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Abstract

Shannon’s entropy is usually defined separately for discrete, and for (absolutely) con-
tinuous random variables. In this article, a simple expression for the entropy of random
variables with mixed (discrete-continuous) distributions is given in terms of the usual en-
tropy definitions. In addition, the Maximum Entropy problem in the setting of mixture
distributions is discussed.

Index Terms. Entropy, Maximum Entropy, mixture distributions.



I. Introduction and definitions

Let X be a random variable (r.v.) with absolutely continuous distribution with respect to
Lebesgue measure y on the real line, and let f.(z) be its probability density function (p.d.f.),
and S. C R its support set. Let S3 C R be a finite (or at most countable) set, and let Y be a
discrete r.v. with fj(z) as its probability mass function (p.m.f.), and S, as its support set.

The Shannon entropies of X and Y are defined by (cf. [8]) as

2(X) =~ [ f(o)log f(e)du(a) (1)
HY) == Y fulx)log fula) (2)
€Sy

It is apparent that the two definitions are special cases of the following general definition

of entropy (cf. [6])
HW) = = [ fw(w)log fiw(w)dr(w) ®)

where the r.v. W has a probability density fiv(w) with respect to some o-finite measure A on
the real line.

However, the only practical choices for A are Lebesgue measure, a counting measure, or a
linear combination of the two, that correspond to (absolutely) continuous, discrete, or mixed
(discrete-continuous) observable r.v.’s respectively. Since the case of mixed r.v.’s includes the
other two as special cases, we will focus on that and derive an expression for the corresponding
entropy.

So suppose that the r.v. W is defined in the following way. Let the Bernoulli r.v. Z be
independent of X and Y and such that P(Z = 1) = p, and P(Z = 0) = 1 — p. Since the p.d.f.
fe(z) is uniquely defined only almost everywhere with respect to Lebesgue measure y, we can
assume without loss of generality that f.(z) = 0, if z € Sy, that is, that the supports Sq and

S, are disjoint. Now let

{X ifZ=0

Y ifZ=1
In this case, W is seen to have a probability density

(4)

fw(w) = pfa(w) + (1 - p) fe(w) : (5)



with respect to the measure v on the real line, which assigns mass v(A) = [, du(z)+#(ANSy),
to any Borel set A, where #(B) denotes the number of elements in set B (cf. [5]). The r.v. W
is a mixed discrete-continuous r.v., and it becomes discrete or continuous in the extreme cases
p =1 or p = 0 respectively.

Using definition (3) and the fact that the supports Sq and S, are assumed disjoint, it is
immediate that the entropy of the general mixed r.v. W is given by

H(W) = = 3 pha(s)log(pfa()) - [

TESy z

G p)fe(z)log((1 - p)fel(a))du(z)  (6)
or, after some simplifications, (and using the fact that H(Z) = —plogp — (1 — p)log(1 — p)),
H(W)=H(Z)+pH(Y) + (1 - p)H(X) (7)

It can be immediately verified that at the extreme cases where p = 0 or p = 1, expression (7)
reduces to the standard expressions (1) and (2). In addition, the above expression of entropy
can be compared to the notion of e-entropy for mixed r.v.’s (cf. [7]), i.e. the rate distortion
function relative to a squared-error fidelity criterion. In particular, the e-entropy and the
entropy H (W) asymptotically (as ¢ — 0) agree except for a factor proportional to (1 — p)loge.
The exact same relationship between the e-entropy and the entropy is also observed in the case
of (absolutely) continuous r.v.’s, for which p = 0 (cf. [1}).

As a further motivation for the entropy expression (7), consider the following example
of Bayesian hypothesis testing [4]. Suppose that W is an observed r.v. with probability
density fo(w) under hypothesis Hg, and fi(w) under hypothesis Hy. Both fy and f; densities
are defined with respect to some measure A on R. Assume that hypothesis H; has a prior
probability p of occuring, and Hy has a prior probability 1 — p. If one defines

0 if Hy occured
{ 1 if H; occured

then Z is the previously mentioned Bernoulli r.v., and the unconditional probability density of

W with respect to A is given by the mixture

fw(w) = pfi(w) + (1 — p) fo(w) (8)



After W = w is observed, the posterior probability of H; occuring is

pfi(w) = 3(w
A+ (= p)folw) ~ 1)

and the posterior uncertainty regarding Hp or Hj occuring is

P(H;|W = w) = P(Z = 1|W = w) =

H(Z|W = w) = —p(w)log p(w) — (1 — p(w))log(1 — p(w))

The average uncertainty regarding Hy or H; after observing the r.v. W is therefore calculated

H(ZW) = /H(Z|W = w) fw(w)dA\(w) = H(Z) + pH(W1) + (1 — p)H(Wy) — H(W) (9)

where Wy and Wy are two r.v.’s with densities f; and fo respectively, and the entropies
H(Z), H(Wy), H(Wy), and H(W), are calculated using the general definition (3).

Consider now the particular case where f; and fp have disjoint supports. It is apparent
that in that case there is no uncertainty regarding Hy or Hy after observing W = w. Hence,

H(Z|W) =0 in equation (9), and we have
HW) = H(Z)+pH(W1) + (1 - p)H(W) (10)

In case now that f; = fz, fo = f., and the measure A is equal to the aforementioned measure

v, equation (10) provides a different derivation of the entropy expression (7).



II. Maximum Entropy for mixture distributions

The Maximum Entropy problem has been extensively discussed for discrete or continuous
r.v.’s (cf. [2]). For example, it is easy to prove [3], that if Y is a discrete r.v. with uniform
distribution on a set S, consisting of m values, then Y has Maximum Entropy among all
discrete r.v.’s taking values in S, and H(Y) = logm. Similarly, if X is a mean-zero, variance
0%, normal r.v., then X has Maximum Entropy among all (absolutely) continuous r.v.’s with
variance 02, and H(X) = 1(log(2m0?) 4+ 1). As alast example, if U is an exponential r.v. with
mean 6 > 0, then U has Maximum Entropy among all (absolutely) continuous positive r.v.’s
with mean 6, and H(U) = logé + 1.

We will now address the analogous Maximum Entropy problem for the r.v. W possessing

the mixture density given in equation (8), where f; and fo are densities with respect to measure

A, with disjoint supports.

Theorem 1 Let Fy and Fy be two classes of densities with respect to measure A\, such that for
any fo € Fo, f1 € Fy, the supports of fo and fi are disjoint. Also suppose that the Mazimum
Entropy problem is well-defined for classes Fy and Fy, i.e. there is f§ € Fy and ff € Fy such
that f§ and f{ are the Mazimum Entropy distributions in their respective class.

Let the r.v. W§ have density f§, the r.v. Wi have density f{, and let the Bernoulli r.v. Z*
be independent of W& and W, and such that P(Z* = 1) = p*, and P(Z* = 0) = 1 — p* with

o = 1 (11)
1+ exp{H(W}) - H(W})}

Then the mizture r.v. W* defined by

W*_{WS if 2% =

Wi if 2 = (12)

has Mazimum Entropy in the class spanned by all r.v.’s W that can be obtained by varying

fo € Fo, f1 € Fy, and p € [0,1], in equation (8).

Proof. Let any fo € Fo, f; € Fi, and p € [0,1]. From equation (10), where W7 and W

are two r.v.’s with densities f; and fy respectively, we have



H(W)=H(Z)+pH(W1)+ (1 - p)H(Wo) < H(Z) + pH(WT) + (1 - p)H(Wg5)  (13)

Using the fact that H(Z) = —plogp — (1 — p)log(1l — p), standard calculus shows that the
right-hand side of (13) is further maximized by letting p = p* as given in equation (11). O

As an application of the above theorem, consider the problem where Fy is the set of all
densities with respect to Lebesgue measure u, that have positive support and mean 6 > 0, and
Fy is the set of all densities with respect to u, that have negative support and mean —6. Then,
the Maximum Entropy mixture distribution is the two-sided exponential density, with scale
parameter 6.

The following corollary identifies the mixed (discrete-continuous) r.v. with Maximum En-

tropy in a certain class.

Corollary 1 Let F, be a class of p.d.f.’s with respect to Lebesque measure u, and Fy be a class
of p.m.f.’s (i.e. densities with respect to a counting measure). Also suppose that the Mazimum
Entropy problem is well-defined for classes F;, and Fy, i.e. there is ff € F, and f] € Fy such
that fF and f} are the Mazimum Entropy distributions in their respective class.

Let the continuous r.v. X* have p.d.f. f¥, the dicrete r.v. Y* have p.m.f. f7, and let

the Bernoulli r.v. Z* be independent of X* and Y*,and such that P(Z* = 1) = p*, and

P(Z* =0)=1-p* with
1
14 exp{H(X*) - H(Y*)}
Then the mized (discrete-continuous) r.v. W* defined by
X* ifZ*=0
W* = (15)

Y* fZ2F=1

has Mazimum Entropy in the class of all mized r.v.’s W that can be obtained by varying f. € F,,

*

p

(14)

fa € Fq, and p € [0,1], in equation (5).

As an application of the corollary, consider the problem where Fj is the set of all p.m.f.’s
with support on Sy = {ay,as,...,an}, and F, is the set of all p.d.f.’s with variance o?. Then,
Y* is the uniform r.v. on S4, and X* is the normal N(0,02) r.v., and W* is defined in (12),

m

with p* = Y It can be verified that if 0 << m, p* ~ 1, and if m << o, p* ~ 0, which

is an intuitive result.



ITI. Conclusions

A simple expression for entropy (equation (7)) was given that applies equally to discrete,
continuous, or mixed (discrete-continuous) random variables. In addition, the mixture distri-

bution possessing Maximum Entropy in a certain class of distributions was identified.
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