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Abstract

Scores of ‘k’ players have been observed. The problem of selecting the player with the
highest expected wins, more generally the problem of partitioning k players according to
the expected wins is considered. We assume that the players are playing pairwise. Bayes
rules are obtained for general ranking problem under general class of loss functions.
Sequence of parametric empirical Bayes rules is proposed and proved to be optimal of
the order O(e~°") for some positive constant c.
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1 Introduction

Selection and ranking problems arise in many practical situations where the tests of ho-
mogeneity do not provide the answer the experimenter wants. In this paper we study
the problem of ranking treatments, when only pairwise comparisons of the treatments are
available.

In the method of paired comparison several “treatments” under investigation are pre-
sented in all possible pairwise combinations to a judge who states which member of each
pair he prefers. We do not allow expression of no preference. This experiment may be
repeated several times independently. Score for the “treatment” 7 is defined as a number of
times the “treatment” i is preferred over other treatments. We define the treatment with
the highest expected score as the best “treatment.” Here the term “treatment” may stand
for objects, machines, tennis players and the like. The method of paired comparison is
widely used when no meaningful absolute measurement can be made on the “treatments.”

The method of paired comparison has great practical simplicity. It has been used ex-
tensively in experimental situations where subjective judgment of individuals lead to quan-
titative responses, and situations where measurements are difficult or costly to obtain.
Trawinski and David (1963) proposed a procedure for selecting the best treatment. Contri-
butions have been made by David (1963), Bradley (1984), Bradley (1976), among others.
A Brief review of subset selection and indifference zone approaches to the selection of the
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2 BAYES RULES 2

best treatment in a paired comparison experiment is in David (1989). We will assume that
the Bradley-Terry preference model holds.

In this paper we consider a general problem of partitioning k£ treatments into 7 non-
empty, mutually exclusive subsets, Sy, 52,...,5,, where 57 is of size ty, S2 is of size 3 and
so on. The goal is to partition the k treatments into these r subsets, so that S, contains the
t; worst treatments, S; contains next ¢, worst treatments, ... and 5, contains the . best
treatments. When r = 2 and #3S53 = 1, this is a problem of selecting the best treatment.

In many situations, an experimenter may have some prior information about the pa-
rameter of interest, and he would like to use that information for making the decision.
In section 2, the problem is described and the Bayes rule is derived, when the unknown
parameter p has a conjugate prior. In section 3, it is assumed that the prior is partially
known. In this case we consider the situation where one is repeatedly dealing with the same
selection problem independently. In such instances, at each stage, one would like to use the
past information and use it to derive a rule which is close to a Bayes rule. This approach
is known as the empirical Bayes and is due to Robbins (1956). Empirical Bayes rules have
been derived for subset selection goals by Deely (1965), for selecting good populations by
Gupta and Hsiao (1983). Gupta and Liang (1986, 1988) have considered the problem of
selecting good and best binomial populations. Recently, Gupta nad Liang (1989) delt with
the problem of selecting the best multinomial cell and Gupta and Hande (1991) consid-
ered the problem of partitioning ¥ multinomial cells and the problem of selecting the cell
associated with the largest probability and estimating the probability associated with the
selected cell.

2 Bayes Rules

Suppose that there are k treatments, 77,75, ..., T;. These treatments are to be compared
in pairs N times, independently. Let for 1 # jand for 1 <y < N,

1  if ¢th treatment is preferred in vyth
Xijy = comparison of the ith and jth treatments,
0 otherwise.

We notice that X;;, + Xj;, =1 V i # jand V . We assume that X;;, for all 7 < j and
for all v are independent and P(X;;y = 1) = m;;. The expected “score” of the ith treatment

is given by .
N 0i = Z EXij,y =N Zﬂ’,’j.
JFELY JF#
Our goal is to select the treatment with the highest expected score. We assume the Bradley-
Terry model, that is, we assume that there exists a probability vector p = (p1,p2, .. -,Pk)

such that for each 7 p; > 0, 24?:1 p; = 1 and m; = p;/(pi + p;). Thus the treatment
associated with the largest p; has the highest expected score. The distribution of

N
Yij =Y Xijy fori<j,

v=1
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is given by

P(y11, %125 - -y Uk—1k) = H (y,J y"(l—7r )Y
2<j

Notice that

TG ra-mgyw = TI @) TIei s (mi+ )™

i<y 1<j i<y

= T TG+ 2™ TT2% T 2%
i< 1<J i< i<

= TI¢) T +p) ™ TTp% TI ot
F< i< z<J i<i

= TI¢) Iwi+p)™ H T
< i< i=1j#i

- H (yu) H(Pa +p)7N le J#!y’J
<3 i<

Hence if for each i, z; = } 4, ¥ij, then z1,22,...,%% forms a sufficient statistic.

Let ppy < ppgg--. < pxy be the ordered values of the parameters pi,ps,...,pr. We
assume there is no prior knowledge about the exact pairing between the ordered and
the unordered parameters. Our goal is to partition k treatments into r mutually ex-
clusive subsets, Sy,57...,95, such that S; the set of ¢; treatments associated with the
probabilities ppy), Pra}, - - - P[zy), S2 the set of treatments associated with the probabilities
Dlts+1]> Plta42)> - - - » Plta+2,) and S, the set of treatments associated with the proba,bilities
Dlk—tr+1]) Plk—t,+2)s - - -» P[] Here t1,12,. .., 1, are fixed integers in advance, such that > i, t; =

Let
A={(81,50...,8): SinS;=0,|S] =t Vi#jand S; C{1,2,...,k} }
be the action space and let

Q={ (p1,p2s- PR D P = Lipi 20V }

be the parameter space.

We will assume that the prior distribution of the parameter p follows a Dirichlet distri-
bution, G, with the hyperparameters @ = (oq, a2, ..., o), where~a1, g, ..., QL are positive
constants. Let ag = Zle a;.

The density of p, ¢(.) is given by,

——-,}l(ﬂLHz_lpf' b oifp; >0 fori=1,2,...,k andzi-;lp,-:l
9(p) =

l IF( ')
otherwise.

Let L : A x 2 — R be the loss function. We will assume that the loss function
is non negative, permutation invariant and “increasing”. Mathematically we write these
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conditions as
(1) L(p,a) 20 V peQ and a€ A
(2) L(zp,ma)=L(p,a) YV p€Q; a€.A and for each permutation .
Here 7(a) = (7S1,782,...,75%) and for any § C {1,2,...,k}, S = {41,%2,...,4,} then
78 = {n(é1), 7(¢2),...,m(ig)}
(3) Let b= (pl’p27"'7pk) and p; < pj;ac€ A) a= (51752,"'751‘) and ¢ € S’rlaj €
Srys T1 S T2
Let II;; be the permutation which inter changes only ith and jth co-ordinates then,
L(IL;jp,a) < L(p, a).
(4) There exists a positive constant 6, such that for every a € A
[ L5(p, a)g(p)dp < .

The condition (1) says that the loss function is non-negative, (2) says it is permutation
invariant, (3) says it is “monotone”.

Now we prove that any decision rule that “ranks” the treatment T; according to the
rank of z; + a; in z1 + ay,22 + 09,...,2k + ok is a Bayes rule.

Theorem 2.1 :

If the parameter p has the prior distribution g = ¢(. |a) with ¢ as a hyperparameter and
if X = (X1,Xo,. ., X}) represent the score of the i —th treatment under the Baradley-Terry
model, then, for the loss function as described earlier, any decision rule § = 6(xq1,2,...,2%) =
(S1(z), Sa(z), ..., Sr(z)) such that for everyry > 11,1 € Sy, j €Sy, thenzi+a; < 2+ a;
is a Bayes rule.

Proof: The posterior density of p, g(p|z) is given by

k
g(?l@f) = hl(@f)hz(?) Hp:?t+o:t—1

t=1

where hy(z) is some function of z and is free of p, and hy(p) is a function of p and is
permutation invariant. ) ) )

Let B be the class of non randomized decision rules which ranks the cell II; according
to the rank z; + a; in 1 + 1,22 + ag,..., 2k + Qk.

First we will prove that if a non-randomized rule § is not in B, then there is a rule in B
which has smaller Bays risk than §. Then we will prove that all decision rules in the class
B have the same Bays risk, and this would prove the theorem.

Let § = é(z) = (S1(z), S2(z), ..., Sr(z)) be any decision rule. Let,

R(P,é) = E{:IEL(E7 6(z))
be the risk function and
r(6) = EZZR(P’ d)

be the Bayes risk of the decision rule 4.
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The Bayes rule is a rule which minimizes the posterior Bayes risk. To find out the Bayes
rules, it is enough to consider the non-randomized rules. Let 7(§|z) denote the posterior
Bayes risk of the decision rule §, thus

r(8)= [ B2 8)g(p)dp
and
r(6lz) = / L(p,6(z))g(plz)dp

where g(p|z) is the density of p for given X = z.

We assume that the decision rule § is not in the class B. Thus, we assume that there exist
g0 = (a9,23,...,2%) € X and ry,72, 1< 7y <7y <7 suchthatie S,(z0); 7€ S5.,(z%
and z9+ a; > 29+ 0.

Now we will construct a new decision rule §’ whose Bayes risk will be smaller than that
of 8.

Let &'(z) = (51(2), $53(2), .- ., 5:(2))

SH(z%) = S5i(z°% Vi #r and i# 7y
Sry (2%) (8r,(2%) = ENIHGY
Sr(2%) = (Sn(2%) - GHUGY

and let -
§'(z) = é(z) V z #2°

To prove that the new decision rule §’ has smaller Bayes risk than the decision rule &,
it is enough to prove that, r(d|z) — r(6’|z) > 0 for all z.
For ¢ # 2°,6(z) = §'(z) thus, r(6|z) = r(6'|z). Let 9(plz) be the posterior density of p.

k
9(plz) = h1(@)h2(£)Hptzt+a¢—1
t=1

k
hi(z)ha(p) [T ot
t=1

Then the posterior Bayes risk of the rule § is given by,

r(8lz) = /L(p,é(@))g(glas)dp

k
hi(zo) [ ha(p)L(p, 6(2)) [T 7.
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Hence

k o L
(0lg”) - r(#1s") = m(”) | ha(p)[L(p, 6(2)) = L(p, '™ TL o2 ™™ ' dp

k 0 L
= @) [ k@0 - LGN L dp
k o )
+ie®) [ ha)Epo(e”) - Lip, /e TL A+ ap
Pj>pi b

Since L is invariant (condition 2) , interchanging the variables p; and p; inside the
integral, we get,

k 0
m@) [ m@Le ) - D) ]k d
Pj2pi t=1
= —hi(2%) ha(p)[L(p, 6(2°)) — L(p, §'(z"))]
Pi2p;j
k a:?+at—1 z04ai—1 l‘?--i-aj—l
[ II »: P dp.
t#iti
This implies
r(6]2°) — 7(&'|2°)
Ot oi—1 294ta;—1 2%940;—1 0 i—
= hi(@) | ha(IL(p (") — Lip 8@ T - T
PiZpy
H p;v?+at—1d]3.

t#iF]
But from condition (3) on the loss function and from p; > p; , we have
L(p,6(z") 2 L(p, 8'(z"))
that is
L(p,6(z") - L(p, (")) 2 0 .
Also for 2 + o; > 29 + a;, and p; > p; we have

x?-{-ai—l $2+a]'—1 _ Ig+aj—l z?+a£—1

5 y : ; > 0.

Hence from the above equations we get,
r(8]z°) - r(812%) > 0
and since §(z) = §'(z) V z # z°, we have

r(6lz) = r(&'lz) Vz #2°.
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Hence 7(6) > r(4’). Since there are finite number of elements in X', by the same method
we can obtain a decision rule in B which has smaller Bayes risk than §. It is straightforward
to see that all rules in B have the same Bayes risk. And this completes the proof. a

Remark 2.1 :
It should be noted that the Bayes rule is not necessarily unique.

3 Empirical Bayes rules

Here we consider a situation in which one repeatedly deals with the same ranking problem
independently, and we assume that the prior is partially known.

We assume that the form of the prior is known and is Dirichelet prior, but the hyperpa-
rameters oy, @s, . .., are unknown. We consider following two cases, Case 1: ag = Zfﬂ o;
known, Case 2: ap = Y%, o; unknown.

In this section we will derive a sequence of empirical Bayes rules for selecting the best
treatment, or for partitioning the k£ treatment in r subsets. Foreachm =1,2,3,...... s (Y™, pm)
are independent random vectors where

Y™ = (Yi2m, Y13my - - - Ye1km )

denote the observable random vector, Y;;,, denote the score the of ith treatment over jth
treatment at mth stage.
Let Y1, Y2 Y3,...,Y™ be the past available observations,and Y"1 = Y = (Y12,Y13, ..., Ye—1k)

be the present observation. Here we assume that ai,as9,...,ar are unknown but ap =
Ele a; is known. To derive a sequence of a empirical Bayes rules we need to get estimates
of the hyperparameters ay, as,...,a,. Note that

N'—IEYH = Em;

= Epi(pi+p;)"
o
a; + o
1
1+

gle

Hence

Zijn = (nN)_1 Z vi;

m=1
is a moment estimator of (1 + %‘-‘L)_l .
1
Fom = 1y=m
o; 1-FEZ;;,

; EZ;n
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v = o L=FZ
T Y EZis
thus o —o;, = aiz%
i Lin
-FEZ;..
hence o; = a0(1+z 7o ———m)-1
i ijn

Now we are ready to define the moment estimators of the hyperparameters ay, g, ...ak.
For 1 <7 < k define

. { ao(l + T I‘Tigﬂ)-l if Zijn >0V i3
= otherwise.
Now we will propose the sequence of empirical Bayes rules {6, }§°, where §, is a rule which
ranks the 7th treatment according to the rank of z; + &; in 2y + &1,22 + é2,...,25 + .
In the case of ties use randomization.
The optimality of a sequence of a empirical Bayes rules can be judged by considering

how small its risk is as compared to the minimum Bayes risk at n th stage. And how fast
it goes to 0. We need the following definition,

Definition 3.1 :- A sequence of the empirical Bay’s rules {6,} is said to be asymptotically
optimal at least of order B, to the prior distribution G if

(G, 6,) — 7(G) < O(Br) as n — oo,
where 7(G) is a Bayes risk of a Bayes rule and (G, §) is a Bayes risk of rule é.

To prove that the sequence of the empirical Bayes rules is asymptotically optimal of
order O(e™°") for some positive constant ¢, as we need to prove that each ¢, P(é&;—a; > ¢€)
and P(&; — a; < —¢) are of order O(e™°"). In order to prove these results we need the
following lemma due to Hoeffding (1963). For sake of completeness we state it.

Lemma 3.1 (Hoeffding):
IfY1,Y,,...,Y, are the independent random variables such that for each i there exists real
numbers a; and b; such that P(a; <Y; <b;) =1 then for anyt >0

PY -p>t)< e~ 2 (i, (bimai)’) T
where Y = L%I—Y'— and EY = p.

Now we prove that for each ¢, P(&; — a; > €) and P(&; — a; < —¢) are of order O(e~°").

Lemma 3.2 :
For 0 < i < k there exist a positive constant ¢ such that

Pla; —a;>€) < 0(e™)
and P(&;—a; < —€) < 0O(e™™),

where € is a fized positive number.
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Proof: We prove the first part of the lemma. Second part can be proven similarly. Without
loss of generality assume ¢ = 1, then

P(&l—a1>€) = P(a0(1+z;)_1—a1>e and Z1]n>OV]7él)

+ P(Zyjn <0 for some j #1).
Also

P(Z1j, €0 for some j #1) < ZP(ZI_,-” <0).
i#1
Notice that Zj;, is average of i.i.d bounded random variables with positive expectation,
hence each term on the right is of order O(e~“*) for some positive constant c.

Zl]n

P(a0(1+z 7 )“ —oa3>€and Z15, >0V i#1)
£l “ln
g1 Tun j#L i
Z 1—Z4;n
<P(lag— 1) — 1 Z leijn >e+ GZ —le: )
J#£1 J#l
Z

=P( (aj— o1+ G]J) > €)

i# Z1jn
<30 P((as - [on + 752 > 0)
— 7 k

J#1
Let £ = € then

L= Ziiny 5 o) = P(loj - €] Z1jn — [on + (1~ Zaja) > 0).

Pl(e —loa +d=5

Note that [a; — €] Z1;n — [a1 + €)(1 — Z1j,) is average of n bounded i.7.d. variables with

negative expectation, hence by Hoeffdings lemma, there exists some positive constant ¢ such

that right side of above equation is of order O(e™*") . And this completes the proof of the

lemma. |
This lemma leads to:

Theorem 3.1 :
The sequence of the empirical Bayes rules {6,}5° defined above is asymptotically optimal of
order e~ for some positive constant c.

Proof:
For 1 <1l #t <k, define

n . T+ Qpl 2 Tt + Oy
ozt <zt ooy
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Let dg be the Bayes rule and let 7(G) be Bayes risk of the Bayes rule.

T(G7 671.) - T(G)
n+1

= [ [ £ 60(2) = LB, 15 b6(emn)] TT £(21lp,)0(2,)dadp

j=1

IA

[ 1@, 415502) = (2,15 86(@ns0)
n+1

Iueary IT £(g5lp,)94(p;) dzdp.
Jj=1

Ip(.) denote an indicator function of the set D, i.e.

Ip(w) = 1if weD

= 0 otherwise.

Now using the Holder’s inequality we have

r(G,8,) — r(G)

n+1 1'+5
< ( [ [ 12, 415600) = 1o, 8(2ns N T] S25lp,)90()) d@dzg)

i=1

n+1 +5
X (//Iu,#Aﬁ(@}) IT f(z;lp,)9a(p,) dzdp -
=1
Also,

//'L(En+1v5n(@n+1)) - L(Iﬁ’n+1’“55"(317’%'”))'1-'-(s 4 fzilp;)9a(p;) dz dp
< 2SIiP/L1+5(Bn+1’a)g(l~’n+1)d1~"

The supremum is taken over all @ € A. Since A is finite and since we assume(4) on the loss
function the right hand side of the above equation is finite, say m.

n+1

/ / Logeapa(z) ] f(z5lp,) 9a(p;) dzdp
7=1

n+1

Ign(z z;|p.)9q(z;) dz d
> [ Au(~)j1;11f(~]|gj)g~(~) p

I£t

> P(AR).

I£t

IN

Let ¢ = min{|z;+ a; — 21 + 04| : |21+ o1 — 2t — au| # 0,}. To prove the theorem, it is
enough to prove that each term on the right is O(e~*"). Without loss of generality let us
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assume that [ =1 and ¢t = 2.

P(AY,
P(Xpnt1a +ain 2 Xng12+ 05 and Xpp10 + a1 < Xpp1,2 + 02)

< P(d2—d1—a2-|—a1 < —6) (6:6’/2)
= PG e ai <~
< 0(e™),.

The last inequality follows from the Lemma 3.2. This completes the proof of the theorem.
0

Now consider the Case 2: o unknown. As before, to derive a sequence of a sequence
of empirical Bayes rules, based on the past observations, we need to get estimates of the
parameters, @, @3, ..., . 1o do this, note that

a;
a; + a;

P.P; P
E[Y? = NE[——L_]+ NZ%E 12

F; Fi 2, a2
- NFE
PH-PJ'] [Pz’+Pj] +NOE]
P;
P+ P

ElY;] = N

F;

_ 2
= NE| T

P
]+ N(N - 1)E[m]
o

a;(a,'-i-l)
= N N(N -1 .
o; + o + I )(ai+aj)(ai+aj+1)

= NE|

Hence,

EYJ - EY;; ai(ai + 1)

NN-1)  (ait+aj)(es+a;+1)

Let

1
2=

n = e 1 Yijm -
n nN(N—l) m=1Yij

then
EZ!. — []E‘Zijn]2 B a;

in

EZ, (vt ) (ai+ 1)

After some straight forward calculations it follows that,
_ [EZ, )11 = EZij)

T [EZL - [EZin)?

ijn

a;
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For the case when a,,a1,...,a, are unknown, define
ZLo 1= Zijn] Z!. —Zi
Al — n yn _ .f H ,-,[ I]ﬂ] > 1
Yin Ziin — [Zijn]? b Zlin1Zinf =

= 0 otherwise.

Now we propose a sequence of empirical Bayes rules {6},}$°, where §), is a rule which ranks
the sth treatment according to the rank of z; + & in z1 + &}, 22 + &5, ..., 2% + &. In the
case of ties use randomization. As for Case 1, following is the theorem about the asymptotic
optimality of the sequence of empirical Bayes rules {6},}52,. The proof of this theorem is
similar to that of Theorem 3.1 and hence omited.

Theorem 3.2 :
The sequence of the empirical Bayes rules {6],}3° defined above is asymptotically optimal of
order e~ for some positive constant c.
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