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An Edgeworth expansion for U-statistics
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Summary. Under mild conditions, an Edgeworth expansion with remain-
der o(N~1/2) is established for a U-statistic with a kernel h of degree two
using weakly dependent observations. The ease of verifying these conditions
is discussed in the context of three rather natural examples.

1 Introduction

Let {X; : —o0 < j < oo} be a strictly stationary sequence of random
variables defined on a probability space (€2, A, P). We assume that there
exists a sequence {A; : —00 < j < oo} of sub o-fields of A such that for
all 7, X; is A;f:: measurable where m is a fixed nonnegative integer and
Al denotes the sub o-field of A generated by {4; : @ < j < b}. We further
assume that the A;’s satisfy an absolutely regular condition and a Markov
type condition, namely that there exists a constant A > 0 such that for all
n>1,p>0, —oo<j<ooandB€.4}fz,wehave
(1) E[ sup |P(A|A,) - P(A)[] < AT,

AeAs
and
(2) E|P(B|Ar:k#37)—P(BlAk:0<|j—k|<n+p)| <Alen,

We denote the cumulative distribution function of X by F(z), Vz € R. Next
let A : R? — R be a measurable function symmetric in its two arguments.

We shall assume throughout this paper that there exist constants v > 2 and
M > 0 such that

(3) Elh(X,X;)|" < M, Vj>1,
@ [ [ reura@ire < 1
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and, without loss of generality, that
[o o] o0
(5) [~ mawyir@are) =o.
—oo0 J —00
Then Eh(X;, X}) exists for all j < k. We write
hi (X5, X)) = h(XJ',Xk) — Eh(X;,Xk), Vj<k,
and for N > 2, a U-statistic with a kernel h of degree two is defined as
N-1 N
Un=Y_ > hix(X;,Xz)
j=1 k=j5+1

Also we write

0@ = [ e i),

Y(z,y) = h(z,y)-9g(z) - 9(y),
Yik(z,¥) = hip(z,y) —g(z) —g(y), Vi<k.

Thus for N > 2,
N N-1 N
Un = (N— I)Zg(xj) + Z Z 1oba,b()(a;)(b)-
j=1 a=1 p=a+1

We further assume that

©) 7t = Blg’(%) +2 3 9(X0)o(X5)] > O,
and
(7) Eg4(X1) < 00.

Let 0% denote the variance of (N —1) =), g(X;). Then by the stationarity
of the X;’s and Lemma 1 [see Appendix|, we have

N
on = (N-1)E[Ng* (X)) +2 Z(N -7 +1)g(X1)g(X;)]

(8) = N3%?+0(N?),
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as N — oco. Next let {X} : —oo < j < oo} be an independent replicate of
{X;:—00 < j< oo} and

ks = o E{(X) + 33 1t (X0)a(X;) + o (K1) (X;)]
=2

163" 3 o(Xe(X;)e(Xe)

i=2k=j+1
©) B3 oX K Xa(XD).
j=—00 k=—00

Using Lemma 1, it can be seen that —co < k3 < co. We observe that if
E|h(X;, Xi)|® < co whenever j < k, then k3 N~1/2 is an asymptotic approx-
imation [with error o( N=/2)] for the third cumulant of o5'Uy. Define

(10) Fn(z) = ®(z) - ¢(z)%N‘1/2(z2 ~1), VzeR,

where ¢ and ® denote the standard normal density and distribution function
respectively.

The main aim of this paper is to establish the validity of an Edgeworth
expansion for oy'Uy with remainder o(N~1/2) under mild conditions. In
particular, we prove

Theorem 1 Suppose (1)-(7) are satisfied and that for each d > 0, there
exists a constant 0 < 63 < 1 such that

(11)  E|E{1oXi-m)t-+0Xitm)l| g, : k £ j}| < 85, V5> m,
whenever |t| > d. Then

sup |P(oy'Un < ) — Fy(z)| = o(N~Y/?), as N — .
z

Proof. Let a be a constant to be suitably chosen later for which 3/8 < a <
1/2. We define

=, if |z] < N2,
(12) T(=) = { eN*T(|z|N~%)/|z|, otherwise,

where T' € C® (0, 00) satisfies T'(z) = zif z < 1, T is increasing and T(z) = 2
if z > 2. We write

(13) Y; =Tg(X;)], Z;=Y;-EY;, Vj>1L1
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Let 6% denote the variance of (N — 1) Ef;l Z;, and with 4 as in (3), let

(14) B = max{2/(y - 2),5/4}.
We define
(X Xn) = ip( Xy, Xe)I{|$56(X;, Xs)| < NP}, V1<j<Ek<N,
N-1 N
Ay = 37 3 dislXj Xa),
7=1 k=j+1

Ay = AN—EAN,

where I{|4;x(X;, Xi)| < NP} denotes the indicator function of the event
{|%;k(X;, Xk)| < NP}. We observe that for all z € R,

|P(oy'Un < 7) — Fn(z)]

N
< |P(65'Un < ondy'z) — P{6R' (N — 1) 3_Y; + An] < ondy's}|
i=1

N
(18)  +[P{65' (N~ 1)} Z; + An] < v} - Fa(y)| + | Fn(y) - Fn (=),
i=1
where y = ond 'z — 63 [(N - 1) Ef’:l EY; + EAp]. We observe from the
definitions of the Y;’s and Ay that

sup |P(65'Un < ondy'z)
z

N
~P{63' (N ~1) Y Y; + An] < onéy's)]
=1
N ’ N-1 N
< D OPle(X)| > N+ 30 D7 Pllthap(Xa, X5)| > NP
j=1 a=1 b=a+1

(16) = o(N?), asN — oo.

The last equality uses (3), (7) and Markov’s inequality. By choosing o
sufficiently close to 1/2, we observe from Lemma 3.30 of Gotze and Hipp
(1983) that

(17) onNot =1+ 0o(N7Y),

for some constant 1/2 < w < 1, and hence

(18) sup |Fn(y) — Fn(2)| = o(N"l/z), as N — oo.
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Thus it follows from (15), (16) and (18) that it remains only to prove

N
sup |P{6;,1[(N -1) EZ:,- +AN] Ly} - Fn(y)| = o(N‘1/2), as N — oo.
z =

To do so, we shall study the characteristic function (c.f.) of 63! [(N —
1) TN, Z; + An]. Let

on(t) = BN IW-DEL Z400] e g

and for k3, as in (9), let
S (t) = e /21 - %N—l/zts), Vt € R,
be the Fourier transform [ exp(itz)dFy(z) of Fyy in (10). By the smoothing
lemma of Esseen [see for example, Feller (1971), p. 538], it suffices to show
that NY21ogN t * (t
(19) / th =o(NY?), as N — co.
—N/2)ogN t

However (19) is an immediate consequence of Propositions 1 and 2 whose
statements and proofs are provided in Sections 2 and 3 respectively. This
proves Theorem 1. O

There has been a great deal of research done on U-statistics based on
independent and identically distributed (i.i.d.) observations. In this para-
graph, we shall restrict our attention to i.i.d. observations. U-statistics
were first discussed by Hoeffding (1948) who also showed their asymptotic
normality under very mild conditions. The rate of convergence to normality
was investigated by Grams and Serfling (1973) and Berry-Esseen bounds
were obtained in increasing generality by Bickel (1974), Chan and Wierman
(1977), Callaert and Janssen (1978) and Helmers and van Zwet (1982).

There has also been a lot of work on obtaining sufficient conditions for
the asymptotic normality of U-statistics with dependent observations. The
literature includes Sen (1972), Yoshihara (1976), Denker and Keller (1983)
and Harel and Puri (1989). Berry-Esseen type bounds were obtained by
Yoshihara (1984) for U-statistics generated by absolutely regular processes,
Rhee (1988) for U-statistics based on m-dependent observations and Zhao
and Chen (1987) for finite population U-statistics.

Regarding the more involved problem of Edgeworth expansions with i.i.d.
observations, Callaert, Janssen and Veraverbeke (1980) established sufficient
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conditions for a U-statistic to have a two term Edgeworth expansion with
remainder o(N~!). This was followed by Bickel, Gotze and van Zwet (1986)
who gave more easily verifiable sufficient conditions for the validity of a one
term [two term| Edgeworth expansion with remainder o(N~1/2) [o(N~1)]
respectively.

Under dependent observations, Kokic and Weber (1990) obtained con-
ditions for the validity of a one term Edgeworth expansion for U-statistics
based on samples from finite populations and Loh (1991) obtained an Edge-
worth expansion with remainder o(N~1/2) for a U-statistic with an m-
dependent shift under very weak conditions.

The remainder of this paper is organized as follows. Sections 2 and
3 provide the statements and proofs of Propositions 1 and 2 respectively.
These results are needed in the proof of Theorem 1. In Section 4, conditions
(1), (2) and (11) are examined more closely. In particular, these conditions
are shown to hold in three somewhat natural examples. Finally the Ap-
pendix contains a few rather technical lemmas which are used in the proofs
of Propositions 1 and 2.

2 The c.f. for small values of the argument

In this section we begin by studying ¢n(t) for small values of |¢|.
Proposition 1 Let 0 < € < 1/16 be as in Lemma 3 (see Appendiz). Then

Ne — b
/ |——¢N(t) ; ¢ (t) |dt = o(N_l/z), as N — oo.
—N-=e
Proof. Tt is well known that for » > 0,
iz - (ix)j . (2 r+6 |$|r+1
— < = o .
@) o= 3R <min el (E, e o)

Hence it follows from Lemma 2 that

o — N
on(t) = BN WUXinZi(1 4 i531AN) + O[E(ts 5 An)Y

pa—1 N i

(21) = B WX %i(1 4 55 AN) + O(EENY),

as N — co uniformly in ¢. We observe from (21) and Lemma 3 that for o

sufficiently close to 1/2,

iRk3

¢N(t) _ e—t2/2(1 _ ?N‘l/zt"’)
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(22) HO(E*N™Y) + of(Jtf* + t*)e™**" N1/,

aa—1 N i
= EitoylAne™n WX %

as N — oo uniformly over |[t| < N*. It remains to approximate the term
a1 _SORHN-1)Y 2z, ..
Eitoy Ane ™ N =177 First we observe that

a—1 N .
Bitot Ayen WD %

= ¥ o (N-1) N z;
(23) = D D Eitdy'dap(Xa, Xu)e™™ 1% 4 Ot N34y,
a=1 b=a+1

as N — oo uniformly in ¢. Next define for N > 2,
u = [Klog N1,

where K is a positive constant to be suitably chosen later. Here for all
z € R, [z] denotes the smallest integer greater than or equal to z. Define
for1<a<b< N,

(24) 857 = (N -1) > Z;, Vr>1,
1<F<N,|j—a|Alj—=b|>ru

N
0 -
Sas,b) = "NI(N—I)ZZ:J'-
=1

Following a method of Tikhomirov (1980), we have for sufficiently large K,

N-3u-1 N o N
> S Eito ay(Xay Xp)e N (N-1)305, %
=1 b=a+3u+l

N-3u-1 N . S(1)

= Z Z E{ité'&ll,ba’b(Xa,Xb)e't a,b

a=1 b=a+3u+l
e(s@_g) . a(2)
+it&}_vl¢a,b(Xa, Xb)[eit(s“vb_s"'yb) _ l]e‘tsa,b
2
s (g(t—1) _o(D) . a(2)
+it&ﬁl¢a,b(xa; Xb) H[elt(sa,b _Sa.,b) -1 e’tsa,b}
=1

1. 3 _ _ o0 o0
_ —Eagstse PN NN Be(X;)( X1, X))e(X)

j=—00 k=—00

(25) +O[(Jt| + t*) N~ log® N] + o[|t| P(|t|)e~**/2 N1/,
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as N — oo uniformly over [t| < N*® where {X} : —co < j < co} denotes
an independent replicate of {X; : —00 < j < oo}. The last equality uses
Lemmas 4 and 5. In a similar though less tedious way, we have for sufficiently
large K,

—1(a+3u)AN

Z Z Eztor.,f,lt,bal,(X,,,X)e'ta (V- I)E: =17
a=1 b=a+l
N-1(a+3u)AN

= E{itﬁ' lt,ba b(Xa, Xb)e tS
N

a=1 b=a+1
+ztaN1¢ab(Xa,Xb)[e't(S( ) -5 — 1) its() 0
(26) = O[(|t| +t*)N'1og® N],
as N — oo uniformly in ¢. Thus it follows from (23}, (25) and (26) that
Eitog Aye ™ -0 2%
0

= —Sope AN S Y Bg(X))e(X, XDa(XD)

j=—00 k=—o00
+OI(Je + #4) N~ 1og® N] + ofjt P (Je)e™/2N1/2,

as N — oo uniformly over |{| < N¢. Hence we conclude from (9) and (22)
that

en(t) — on(t) = on(t) - “2/2(1 ':3 —1/2t3)
— O[(J + )N~ 1og® N+ ol P (1) /2N
+o[([t]® + th)e~ st N1/,
as N — oo uniformly over [t| < N¢ and hence

NC
/ |¢N(t) ¢N(t) |dt (N—1/2)’
N!

as N — oco. This completes the proof of Proposition 1. O

3 The c.f. for large values of the argument

We observe from (11) and Bhattacharya and Rao (1986), p. 212 that for
sufficiently large N, there exists a constant 0 < § < 1 such that

(27) E|E[etZi-nt-+Zisn)| 4, k£ 4] <6, ¥i>m,
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whenever |t| > 1/(20,). Now it follows from Lemma 3.2 of G&tze and Hipp
(1983) that there exists a constant u > 0 such that

(28)  E|E[eH Tt lim)| 4 k£ 5] < e, VG > m,
whenever [t| < 3/(20,).
Proposition 2 Let € be as in Section 2. Then

/ Mﬂldt = o(N"l/z), as N — oo.
Ne<[t|<NY2logN t

Proof. It is easy to see that
[ 8u®)/tlds = o177,
|e| 2N

as N — oco. Hence it suffices only to show

t t dt = N_1/2 , N .
‘/N’Slt|$N1/2 log N lén (8)/2] of ) as N — oo

Let n and s be integer-valued functions of N satisfyingm < s < n < N
such that s — o0, n — oo and ne=*%/2 — 0 as N — co. Define

n N
An(n) = Y. > din(Xi, Xe),

J=1k=j5+1
(29) AN(n) = AN(n) - EAN(n).

Then it follows from (20) and Lemma 2 that

ita ! N : - n .
|¢N(t)l = IEe’taN [(N'I)E,‘=1 Zj+An-An( )}[1+1t6';,1AN(n)]|
(30) +0(t*nN"?),
as N — oo uniformly in ¢. We shall now approximate the first term of the

r.hs. of (30). Let 1 < @ < b < N and define J;, = {1,...,n}\{a,b}. We
divide J; 5 into blocks By, A1, By, .. ., A}, B; as follows. Define j1,...,5 by

jl = lnf{] € Ja,b . [Jl - s’jl + s] c Ja,b};
Jpt1 = inf{5> G +5s: [fpr1—8,Gpr1+8] C ap}, VI<p<I-1,
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where [ 4 1 is the smallest integer for which the infimum is undefined. We
write

A, = T N-D% .5 _j|<s}, Vi<p<l,
By = [[{e®"' W% je jp1<i<i-s—1},
B, = [[{e*" VD% je Jpip+s+1<5<jprs—s—1},
Vl S p S l - 1’
B = [[{e"™n M D% 5e gpi>a+s+1},
and
Ry = ito5 [ap(Xay Xp) — Eiﬁa,b(Xa,Xb)]eita;’l[A"_A"(")]
x [[{e®~ W02 .1 < j < N, j & Jup).
Using the convention that the product over an empty set is 1, we have
a - 151 N R -
it&;/l[il)a,b(xa,xb) _ Ei/"a,b(Xa,Xb)]e’taN (N-1)30;_, Zi+An~Bn(n)]
l
= RapBo [ ApB,.
p=1
Now we observe from (2) that

E|E(Ap|4; : 5 # 3p) — E(Ap]4j : 0 < |5 — 5| < 28)| < AL 2e-m),

and hence

1 1
|E[RasBo [ 4pBy — RapBo [] BoE(Ap|4;: 0 < |5 — jp| < 25)]|

r=1 p=1
i g-—-1
< Z |ERa,bBO(H Apo)[E(AqM:i 3 F jq)
q=1 pr=1

—E(Ag|4;:0 < |j - 5| < 26)|B,

i
X[ H BpE(Ap|A; :0 < |5 — 35| < 26)]|
p=q+1
8/\_1|t|&;,1nNﬂe_A(’_m).

IA
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We thus conclude that

i 1
|ER.3Bo [[ ApB,| < 2[t|65'NPE [ |E(Ap|4; : 0 < |5 — jp| < 25)|
r=1 p=1

(31) +8A7 oy n NP (-],

By repeated use of Lemma 1 with v = 1, we observe that the r.h.s. of (31)
is bounded by

l
20t|o5* NP [T EIE(4|4;:0 < |5 - 5| < 29))
p=1

+O([t|6 5 nNBe~24/2)

1
(32) < 20tloy'N? [] BIE(AGl4; : 5 # Go)| + O(Itlon"nNPee/2),
p=1
as N — oo uniformly in e, b and ¢.
Case I. Suppose that N1/2 < |t| < N'/2]log N. For sufficiently large N,
we take n = [K; log? N] and s = [K;log N| where K; and K are positive
constants to be suitably chosen later. Here [z] denotes the smallest integer

greater than or equal to z, whenever z € R. We observe from (27), (31) and
(32) that

!
|ERa3Bo [ ApByl < 20|65 NP8 + O(|t|s 3 nNPee/2),
r=1
as N — oo uniformly over |t| > N2 and 1< a < b< N. Note that
(33) i —n/(5s +1)| = O(1),

as N — oo uniformly over 1 < a < b < N. By choosing K; and K3 so that
KiKy 1 and K, are both sufficiently large, we have

l
|ERasBo [ 4pB,| = O([t|N=*/%),
r=1

as N — oo uniformly over |t| > N1/2 and 1 < a < b< N. From the
definitions of R,p, Bo, Ap and By, with 1 < p <[, we conclude that

(34) |Bitoxt An(n)e ¥ W=D Ejn ZrtAn—bn (]| = o(jtjn-3/2),
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as N — oo uniformly over [t| > N /2 In a similar way, it can be shown that
(35) |Ee£ta;r1[(N—1)Ej.‘;1 Z,-+AN—AN(n)]| _ oY),

as N — oo uniformly over |t| > N/2. Thus we conclude from (30), (34)
and (35) that

|6 ()] = O(N~ + tinN =2 4 £2aN?),

as N — oo uniformly over |t| > N/2 and hence

(36) N [¢n(t)/t|dt = o(N~1/%), as N — oo.

-/.I‘\11/25|1,‘|5N1/2 log

Case II. Suppose that N¢ < |t| < N1/2, Now for sufficiently large N,
we take n = [K1t72Nlog? N] and s = [K;log N] where K; and K, are
positive constants to be suitably chosen later. We observe from (28), (31)
and (32) that

l
|ER.pBo [[ ApBy| < 2tlo 5  NPelon' V-1 4 o(|tjs5 nNBe2/2),
=1
as N — oo uniformly over |t| < N/2and 1 < a < b < N. We note that
I —n/(5s+1)| = O(1),

as N — oo uniformly over 1 <a <b< N and N¢ < || < N1/2, Thus we
conclude that by choosing K; and K3 such that K1 K, 1 and K, are both
sufficiently large, we get

1
|ERa.bBO H Apo| < O(Ith_s/z),
p=1

as N — oo uniformly over N¢ < |¢]| < NY2and 1< a<b< N. Thus
coa—1 N
(37) |Bitoy Ay (n)e W (V-1 Ljey ZitAn—2n(m)| = o (|| N-3/2),
as N — oo uniformly over N¢ < |t| < NV/2. Similarly it can be shown that

(38) IEe"“’Krl[(N—l) P z:'+AN—AN(")]| =0(N7Y),
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as N — oo uniformly over N¢ < |t| < N1/2, We conclude from (30), (37)
and (38) that

[én(8)] = O(N™ + [flaN—5/% + 2N ?),
as N — oo uniformly over N¢ < |t| < N/2 and hence

39 / £)/t|dt = o(N~1/?),

(39) s 190/t = oY1)

as N — oo. Proposition 2 now follows from (36) and (39). O
4 Examples

In this section, we shall examine the conditions (1), (2) and (11) in the
context of three somewhat natural examples.

4.1 On an m-dependent shift

Let {£; : —00 < j < oo} be a sequence of i.i.d. random variables defined on
a probability space ({2, A, P). We suppose that &; has a probability density
function 7 with respect to Lebesgue measure. Let f : R™t1 — R be a
measurable function and we define

(40) XJ‘ = f(fj,. . .,fj+m), VY —o00< J < 00.

The sequence {X; : —0o < j < oo} is said to be an m-dependent shift and
an immediate consequence is that (..., X;_1, X;) and (Xj+m+1, Xj+m+2, .- -)
are stochastically independent for all j. With g as in Section 1, we assume
that go f : R™*! — R is continuously differentiable such that there exist
real numbers yj, ..., Y2m+1 and an open set © O {y1,...,Yam+1} satisfying
7(z) > 0 whenever z € © and

m+1

(41) Y

i=1
To verify that conditions (1), (2) and (11) hold in this case, we choose A;
to be the sub o-field of A generated by £; whenever —co < 7 < oo. Thus

3$m+lg ° f(x:ia see x.‘i+m)|(zl,---,12m+1)=(u1,---,y2m+1) # 0.

X; is A§+m measurable and it is clear that conditions (1) and (2) are now
trivially satisfied. Next we consider the transformation
m+1

(z1,-- - Tam+1) = (Z15- - -, Ty Tm42y - - - » T2m+1, Z go f(zj,...,%j4m))-
i=1
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From (41) we observe that there exists an open set W of R*™*! satisfying
(v1,.--,Y2m+1) € W such that the Jacobian of the above transformation
is nonzero on W and that (&y,..., E2m+1) takes values in W with positive
probability. Consequently we conclude that the conditional distribution of

9(X1) + ...+ g(Xm41) given (&1,...,8&m, Em+2,--->E2m+1) has a nonzero
absolutely continuous component with positive probability. Hence it follows
from the Riemann-Lebesgue lemma that (11) holds.

Due to the special m-dependent structure, Theorem 1 can be sharpened
in this example. In fact, we have

Theorem 2 Let {X; : —oo < j < oo} be defined as in ({0). With the
notation of Section 1, suppose that

m+1

Elg*(X1)+2 ) 9(X1)e(X;)] > o,

Ejg(X1)]? < oo,
Elh(X1, X;)|" < oo, 1<j<m+2,

for some constant n > 5/3, and

lim sup ElE{e‘t[g(xl)+...+g(xm+l)]|§1) RS fm) £m+2) RS £2m+1}| <L

[t]—o00
Then

sup |P(oy'Un < z) — Fy(z)] = o(N~Y?), as N — co.
T
Proof. We refer the reader to Loh (1991) for a detailed proof. O

4.2 On a homogeneous Markov chain

Let {£; : —00 < j < oo} be a strictly stationary homogeneous Markov chain
defined on a probability space (2, A, P). Let E and ¥ denote its state space
and the o-field of measurable subsets of = respectively. We assume that the
transition kernel P(z, A) of the Markov chain satisfies

(42) sup |P(z,A)— P(y,A)|=6 < 1.
z,y€E,A€¥F

Let f be a real-valued measurable function defined on E. We write

X;=f(§), V—-00<j<oo.
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With g as in Section 1, we further assume that g(X;) satisfies Cramér’s
condition, that is namely

(43) lim sup | Eexp[sitg(X1)]| < 1.

jt| o0

To verify that the conditions (1), (2) and (11) are satisfied in this case,
we take A; to be the sub o-field of A generated by &; whenever —oco <
J < oo. Then Xj is A; measurable and (2) is immediate from the Markov
property. Let m denote the marginal distribution of §; and P"(z, A) the
n-step transition kernel of the chain. Then from (42) and Nagaev (1961) p.
62, we have

(44) sup |P"(z,A) —n(4)| <6, Vn>1.

ZEE,ACF

Now it follows from (44) that for all —co < j < 0o and n > 1,

sup |P(A¢;) — P(A)]

i+n
= sup | [ PAléns; = 2)[P"(&, do) - n(da)]
AE.ﬂ‘J?‘_"_n g

< 8"

This proves (1). Finally (11) follows from (42), (43) and Lemma 2 of Stat-
ulevitius (1969), pp. 638-641.

4.3 On a stationary Gaussian process

Let {&; : —00 < j < oo} be a strictly stationary Gaussian process defined
on a probability space (2, 4,P). As in Gotze and Hipp (1983) p. 215,
we suppose that this process has an absolutely continuous spectrum with a
positive analytic spectral density. Let f : R — R be a function such that
with g as in Section 1, g o f is a non-constant continuously differentiable
function. Define

Xj=f(§j), V—00<j<oco.

As in the previous example, we let A; denote the sub o-field of A generated
by £; whenever —co < j < co. Then X; is 4; measurable. Now (2) and
(11) follow from Gotze and Hipp (1983), pp. 219-220 and (1) follows from
Ibragimov (1962), p. 1801 and Ibragimov and Solev (1969), p. 374.
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5 Appendix
Let {X; : —00 < j < 0o} be as in Section 1 and for 7; < --- < jj, we write
PO(AP x At-P)y = P[(X;,,..., X;,) € AP P[(X;,,, ..., X;) € ALP)]

foralll1 <p <, and
1
Pé )(A(l)) = P[(Xj,,...,X;) € A(l)]:
whenever A(F) is a measurable subset of R* with 1 <k<l

Lemma 1 Let 1 < p <l and f : R* — R be a measurable function such
that there exist positive constants v and C satlisfying

U b 145 (D)
/ '”/ |f(zl)'--’zl)| Vde < C, k:O,p,

Then for jpi1 — Jp > 2m, we have

|/°° /-oo f(a:l,...,:z:z)dPél)—/.oo /00 f(xl,...,mz)dP‘Sl)l

< 4000 expl-A(fp41 - Jp — 2m)]}7 ().

Proof. Since Xj is A;f::: measurable, the result follows directly from Lemma
1 of Yoshihara (1976) and (1). O

Lemma 2 Let Ay(n) be defined as in (29) with 1 <n < N. Then
EA%(n)=O(nN), asN — co.
In particular, EA% = O(N?), as N — oo.

Proof. Since EA%(n) < EA%(n), it suffices to show that EAZ(n) =
O(nN), as N — oo. By Holder’s inequality, we observe from (3) and (14)
that

E|tap(Xa, Xs) % 6( X, Xe) I{|$0a,5(Xa, Xs)| > NP}
[E|tbap(Xa, Xo) |1 [l (X5, Xe) ]

X P[|thap(Xa, X3)| > NPJO-D)/1

(45) = O(N7%,

IA
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as N — oo uniformly over 1 K a < b < Nand 1 < j < k < N. Next we
observe that

n N n N

EY . Y00 ap(Xay Xo)i (X, Xx)

a=1b=a+1 j=1k=j+1
N

n N n
= 2 2 > > {B¢(Xa, Xa)b(X;, Xi)

a=1b=a+1j=1k=j+1
—[ER(Xa, X)|[ER(X;, Xi)]}
(46) = O(nN), asN — oco.

The last equality can be shown to be valid by using the techniques intro-
duced by Yoshihara (1976) in the proof of his Lemma 2. Now the lemma is
immediate from (45), (46) and the definition of Ay (n). |

Lemma 3 Let o, Z;, Syb) be as in (12), (13), (24) respectively and

B = 07 B(e0X) + 3 Y10t (Xa)a(X5) + o (K0)a2(Xy)

1630 3 o(X)e(X;)e(Xe)}-

=2 k=j+1

Then for o sufficiently close to 1/2, there exists a constant 0 < € < 1/16
such that

BN (NOE5 i — /21 %N TR+ of([e + ¢)em NV,
and “
Ee*Sep = ¢t'/2 +O(|t|N_1/2 logN), V1i<r<2,
as N — oo uniformly over [t] < N and 1<a<b< N.

Proof. The proof of the first statement follows from (3.36) and Lemma 3.30
of Gotze and Hipp (1983). To prove the second statement, we observe that

B[R DS, 7 s

Ell _ eit'?El(N—l)Elg,'sw,lj—all\l.i—blsw Z;
Srult|oy!(N — 1)E|Z,|

O(|t|N~*/10g N),

IN A

(47)
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as N — oo uniformly in a,b and t. The second statement follows immedi-
ately from (47) and the first statement. O

Lemma 4 With the notation of Proposition 1, for sufficiently large K we
have
N-3u-1 N
2 a(0)_o(1) 2 a(2)
Yo Y Eitogtap(Xe, Xo)[e*es —Sea) — 1]e"Sen
a=1 b=a+3u+tl
[ ]

= —%e"tz/zt‘(‘ag_sN'_I/2 Z E Eg(Xj)d’(Xl’Xi)g(X;c)

j=—~o00 k=—o00
+O(jt| -+ )N~ 1og N] + o[t P(Je)e” /2N -12),

as N — oo uniformly over |t| < N¢, where P(|t|) is a linear combination
(not depending on N ) of non-negative powers of |t| and {X : —o0 < j < oo}
denotes an independent replicate of {X; : —co < j < oo}.

Proof. Let 1 < a<b< N withb—a > 3u. Then

©) ) atu (b+u)AN
Sap ~Sap =N (N-1)( > Zi+ ) Z).
j=(a—u)vl k=b—u
For 1 < ¢ £ N, we define
(c+u)AN
(48) R, =itoy'(N-1) > Z.
j=(c—u)Vv1

Then from Lemma 1, for sufficiently large K we observe that

Eito " b6 p(Xa, Xp) el
= —itaﬁl[Eh(Xa,Xb)](EeR“) +O(|t|6‘1—\}le—AK10gN)
= O(|t|N7?),

and similarly that
Eit&]?rl"pa,b(xa’ Xb)Ra = O(tzN_s)’

as N — oo uniformly in a, b and ¢t. Hence

2 o(0) _ o(1)
Eit&;,lq,ba,b (Xa’ Xb) [e't(sa,b _Sa,b ) _ 1]

= Eitd ' Yap(Xa, Xo)[(e®* — 1 — R)(e™* — 1 - Ry)
(49) +Ru(e™ —1— Ry)) + Ry(e® — 1 — R,) + R, Ry] + O[(Jt| + t*) N3],
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as N — oo uniformly in a, b and ¢. Next we observe from Hélder’s inequality
that

1BY;| = |B[Y; - 9(X;)|H{lg(X;)| > N}
< 3[EgH(X;)|"/*Pllg(X;)| > NP/
= O(N~%),

as N — oo uniformly over 1 < 5 < N. Consequently we get

E[Z;Zkbap(Xa, Xb) — 9(X5)9(Xk)a,5(Xa, X))
= B{[Y; - 9(X;)]| Zktbap(Xa, Xs) + [Yi — 9(X)19(X;) %0, (Xa, Xs)
_(EYj)de)a,b(Xa,Xb) - (EYk)g(Xj)¢a,b(Xa7Xb)}
= E{[Y; — 9(X;)) Zktpap(Xa, Xp) I{|9(X;)| > N}
(50)  +[Yx — 9(X&)|9(X;)¥ap(Xa, Xs) I{|g(X)| > N®}} + O(N3%),

as N — oo uniformly in a, b and ¢. Also using Holder’s and Markov’s
inequalities, we observe that

E|[Y; - 9(X;)1 Zxtbap(Xa, Xb) I{|g(X;)| > N*}|
{BY; - (X))} EZ) 4 Blvbap(Xa, )
xPllg(X;)| > N*|/2=0/)

— O(N—2a(1-—2/'1))’

IA

and similarly,

E|[Y) — ¢(Xi)19(X;)da,p(Xa, X0) I{|g(Xi)| > N*}|
— O(N—za(1—2/'1))’

as N — oo uniformly over 1 < j<k< Nand1<a<b< N. Hence we
conclude from (50) that

E[ijk¢a,b(Xa’ Xb) - g(Xj)g(Xk)'/’a,b(Xa; Xb)]
(51) — O(N—3a+ N—2a(1—2/'1)),

as N — oo uniformly over 1 < j < k< Nand1<a<b< N. Thus it
follows from (8), (17), (51) and Lemma 1 that for sufficiently large K,

Eitéd3 b p(Xa, Xs) Ra Ry
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atu (b+u)AN

= SPNT Y Y Be(X)a(Xe Xa)a(Xi)
j=(a—u)Vvl k=b-u

+o(lt*N /%)
= —it’oSNS2 3" N Eg(X;)$(X1, X})g(X})

J=-—00 k=—o00

(52) +o(|tPN /%),

as N — oo uniformly in a,b and ¢. Furthermore it follows from (20) and
Lemma 1 that for sufficiently large K,

E|to N ap(Xa, Xo)[(e® — 1 — Ry)(e®* — 1 - Ry)

+Ry(e® —1— Ry) + Ry(eF* — 1 - R,)]|

6E|t6 5 Vap(Xa, Xo) Ra R ?| + 2E|t67 b4 4(Xa, Xp) Ry BY?|
618167 Eltha(Xay Xo) T2 B Ral2) 2B\ Ry )12
+(B|Bo|?)/2(E| Ra*)/%) + O(1t /2N -12/4)
O(|t|7/2N—11/4log5/2 N),

IN N

(53)

as N — oo uniformly in a,b and ¢. Finally with repeated use of Lemma 1,
we get for sufficiently large K,

N-3u—1 N
2 a(0)_ o(1) s o(2)
> 3 Eitdn'thas(Xa, Xp)[e5er5en) — 1]¢ e
a=1 b=a+3u+1
N-3u-1 N

= 2 > "t‘A’XrI{Eﬂba,b(Xa,Xb)[e"t(si?b) -8 _ 1]}

a=1 b=a+3u+l
. o(2)
x(Ee'*%eb) + O(Jt|N=%/2),
as N — oo uniformly in t. Thus we conclude from (49), (52), (53) and
Lemma 3 that

N-3u-1 N
a e a(0)_o(1) 2 q(2)
S Eitstep(Xa, Xp) [ Cer—5as) _ 1]¢#5ai
a=1 j}p=a+3u+l

= _%¢a—t"”/21t3¢-,rg—3‘N‘1/2 > D Be(X)$(X1, X1)e(Xk)

j=—00 k=—00

+O[(ft] +¢*)N " log N + o[ ¢| P (|t[)e™/* N /7],
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as N — oo uniformly over |t| < N¢, where P(|t|) is a linear combination
[not depending on N] of non-negative powers of |¢|. ]

Lemma 5 W:th the notation of Proposition 1, we have for sufficiently large
K,

N-3u-1 N

2

0 o(l—1) ) s a(2)

> 3" |Eitey vap(Xay Xp) [[[Sen " Fei) — 1]¢™5es
a=1 jbp=a+3u+1 =1

= O[(Jt| + t*)Nlog® N],
as N — oo uniformly in t.

Proof. Suppose that 1 < a < b < N such that b —a > 3u. Let R, and
Ry be defined as in (48). By repeated use of Lemma 1, we observe that for
sufficiently large K,

2 el=1) o) e
|Eit6‘ﬁl¢a,b(xa’ Xb) H[e’t(sa,b ! _Sa,,b) — l]eitsa.,b |
=1
= |Eitd 5 Yap(Xa, Xs)[(€F* — 1 — R,)(e™ — 1 - Ry)
+R,(e®* — 1 — Ry) + Ry(efe — 1 - R,)
2(g(1) _og(2) ;2 g{(2)
+Ra Ryl %o =5es) — 1]e"%es| + O[((t] + )N 7]
(g(l) _g(2)
54) < 9E|to6 3 0 s(Xa, Xo) Ra Role et =5e) — 1]| + O[(Jt| + t2)N 73,
N VYa,
as N — oo uniformly over a, b and t. The last inequality uses (20). By

Holder’s inequality and Lemma 1, we observe that for sufficiently large K
the r.h.s. of (54) is less than or equal to

O[t]6 ¥ B|thap(Xay Xp)[5e8 ~5e8) _ 1] 21/2
x(E|RyRy|2)V2 + O(Jt] + 2)N 7]

O[t|6 7 [ E|hap(Xay X5) 2] /2(E| RuRy|2) /2

X[ E|e"Ses=5:2) _ 1121/2 4 O[(|t] + 1) N3]
O[t|o 7 [ E|hap(Xa X5) [2]Y/2(E| By Ry|2) /2
(55) x[Et(SL) — SE) Y2 + o[(jt] + 2)N 3,

IA

IA

as N — oo uniformly in a, b and ¢. Since

[E4(SS) - SEHIP1Y/2 = ot N~1/210g N),
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as N — oo uniformly in a, b and ¢, it follows from (54) and (55) that

N-3u-1 N

2
s al=1) _ () s a(2)
Z: E |Eit&&l¢a,b(xa’ Xb) H[e't(sa,b _Sa,b) _ l]e‘tsa,b I
a=1 b=a+3u+l =1

= O[(jt| + )N log N],

as N — oo uniformly in ¢. This proves Lemma 5.

22
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