %%’z If 02 /w? = 30, this gives

ng = %n — 20. Here such a lot 1s known about the ratio that it is not until n = 60 that
there is any allocation to the second group. If 02 /w? = 3, the value ny = %n ~ 2 and there

are samples taken from both groups as soon as n exceeds 6.

There are two further points before we leave consideration of the optimum allocation
of samples between the two groups and pass to consideration of the best estimate of the
total N16; + N362. The reader may be puzzled by the occurrence of o2 in the formula
(1) for the optimum, but not o2. This is because we have chosen to compare o? with
w?, the residual variance of ;. An equivalent formula could be provided involving o?
and the residual variance of ;. A second consideration is that the calculations leading to
the optimum are based on opinions about ¢; and 6, being expressed through a bivariate,
normal distribution. This can only be considered as an approximation when opinion is
essentially about the ratio 6, /6, (or N16;/N26;). This is easily seen by noting that limits
on a ratio of the form 6, /8, £ d imply greater variation in 6, for fixed 6; when the latter
is large than when it is small, whereas our value, dependent on w, is expressed for a single
value of §;. We recommend that in thinking about w, 8; be chosen around u;, the most
reasonable value for §;. The normal distribution can also include nonsensical, negative
values of 6, or 6,. This can happen if v; is very large or very small, especially when w
is large. Our result may not be appropriate in such circumstances. It should always be

regarded as an approximation since the value of the variance near the optimum changes



very little with ng so that the exact value is not critical.

3. Estimation of the Total and Numerical Example

We now pass from discussion of the optimum allocation of samples to the estimation
of the total N;6; + N30, for all the units in the two groups. The new quantities that enter
here are z; and z, the sample means for the n; and n, units sampled in the two groups.

The mean of the posterior distribution of the total is
n nhN (m+DN.
424 (Ny2y + Nazz) + (2 B + 2232 ) ()

(2)
e (3 (3) +9)

This can serve as a point estimate of the total for those who prefer to think outside the
Bayesian paradigm. As w — oo, so that there is effectively no knowledge of the ratio
N8, /N,6,, the mean (or estimate) tends to the obvious one in such circumstances. As

w — 0, so that the ratio is known precisely as v, it tends to
(293 + 22) (1 + 1),
n n N2 2 n
AW tot

which can be shown to be the appropriate estimate in these cases. In the general case

3)

when 0 < w < o0, (2) provides a weighted average of these two estimates. Notice that (2)
holds for all values of n; and ny and not just for the optimal allocation given by (1). In
particular, when « is known to be 7;, we saw that all the sampling is from one group and
na(n1) = 0 when 41 > (<)vo. Thus when n; =0, (3) is simply Naz2(1 + v1), the estimate
N,z for the group sampled, inflated by the known factor (1 + 71).

The distribution of the total, given the data, is normal, so the only remaining feature

to be described is the variance. The expression for this is
2 ot (1 2
N2 \Tomz +n1+ G (1+m)

B (o (SR ) 31} X

Alternatively this may be thought of as the sampling variance of the estimate given by
(2). As w tends to zero or infinity, the previously noted and familiar values of (4) can be

obtained.



Numerical Example.

Traffic counting data for 341 days (243 weekdays and 98 weekend days) each with 24
hourly counts from a city street in Auckland, New Zealand, provide the basic data set to
be used here to illustrate the proposed method for stratified sampling. One of the reasons
these counts were recorded was to see how well a sample of hours could predict the total
over the year. For this particular road it is known that the weekday traffic occupies nearly
all of the total, since it is a main artery into a business and industrial area which is closed
on the weekend and hence would receive very little traffic, relatively speaking, during that
time. Also, for our purposes here, the main hours of concern are between 7 a.m. and 6
p.m.. Thus we stratify the total of 3751 such hours into Strata 1 consisting of 2673 weekday -
hours, and Strata 2 consisting of 1078 weekend hours, with standard deviations 100 and
45 respectively. This gives 49 = 5.5. It was known that the proportion p of weekday traffic
accounted for about 95% of the total (within 1%). The most likely value of 8;, the average
hourly traffic for Strata 2, was thought to be about 40 vehicles per hour. Using this value
and the range of values on p, upper and lower bounds on §; can be obtained from the

relationship

N16,/p = Nob2 /(1 — p).

Hence

u l pu pl N202
w= (61 -61) /4= (7 T~ To i) | = (96/4 - 94/6)(N2/4N1)40 = 33.6

and 02 /w? = 8.86. Using these values in equation (1) we obtain
ng = (n/6.5) — 66.

Suppose a sample of 500 hours is to be taken to estimate the total traffic between these
hours. Then the optimal allocation is to take 490 (10) from Strata 1 (2). This should be
compared to the Neyman allocation which is 423 (77). Note that if the size of the sample
to be taken is smaller than 435 then all of such samples would be taken in Strata 1. Some
measure of the efficiency of this allocation can be seen by comparing the variances for the
appropriate estimates of the total traffic. The variance in (4) and the relevant variance for

the estimate under Neyman allocation are 13,430 and 14,123 respectively, a reduction of
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approximately 5%, which is to be compared with a maximum reduction of 11% for perfect

knowledge of v (i.e. p).

4. Derivations

This section is concerned with stating our assumptions about the opinion of
v = N6, /N,0, prior to the data and proving the results given above. Under the as-
sumption of normality for the measurements on the units and with the variances ¢ and
o2 known, the sample means, z, and z2, together with n; and n,, provide sufficient statis-
tics. This joint distribution is normal with
0
gl*) = 10 1
T2 0 1/)\6
o /ny 0 . _— .
1 . These facts provide the likelihood function for #; and

0 o2 /ng
6,, given the data. The knowledge of (61, 62) prior to the data is assumed to be described

and dispersion

by a bivariate, normal distribution. The notation used is

2
E(al) = (” ') with dispersion ( m pT12T2 :
02 B2 PT1T2 )

The values of these five hyperparameters will later be specialized, but for the moment they

are kept quite general.

Lemma 1. The posterior distribution of (6;,6;) given the data (z1,z2) is normal. The

dispersion matrix is

1 P
(-:_2 + 75 (1-p?) flfz(l—liz) )
T 7) %} + rf(l )

72(1—p H —p?

B =

n 1 n 1 _ p2
(3 + ) (3 + 7o) — 7ticeor]

and the mean is

B x (E:? + Tf(flpz) - Tlfz;ziipz)) )
ﬁtz’_?z - rm’fiﬁ;ﬂ) + rg(fipz)
The proof is immediate from standard, normal theory. The posterior precision (the inverse
of the dispersion) is the sum of the prior and likelihood precisions. Easy matrix inversions

provide the result. The posterior mean is a weighted average of the prior and data means

with weights proportional to their respective precisions.
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For simplicity of notation, write

o? _ po102
T RA-p) T mn= ey
Using the dispersion matrix B in Lemma 1, it easily follows that the posterior variance of

the total N101 + N292 is

{MZ(ns + ag2) + 2M1 Maayz + MZ(ny + au)}
[(n1 + a11)(n2 + a22) — a,]

M? = 02 N2 (5)

a;;

(6)

That allocation will be regarded as optimal which minimizes the variance (omitting the
adjective ‘posterior’) function in (6) with respect to the variable ns subject to the total
sample size n = n; + ny being fixed. With n; = n — n, and n, written temporarily as z,
(6) is of the form (M2 — M?) x h(z) = (z — a)/(z — r1)(z — r2) for suitable ry, r; and a.
Suppose, without loss of generality, M, > M;. The case M, = M is straightforward. We

will require two Lemmas to obtain the main result.

Lemma 2: If r, < 0 < n < r; < a, the least value of h(z) in [0,n] occurs at
= (r1 + Sre)/(1+ S) if this lies in [0,n]. If z; < 0(> n), the least value is at 0(n). Here
S is +[(a — r1)/(a — r2)]*/2.

Proof: Write

a—7Ty a—nr
h(z) = - .
N —7T2 T —1Tg T—nm
Then h'(z) vanishes where
a—nm a—7To

(x—r1)2  (z—r2)?’

that is, at 2, = —11"_'1_—55'2 and zp = _11_531“1 For z in (r2,7r1), h(z) > 0, tending to +o0 at r;

and r. Hence z; provides a local minimum. (It is easily shown, though irrelevant to our

calculations, that a < z3.) a

It is now shown that the inequalities assumed in Lemma 2 do hold for our h(z). The
denominator of (6) is, with n; = n — ng, a quadratic in ny, with its arms down, yet it is

positive both when ny; = 0 and ny = n(n; =0). Hence rs <0< n < r;.
The numerator of (6), when multiplied by (n; + a11), is, on rearrangement,
{M}(n2 + az2)(n1 + an1) — Mia2, } + {Myiayz + Ma(n + a1)}’.

9



If this vanishes (at z = a), since the second term is positive, the first, which is M} times
the denominator, must be negative. Hence a lies outside the interval (rz,71) in which the

denominator is positive. Since a is positive, it exceeds ;. O

It remains only to calculate z; explicitly. Rather than use the expression obtained in

the proof of Lemma 2, it is easier to proceed directly.

Lemma 3: The values of n; at the turning points of (6) when subjected to the constraint

ny + ne = n are

aia (:f:Ml - MQ) + an 4 auMz — a22M1
M; + M, )

(Where there is a choice of signs the upper (lower) ones are to be taken together.)

Proof: Write

zZi = ni+ aj;

so that (6) is more simply
M2z, + 2M1 Maayz + M2 2
2129 — al,

and the constraint n; + ng = n is
(21 = a11) + (22 —azz2) = n. (7)

Use a Lagrange multiplier y. Differentiate with respect to z; and 23 and equate to zero.

The results are
(z122 — a?,) M2 — (M} z5 + 2My Maa12 + M2z) 22+ p (2122 — afz)2 =0
and
(2122 - afz) M12 - (Mfzz — 2M i M;a,14 — M22z1) z1+ p (zlzz - afz)z =0.
These simplify to yield equivalently
(My2z3 + Maa12)? = p(2122 — ad,)?

and

(Mazy + Mya12)? = p(z122 — afp)*.
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Elimination of u gives
(Mi22 + Mya12) = £(Ma22z1 + Myaq2)

which, together with the constraint (7) provides two sets (according to whether the plus
or minus sign is selected) of linear equations. It is easily verified that the elimination of z;
yields

z2 = [a12(£ My — My) £ (n + a1 + az2)Ma)/(My £ Ma)

from which the stated value of ny = 2; — a3, immediately follows.
Combining now Lemmas 2 and 3 gives the following main result.

Theorem: The optimum allocation of n samples between the two groups has

S a12(My — M) + nM; + ajn My — ag My (8)
2 M, + M,

provided this value lies in the interval [0,n]. If it is less than zero (greater than n), the

optimum allocation is nz = 0 (ng = n), i.e. sample from only one of the groups.

This result holds for any values of the five hyperparameters in the bivariate normal
prior. These values are now specialized to reflect knowledge of the ratio N16;/N26; = 4.

The next figure
6

(p2, 1)

02

shows the sort of normal ellipse required. Clearly the mean (p1, ¢2) must lie on the line

N101/N302 = 1, where 7, is the most reasonable value of 4. Hence

p1/p2 = 11Nz /N;.
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If the major axis of the ellipse is to lie along the same line, the variances must satisfy
Tt /73 =71 N; [N (9)

The residual variance of 6,, given 62, is 72(1 — p?), denoted by w?, and expresses the
uncertainty about the exact value of the ratio 4. Next we suppose the uncertainty of 8, is
large, that is 72, and therefore by (9), 7¥ tend to infinity. To keep w? finite it is necessary

to simultaneously let p tend to +1. Under these conditions, in the limit

o? o? M? o2 M,

1 1 2
anl = —, G2 = —5—=71, Q12 = —; 71, 011022 — ays = 0. 10
wz’ w2 M127 ] w2 Ml7 ) 12 ( )

Substitution of these results into the expression (8) for the optimum value of n; easily

gives the form stated earlier in (1), remembering that M; /M, = 4o.

To obtain the expressions for the posterior mean (2) and variance (4), it is again only
necessary to insert the special values in (10) into the expressions for the mean and variance
given in Lemma 1. Notice that neither involve the means p;, 2. This is expected for the

variance but the terms in y; and pg vanish when the algebra for the mean is performed.

5. Possible extensions.

There are several possible extensions of the results presented here. A simple one
is to consider a general, linear function ¢;6; + c26; instead of the total with ¢; = N;.
The expression for the posterior variance persists except that M; is now o;c; instead of
o;N;. With this notational change, the optimum allocation (8) is unaltered. The special
prior knowledge leading to the results around (9) persists but their substitutions into the
expression for a;; equation (10), do not lead to the forms given there since M; has a
different interpretation. Instead we have aj2 = 0241 N2y /w2 Nyo; ete. Insertion of these

values into (8) with M; = o;c; leads to the required result.

A much more difficult extension is from 2 to k strata. Ericson (1965) highlights the
unexpected behaviour that can arise, though, unlike us, he does not give general results.
To appreciate the reason for the difficulty, take the general expression for the posterior
dispersion matrix of the #’s that generalizes the case k¥ = 2 (see B in Lemma 1). This

matrix is proportional to one in which the i** diagonal entry is linear in n;, but independent
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of the other sample sizes, and the off-diagonal elements do not involve the sample sizes.
As a result, the determinant of this matrix is of degree k in the n’s. Consequently the
posterior variance of the total is the ratio of a linear function of the n’s to a polynomial
in them of degree k. The analytical minimization is therefore appreciably harder and is

made even more so by the boundary conditions n; > 0.

Another way to proceed with more than 2 strata is iteratively. We illustrate with
k = 3. Having found, with n; + ny = n; fixed, the optimum allocation between the first
two strata for general nj2; a possibility is to find the optimum allocation between nj2,ns,
with nj2 +n3 fixed, using the method for two strata already developed. However, this fails
for the following reason. Our task is to minimize the variance of N6, + N262 4+ N36;. This
is

var (N191 + N2€2) + 2 cov (N161 -+ N292,N303) + var (N303)

The first stage just mentioned attends only to the first term and omits consideration of
the second, covariance term. Hence the optimum allocation between the first two strata
when considered alone, may not be optimum when the third is introduced. The iteration

therefore fails.

A third, possible extension is to multivariate data. This causes no problems provided
that (i) when a sample is taken, all the variables are observed, and (ii) the quantity of
interest is a linear function. Then, with two stralta, there are only two variables, ny,n; as
before, and the posterior variance of the required quantity is of a similar nature to that in

the present note.

A fourth, and formidable, extension is to unknown variances. This is hard for two
reasons. First, because it now makes sense to sample a stratum in order to learn about the
variance within it, rather than just for the total. Consequently, when our procedure leads,
as we have seen it can, to no observations being taken in a stratum, there will now be a
possible reason to take some because of inadequate knowledge of the variance. The second
reason for unknown variances presenting additional problems can be seen by looking at
the expression for B, the posterior dispersion matrix, in Lemma 1. It has the amazing
property that it does not involve the data. Once the strata sizes have been selected, but

before the observations taken, it is known for sure what precision will be obtained. With
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unknown variances, this no longer holds. One can only say what the expected precision is.

In other words, an additional operation, of expectation, has to be performed.

The whole field of optimum allocation of resources is very difficult. Sometimes numer-
ical procedures can be developed that will deal with individual cases. The present paper
develops an analytic solution which, despite its serious limitations, does provide insight in

a way that computational solutions find difficult without many replications.
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Résumé

On remplace la formule classique de ’allocation de Neyman d’une formule nouvelle
qui peut sdccomoder a 'information prior sur le rapport des mogennes dans deux strata.
Pour céchever on choix le method Bayesien et en ce coutexte, I'information prior partielle

se quantifie sur I’étendue de certitude absolue a I'inconnue complete.
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