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1. INTRODUCTION
1.1 OVERVIEW

Let X be a random variable having density f(z|0,7), where § € R” and 7 € R*.
Suppose that it is desired to test the null hypothesis Hy : § = 6y versus H; : 0 # 6,; thus
0 is the parameter of interest while 7 is a nuisance parameter. The parameters § and 7

will be assumed to be a priori independent.

It is well known that, in testing a precise null hypothesis, there is often a conflict be-
tween the conclusions reached using classical and Bayesian measures of evidence (P-values
and Bayes factors, respectively). Typical Bayes factors and lower bounds on the Bayes
factor over all “plausible” prior distributions are often much larger than the correspond-

ing P-values. See, among others, Lindley (1957), Jeffreys (1961), Edwards, Lindman and
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Savage (1963), Berger (1985, 1986, 1990), Berger and Delampady (1987), Berger and Sel-
lke (1987), Delampady (1989a, 1989b), Moreno and Cano (1989), Delampady and Berger
(1990), and Berger and Mortera (1991). Delampady (1989b) and Delampady and Berger
(1990) are of particular relevance to the problem of dealing with nuisance parameters, as

will be considered here, and certain results from these papers will be extensively utilized.

The purpose of this paper is to compare, through careful study of two typical exam-
ples, the success of three different methods for dealing with nuisance parameters in the
development of lower bounds on the Bayes factor. The first method is based on integrat-
ing out the nuisance parameter via a “non-informative” prior distribution; the second is
based on conditioning on a test statistic; and the third method is to seek lower bounds
when both parameters vary over classes of distributions. It will be seen that the first two
methods lead to useful lower bounds on the Bayes factor, bounds which are, in general,
substantially larger than the corresponding P-values. However, the conflict between classi-
cal and Bayesian answers is less marked here than in problems where there are no nuisance
parameters. The third approach does not seem to produce useful lower bounds on the
Bayes factor, unless the class of prior distributions for the nuisance parameter is sharply
constrained. Therefore, we do not in general recommend use of broad classes of priors for

the nuisance parameters themselves.

The effectiveness of the second method — developing Bayesian lower bounds based on
classical test statistics — was somewhat surprising, especially since we found that useful
lower bounds could arise from the class of all prior distributions on the alternative. This
can also be thought of as a marginal likelihood approach to the problem; see Bertolino,
Piccinato, and Racugno (1990) for development of this approach in an analysis of variance
setting. The bounds obtained by this method are elementary to derive and often convey
very useful information. Furthermore, in some cases we found these bounds to be equal
to more elaborate bounds developed via approach 1 and/or more sophisticated classes
of priors. Thus there appears to be a surprising similarity between “standard” robust

Bayesian bounds and marginal likelihood ratios in the problems we study.

It should be remembered, of course, that lower bounds on Bayes factors are lower

bounds. We certainly encourage use of Bayes factors for actual subjective priors, but



fear that such will have difficulty replacing the ubiquitous P-value. The lower bounds we
discuss are as “automatic” as the P-value, and are considerably more sensible as measures

of evidence.

Sections 1.2 and 1.3 give definitions of the classical and Bayesian measures of evidence
and the classes of prior distributions that will be considered. An introduction to the three
approaches for handling the nuisance parameter will be given in Section 1.4. The different
approaches are then applied to a univariate normal model in Section 2 and a multivariate

normal model in Section 3.

1.2 MEASURES OF EVIDENCE
The following three measures of evidence will be considered:
P-VALUE:

Classical significance testing is based on a test statistic T'(X), large absolute values
of which are considered to be evidence against Hy. The observed significance level, the

P-value, when z is observed, is defined to be
p = P(IT(X)| = |T(z)| 160). (1.1)
(In our examples, p will not depend upon 7.)

BAYES FACTOR:

It will be assumed that 6 and 7 are a priori independent, with 7 having density
92(7) (w.r.t. Lebesgue measure), and 6, given H; is true, having density (w.r.t. Lebesgue
measure) g1(f) on {6 : 6 # 65}. Then the Bayes factor for Hy versus H; is

[ F(alBo, T)ga(r)dr
Bo:91,92) = T 000, 7)0r (O)g2(r)d0ar

(1.2)

BOUNDS ON B:

Of interest will be lower bounds on (1.2) as g; and g, vary over classes G; and G,

respectively. Thus define

E($,g1,g2) - glegilnfzegz B(a"’gl’gz)’ : (13)
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where B(z, g1,92) is given in (1.2).

1.3 CLASSES OF PRIOR DISTRIBUTIONS
The classes of prior distributions that will be considered are (letting U[a, b] stand for
the uniform distribution on the interval (a, b)):
Ga = {all distributions},
Gs = {all symmetric distributions about 6},
Gus = {all symmetric unimodal distributions with mode at 6o},
Gsv = {all U[fy — r, 0y + r] distributions,r > 0},
Gp = {all nonincreasing densities on [0, 00)},

Gu = {all U[0, k] distributions, k¥ > 0}.

The first four will typically be utilized as classes of ¢;, and the last two as classes of
g2. Useful formulas for computing the lower bounds on the Bayes factor over the classes
G4 and Gus are given, for example, in Lemmas 2.1 and 2.2 of Berger and Mortera (BM)
(1991).

1.4 HANDLING THE NUISANCE PARAMETER
Three different approaches of dealing with the nuisance parameter = will be considered.

Approach 1: Integrate Out Over T

The nuisance parameter can be eliminated by integrating f(z|6,7) w.r.t. a “non-
informative” prior distribution g3(7). The lower bound on the Bayes factor is then

[ f(=|60, 7)g3(r)dr
sup JUJ £(28,7)g3(r)dr]g:(8)d6

g

Approach 2: Utilize a Test Statistic with a 7-Free Test

A second approach for eliminating the nuisance parameter 7 is to base the analysis on
a test statistic T(X) which has a density h(T(z)|§), where § is a function of 8 and 7 such
that the problem of testing the null hypothesis Hy : § = 6y versus H; : 6 # 6y becomes
equivalent to testing Hy : § = 6o versus Hy : § # 8. The original test for 8 based on X is
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then replaced by the test for § based on T(X). In this latter problem, let ¢ denote a prior
distribution for § given H; (i.e., a distribution on {6 : § # 69 }), and G4 stand for all such
prior distributions. Then we will consider the lower bound on the Bayes factor
- h(T(z)|é0)
B = inf
B(T(=),64) = inf Th(T(2)]6)9(8)ds
= h(T(@)160) /(T (2)15), (1.5)

where § is a value of § which maximizes h(T(z)|6).

Considering the test based on T'(z) has several motivations. The first is simply to note
that this is the common practice in classical and likelihood statistics, and following this
practice will allow us to provide comparative results. More fundamentally, the reduction
to T(X) and é can often follow from Bayesian (and classical) invariance arguments. This
was observed and developed in Delampady (1989b). Finally, it sometimes happens that
one is presented only with T(X). An example is when one learns only the P-value (which

then essentially becomes T'(x)); see Berger and Mortera (1991).

One of the surprises of this study is that, for analysis based on T(X), it frequently suf-
fices to use the crude G4 to obtain B, rather than the more reasonable (but difficult to work
with) classes such as Gg or Gys. This is particularly interesting because B(T(z),G4) cor-
responds to the natural likelihood ratio measure for comparing hypotheses in the marginal

likelihood approach (cf., Bertolino, Piccinato and Racugno, 1990).
Approach 3: Compute Lower Bounds Over ¢g; and g,.

A third possible approach to the problem of dealing with nuisance parameters is to
determine the lower bound on the Bayes factor when ¢1(f) and g2(7) vary over G; and G,

respectively. The bound is then simply given by (1.3).

2. THE UNIVARIATE NORMAL PROBLEM

Throughout this section the following example will be considered. Let X, X5,..., X,
be iid N (p,0?), where both p and 0% are unknown, and suppose it is desired to test
Ho : pp = po versus Hy : pu # po. Having observed z = (1, ...,2,), the likelihood is

fleline®) = e o {7 [LES2E 1]}, (.1)
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where z = 1 'le,- and s? = Zl(:z:, — Z)%. Approaches 1 to 3 will now be applied to this
= 1=

example.
2.1 Approach 1: Integrating Out o

The common noninformative prior for o is g5(0) = o~ !. It is well known that inte-
grating over o in (2.1) with respect to g5 yields a marginal likelihood for u proportional
to a t-density with location Z, scale s/\/n, and (n — 1) degrees of freedom. Thus (1.4)

becomes
nf2

[14¢/(n—-1)
sup [[1+ 2520 )-n/2g, (u)dp’

91€G,

where t = /n(Z — po)/(s/v/n —1). Note that ¢ is the classical t-statistic for testing
Ho = Ho.

(2.2)

E(‘E’gl’g;) =

Case 1: Gy = Ga = { all distributions on {u: pu # po}}.

With this choice of G;, the supremum in (2.2) is clearly attained by a point mass at
Z, so that

B, =B(z,04,93) = [1+*/(n - 1)]7"/2, (2.3)

Table 1 gives the values of B 4 for some standard ¢, given in terms of their corresponding
P-values. Observe that, for small n, roughly n < 4, B, is smaller than the P-value, in

contrast to the well-studied normal case (n = oo).

Table 1. Lower bounds on Bayes factors when o is integrated out

p = .001 p=.01 p=.05

n—1 B, Bg Bys || Ba Bs [ Bys || Ba Bs | Bys
1 25%x107°% [ 5.0 x 10~° | .001 .00025 { .00049 | .0115 0062 | .0123 | .0685

2 9.0x107° [ 1.8x107*{ .002 .0028 | .0056 [ .0261 .0304 | .0606 | .1447

4 .00059 .0012 .005 .010 .0201 | .0512 .0683 | .1359 | .2381

6 .0012 .0023 007 .0155 .0309 | .0674 .0887 | .1768 | .2847

8 .0016 .0032 .009 0192 | .0384 | .0779 1009 | .2013 | .3118
10 .0020 .0039 .010 .0218 0437 | .0852 {| .1090 2174 | .3294
20 .0030 .0059 .013 .0282 .0664 | .1022 || .1266 .2528 | .3674
fo'e) .0044 .0089 .018 .0362 0725 |.1223 |{ .1465 | .2928 | .4084




Case 2: G; = Gs = { distributions symmetric about po}.

For this choice of Gy, (2.2) and Theorem 3 of Berger and Sellke (1987) yield

fn—l(t)
sup{g fa-1(t +7) + 3 faat = 1)}’

ES = E(‘Z;, gSa g;) = (24)

where f,—1 is the ¢ density with (n — 1) degrees of freedom. Table 1 presents values of Bg

for common P-values.
Case 3: G1 = Gus = { symmetric, unimodal distributions about p}.
For this choice of G, (2.2) and Lemma 2.2 of BM (1991) yield

fn—l(t)
i‘;%{z_l;[F"_l(r —t) = Fpa(—r —t)]}’

Bys = B(z,9us,93) = (2.5)

where Fi,_ is the cdf of the t-density with (n — 1) degrees of freedom. Values of By are

also given in Table 1.

Because Gus C Gs C G4, the ordering B, < Bg < By, observed in Table 1, must
always hold. The difference between B, and Bg is only a factor of about 2, so that the
assumption of symmetry in g; is of only minor benefit in improving the lower bound.
The additional assumption of unimodality has a more significant effect, increasing the
lower bound by an additional factor of as much as 200. We feel that this assumption is
warranted if an effort is being made to be “objective”, and so would advocate use of B USs

as the more sensible lower bound.

Interéstingly, By s appears to always be larger than the corresponding P-value, even
for n — 1 = 1. Indeed, the following lemma establishes this in an asymptotic (large t)
sense. This lemma complements Theorem 7 of Berger and Sellke (1987), which gives the

asymptotic behavior of P-value/B; ¢ for the normal case.

Lemma 2.1
. P-value 1
lim

=0 Bys  (n-1)

(2.6)

Proof: See Appendix I. O



2.2 Approach 2: Utilizing a Test Statistic

Consider the test statistic

V1 | X — po

TX) =~ /=t

(2.7)

where X = 1 3~ X; and §% = Y (X;—X)?. The density of T is F[hn-1(t18)+ hn—1(—1|8)],

i=1 =1
where h,_1(-|6) is the non-central t-distribution with (n — 1) degrees of freedom and

noncentrality parameter § = \/n(p — po)/o. Testing Ho : p = po versus Hy : p # po
is equivalent to testing Ho : 6 = 0 versus Hy : § # 0. From (1.5), the lower bound on the

Bayes factor, when g € G4, is

hn_1(2]0)

B(T(z),G4) = . 2.8
B 50) = gl I8+ s 0) 29
Simple algebra yields
93 (v+ 1)l
B(T(#),64) = —— 5 3 , (2.9)
sup{e”2° [ int (¢,v,6) + int (—t,v,6)]}
6
where v =n — 1 and
o 1 26t
int (¢,v,6) = v — =22 dz.
1n(u)/0zexp[2z+\/y+_t2]z
For v > 2, a useful approximation for computing (2.9) is
o (&L
B(T(2),Ga) &) , (2.10)

Stgp{e‘%Ez[:Z:f:)[Dj(t, v,6) + Dj(—t,v,8)]]}

where

V-I-j+1)(j!)_1[ t6v/2 ]j.

Dj(t,,8) =T : —

Results are shown in Table 2 where also the value, 4, that maximizes the denominator
is given. Note that B(T(z),G4) ranges from twice the P-value at v = 1 to about 6 times
the P-value at v = 20.



Table 2. Lower bounds on Bayes factors when utilizing a test statistic

p=.001 p=.01 p=.05
v=n—1|B(T(z),G4) & |B(T(2),G4) & |B(T(2),Ga) &
1 .0021 636.215 0267 63.670 .1035 12.745
2 .0027 31.604 .0273 9.975 .1391 4.405
3 .0033 12.954 .0329 5.917 .1676 3.287
4 .0037 8.664 0377 4.686 1887 2.869
6 .0045 6.024 .0449 3.782 2158 2.517
8 .0051 5.104 .0498 3.418 2321 2.361
10 .0056 4.644 .0533 3.223 2428 2.277
20 .0069 3.886 .0618 2.875 .2663 2.108
00 .0089 3.291 0725 2.576 2928 1.958

Observe in the v = oo rows of Tables 1 and 2 that Bg = B(T(z),G4). This is indeed

generally true for v = oo, as can be seen from Lemmas 2.3 and 2.4 of BM (1991).

It is interesting to compare the lower bounds in Table 2 with those in Table 2 of Delam-
pady (1989b). The Table 2 entries here are roughly twice the analogous bounds of Delam-
pady. This difference is due to the fact that we utilize the test statistic

\/n(n — I)IX' — o |/S, while Delampady effectively utilizes 1/n(n — 1)(X — po)/S.
2.3 Approach 3: Lower Bounds Over g1(p) and ga(0).

First, note that if g;(1) € G4, the lower bound on the Bayes factor as a function of
o? is (slightly abusing notation)

f(w|#0702)
B(z,G4,0%) = =5 ——==
(z )= Faln o)
= exp{ st 2}
= exp{—5—51¢"},
where ¢ = /n(Z — po)/s and 4 = Z. Since lzimoﬂ(g,gA,az) = 0 and

lim B(x,G4,0%) = 1, one cannot find useful bounds when also using G4 for the class of
2

prior distributions on o*.

One might hope that use of “smoother” classes of prior distributions would give more

useful lower bounds. Natural candidates are Gys for gi1(¢) and Gp for go(0). Unfor-
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tunately, these classes are still too large to give useful bounds, as the following Lemma

shows.

Lemma 2.2. Defining ¢ = v/n(Z — po)/s and s? = Y (z; — 7)?,

k 2
Jo " exp{~37[¢® + 1]}do
0

po+r k L
sup [ [ -}T-a’" exp{—5,7[n(Z — p)? + s?]}dudo

T po—ro0

B(z,9vs,¥p) = inf (2.11)

=0.

Proof: See Appendix I. ]

Although B(z,Gus,Gp) is thus useless, the representation in (2.11) (see also the Proof
of Lemma 2.2 in Appendix I) suggests that useful information about the Bayes factor can
be conveyed by considering B(z, g1,r, g2,k), Where g1 (1) is U[po — 7, pio + 7] and go x(0) is
U0, k], the “extreme points” of Gys and Gp, respectively. Graphing B(z, g1,r,92,k) over
the range of r and k deemed to be relevant can indicate the degree of robustness of B. In

the special case n = 4, the following can be used to do the computation.

Lemma 2.3.

r* A=3/°T(%, Ak*?)

B(z,qg1.r, = 2.12
(?,: g]-) gz;k) 2\/§D(k*,q,r*) ( )
where ¢ = 2(Z — po)/s, A= 3(1+ ¢2), k* = s/k, r* =r/2s,
I(a,z) = L /°° e 't 'dt fora>0 (2.13)
0 e J, ’ '

and

D(k*,q,r*) = 4" {@[k*(q + )] — B[k*(g — r*)]}

(q+7’*) __L¥* r*)2
+m@( E*v1+ (g + )?)

- \/(q(q_;_:;)ﬁcb(—k*\/l ¥ (g —r)2). (2.14)

Proof: See Appendix I. O
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A graph and a contour plot of B(z,g1,r,92,k), for n = 4,s = 1, and z such that the
P-value is 0.05, are given in Figures la and 1b, respectively. It was visually superior to
use k* = 1/k as an argument of B instead of k. It is immediately apparent that B, in this
example, is large (near 1) only if r and k* are small, while B goes rapidly to zero as k*

grows large (k — 0). Note that B is typically larger than 0.05, the P-value.

As an example of the use of such figures to ascertain robustness, suppose the user’s
subjective beliefs are reflected by choices 1.25 < r < 2.5 and 2.5 < k¥ < 100 (i.e., any
unimodal symmetric prior for y between the “extreme points” U[uo — 1.25, po + 1.25] and
Ulpo — 2.5, o + 2.5] is deemed possible, as are nonincreasing priors for ¢ between the
“extreme points” U0, 2.5] and #[0,100]). From Figure 1b, the corresponding range of B

can be seen to be 0.14 < B < 0.27, which would be a reasonably robust conclusion.

3. THE SYMMETRIC MULTIVARIATE NORMAL PROBLEM

All computations in this section refer to the following example. Let
X = (X1,...,Xx) ~ N(g,I) and suppose it is desired to test Hp : § = po versus
Hy : p # po. We do not consider Approach 3 in this example, because the “nuisance

parameter” is derived, rather than natural.

3.1 Approach 1: Integrating Out the Nuisance Parameter

Berger and Delampady (1987) found the lower bounds for this example when
g(¢) € Gus. This is equivalent to adopting approach 1, with § = |¢ — po| being the
parameter of interest, 7 = (4 — po)/|p — go| being the nuisance parameter, go(7) being the
uniform distribution on the unit ball, and g,(6) € G* = { densities on (0, c0), proportional
to 8% ~1w(h), with w nonincreasing }. Also the null hypothesis becomes Hy : = 0 and the
alternative becomes H; : 6 # 0. The lower bound on the Bayes factor, B* = B(z,G*, ¢2), is
given in Table 3 for some standard P-values (see Berger and Delampady (1987), although
the entries computed there for the k¥ = co case were incorrect). Note that B* remains

almost constant as the dimensionality k increases.
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Table 3. Lower bounds on Bayes factors for the multivariate normal problem

Dimen-
sion p=.001 p=.01 p=.05

k ﬁ* E(T("‘E)’ gA) 3 E* -B(T(:E)7 gA) 3 E* E(T(‘?), gA) S
1 0182 .0089 10.83 |{ .1227 .0725 6.64 .4092 .2929 3.83
2 .0143 .00914 12.78 || .0978 .0739 8.14 .3481 .2923 4.87
4 0114 .00930 15.37 || .0850 0745 10.14 || .3141 .2907 6.27
6 .0097 .00936 17.32 || .0807 0747 11.62 {| .3023 2891 7.31
8 .0095 .00939 18.96 }| .0789 .0746 12.86 || .2963 2879 8.18

10 .0094 .00940 20.40 || .0777 .0745 13.95 || .2927 2867 8.95

20 .0093 .00939 26.04 || .0743 0739 18.21 || .2844 2828 11.95

00 .0085 .00845 .0669 .0669 .2585 .2585

3.2 Approach 2: Utilizing a Test Statistic

Consider the test statistic T(X) = |X — po|> which has a non-central chi-squared
distribution with k degrees of freedom and non-centrality parameter § = |y — po|? = 62,
to be denoted by h(¢]6). The test Ho : g = po versus Hy : g # po becomes equivalent to
the test Hy : 6 = 0 versus Hy : § > 0. For ¢1(6) € G4, the lower bound on the Bayes factor

is given as in (1.5) by ” )
hi(t}6 =0

hi(t]6)

where h(t|§ = 0) is a central chi-squared distribution with k degrees of freedom and § is

B(T(z),Ga) = ; (3.1)

that value of § which maximizes hi(%|6). Results are shown in Table 3 (see also Delampady
(1989b)). Note that, as the dimensionality k increases, B* and B(T(z),G4) grow closer

together. In fact, as k¥ — oo with p remaining fixed, they approach the same limit
1

lim B* = lim B(T(z),G4) = exp{—=2°}, (3.2)

k—o0 k—o0 - 27
where 2, is the p-th quantile of the standard normal distribution (see Appendix II for
explanation). This limit is given in the ¥ = co row of Table 3. Note that the convergence
to this limit is very slow.

The first equality in (3.2) is surprising, since B* is computed using the quite restrictive

class of nonincreasing priors in § = |u — po|2, while B(T(z),G4) uses all priors on é. Note,

from Table 3, that B* and B(T(z),G4) tend to also agree even for smaller values of k.

12



APPENDIX I

Proof of Lemma 2.1

Define
fn—l(t)
51; Faci(r—t) — Fpq(—r —t)]

Write r = t + g(t), and consider any choice of g(t) which satisfies, as t — oo,

p(r,t) =

g(t) > 00 and g¢(t) = o(t). (A.1)

Then, clearly,

B 2(t + 9(t)) fa—1(t)
V908 = T ) = Fur (<2t = 500)

= 2t fua(H)(1 + o(1)).

We establish that
Bys = 2tfn1(t)(1 + o(1)) (A.2)
through a proof by contradiction, assuming that the minimizing r* = 4 g*(¢) violates one

or both of the conditions in (A.1) along some increasing sequence {t;} with ¢; — co.

Suppose, first, that ¢*(¢;) < K, for some K < co. Then

Wi "e) ) = LT o)

2 2(1 + &)ti fu-1(t:)(1 + 0(1)),
since Fy,—1(9*(t;)) £ 1 — ¢ for some € > 0. But this is larger than (A.2), contradicting the

assumption that (¢; + ¢*(¢;)) is the minimizer.

Suppose, next, that the second condition in (A.1) is violated, i.e., that g*(¢;) > et; for

some € > 0. Then

Pt +g7(ti), ti) = 2 ;ngjl((t;l)({j)_)l - (14 (L)

2 21+ e)tifa-1(t:)(1 + o(1)),
since Fr—1(g*(¢;)) < 1. But, again, this is larger than (A.2), which contradicts t; + g*(¢;)

being the minimizer. Thus we have established (A.2).

It is straightforward to show that the P-value satisfies
P(IT] > 1) = 2(1 — Fars(t))

= 2tfn—l(t)/(n - 1),
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which together with (A.2) yields the conclusion of the Lemma. O
Proof of Lemma 2.2

Standard representations of Gys and Gp are

* 1
Gus = {g1(p) = / 5—1(ﬂo—r,ﬂo+r)(/~1')dFl(r), where F} is any distribution function on (0, 0)},
0 r

Gp = {g2(0) = / %1(0’k)(a)dF2(k), where F; is any distribution function on (0, 00)}.
0

Defining
I 1.,
W) = ¢ [ o expl—gzln(e - w? + 52))do,

Hot+r
vt =5 [ b
"

o—7T

it follows that

_ fooo (o, k)dF3 (k)
B(z,Gvs,Gp) = inf. I [ 4*(r, k)dFy(k)dFy (r)

Treating the ratio of integrals above as a ratio of linear functionals w.r.t. the measure
Fy x F3, Lemma A.l in Sivaganesan and Berger, 1989, shows that the lower bound is

attained at a point mass measure, establishing the first equality in (2.11).
Fixing r and applying L‘Hospital’s rule to ¥(uo, k)/¢*(r, k), one obtains

k~™exp {-—ZL,:;[qZ + 1]}
=0 [4oFT Lk exp {5k [n(Z — u)? + 5?]} du

= lim [2i/+p{ 5@ — 1) = (& — o) ]}du]—l

= lim [% /-:exp{zk2 [2(:c—uo)—n]}dn]_1, (A3)

where n = p — po. Without loss of generality, assume Z > po and choose r = Z — py.

B(z,Gus,6p) < 11

Using the monotone convergence theorem, one has

r

: nn . "
lim exp{%ﬁ(w—,uo)-—n]}an/ hmexp{2k2[2r—17]}dn=oo.

k—0 —_r

14



Thus, from (A.3),
lim B(z,Gvs,9p) =0,

which establishes the result.

Proof of Lemma 2.3

E __n s 12
o "exp{—gezle® +1]} do

B(%gl,r,yz,k)= 51 f" - { 202 - n} __ .

Jo 7v 27:10(1_7‘)6"?{_222}[‘p(_‘lf-l-i, ) = ¥(—g7 — =5F)ldo

Setting w = s/o and k = s/k*, the numerator is

S(l—n)/ wn—2 exp{__%(l + qZ)wZ}dw — P((n —2 1)/2)A_n;-11_‘(’n ; I,Ak*z),

where A = 1(1+¢?) and I'(a, z) is the incomplete Gamma function given in (2.13). Setting

r = r*s//n, the denominator is
S e

When n = 4, this last integral ‘can be evaluated by integration by parts (using
J wexp{—w?/2}dw = — exp{—w?/2}), leading to (2.12). O

APPENDIX II
Explanation of (3.2)

Observe first that, as k¥ — oo, the critical value tp, for which Pr(T(z) > t,]6 =0) = p,
is given by '

ty = k+ V2 z, + O(1),

where 2, is the standard normal critical value. Using the fact that (T —k—§)/[2(k+26)]*/?

tends to a standard normal random variable as k£ — oo, it can be shown that

hi(tp[0) (2k) 7'/ exp{— gp (V2F 2, + O(1))*}
hi(tpl8) (2K + 26)]71/2 exp{— iz (V2E 2 — 6 + O(1))2}

This achieves its minimum at

6 = V2k z,(1 + o(1)),

15



from which it follows easily that

im MD— = exp{—lz’?}.
koo hi(tp)9) 2

In estéblishing the first equality in (3.2), it can be shown that

. exp{—3lz — pol*}

~ sup [ exp{=FI(z o) — 6rPha(r)drlon(6)d8
Fa(2]0)

" Tsup Jo° ha(]6%)g1(6)d6
g1EG*

Since the denominator is less than or equal to hg(#|9), it is immediate that B* > B(T(z),G4).

To establish that the reverse inequality holds as k — oo, choose

NAQ

* _ l"k/Z k-1

(which is in the class G*). Clearly, for any € > 0,

2\ % \/E 2 R
k—oo hk(tlé‘) k—oo J§

= lim L _§k[29k—1 49
k—oo J\/5_¢ hk(tl6) k

the last step using the facts that hg(¢6%)/hx(t]6) < 1 and

Vé—e 1 e\ */? € i
/ _§k/2gk—149 — (1 - 7) =[1- -0
0 k 6 V2k zp(1 + o(1))

But, on (Vé —¢, \/g), hi(t5|62)/hi(tp,8) converges to 1 uniformly (employing again the
asymptotic normality), from which it can be concluded that

2\ %
L k(8 )gi(0)d6 _
Fmoo  hy(tl8)

Thus

Bt < hi(t]0)
<
fm B s i 07 gr (9)d0

= lim ——hk(th) ,
k—oo hp(t]6)
which establishes the desired inequality and completes the proof.
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Figure la. Graph of B(x, 91y 9o k) as a function of r and k*=1/k,

when n=4, s=1, and P-value = (.05,




Figure 1b. Contours of B(x, 91 p> 9o k) as a function of r and k*=1/k,

when n=4, s=1, and P-value = 0.05.
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