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1. Introduction.

If f:R — R, it was shown in Cinlar-Jacod-Protter-Sharpe [3] that f preserves semi-
martingales if and only if f is the difference of two convex functions. In this case the
famous Meyer-Tanaka formula holds (see Protter [10]):

+ ) {f(X) — f(Xao) = f(Xam)AX,),

0<s<t

4 ) 1 o0
f(X)=f(Xo)+ | f(Xe-)dXs+ 5 | Lip(dz)
(1.1) /0 2 /oo

where X is an arbitrary semimartingale, L? is its local time at the level z, f' is the left
continuous version of its derivative, and p is a signed measure which is the second derivative
of f in the generalized function sense.

There is (as yet) no analogous theorem characterizing the functions f : R — R which
preserve semimartingales, although P. A. Meyer [7] did show in 1976 that if f is convex
then it preserves semimartingales.

What we are concerned with here is twofold. In Section Three we extend formula
(1.1) to functions of the form f(z,w,t) which are fairly general. We became interested in
this extension because of discussions with Ravi Myneni [9], who pointed out that such a
formula would be useful in stochastic finance theory. Next, in Section Four we extend the
usual Meyer-It6 change of variables formula for functions f : R® — R that are significantly
more general that the usual C? hypothesis. Some partial results in very special cases have
already been obtained (see Brosamler [1], N. V. Krylov [4], I. Kubo [5], H. H. Kuo and N.
R. Shieh [6], P. A. Meyer [8], J. Rosen [11], and M. Yor [12], for example), but we believe
ours is the first attempt at a general treatment of the subject for semimartingales (the
closest predecessor being that of Krylov [4] for certain diffusions), and our results contain
those of Krylov. For a different approach to this problem see E. Carlen and P. Protter [2].



2. A Generalized Local Time.

In Section 3 we establish change of variables formulas where we need to give meaning to
terms such as de @ » where L{ is the local time at the level z of a continuous semimartingale
X, and 6 is a continuous, adapted process with paths of finite variation on compacts. In
this section we give meaning to de ® , and to avoid confusion with dL?, we denote it

8, LY™ (see Definitions (2.8) and (2.11)).

Let X and 6 be continuous semimartingales, with 6 of finite variation on compacts.
We make the following hypothesis:

t t
HYPOTHESIS (2.2). / Ix,=6,}4Xu = | 1{x,=06,}d0, = 0.
0 0

In our analysis we have had to give a meaning to terms of the form dLZ(u), where the “d”
refers to the variable u, and where LE = LZ(X) is the semimartingale local time of X at
level z and time u.

THEOREM (2.3). Let 7,0, ] be a sequence of partitions of [0,t] with lim mesh(n,) =
0. Let H be a continuous, adapted process. Assume Hypothesis (2.2) holds. Then

1
Jm 3 H(E) - 180 = [ mari(x - o)
t; €T,

where L is the local time of X at level z, time t.

Proof. By an elementary formula for local time (Protter [10, p.169)]),

8 = B = X = ] - W 6

tit1

(2.4) tit
—/ sign(X, — 6, )dX,.
t

The first two terms on the right side above equal:

| Xeiys — Ol = 1 Xe, — 00| = 1 Xy, — 0] — [ Xeiyy — iy |

(2 5) +|Xt.'+1 - 0t.'+1| - IXt.' - 9t.‘|

tiga :
= / Sign(Xt.'+1 - eu)deu + IXt.'+1 - 0t.‘+1' - IXt.' - otil
t .

because 6 is continuous and of finite variation, and hence its local time is identically zero.
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Combining (2.4) and (2.5) gives (sums are over #; in 7,[0, ¢]):
> Hu(Liy) ~ L)
tita
= Z Ht,' / sign(Xt.._H - 0(u))d9u
t
tita
- ) H, / sign(X, — 6;,)dX,
ti
+ ZHti{lXti+1 - 01.'+1| - |Xt.' - etil}

_ /0 () B /0  ga(w)dXe

+ ZHi.’{lxti+1 - ot-'+1| - |Xt.' - atil}

where

ha(u)= 3 Hysign(Xep, — 0u)l(y 0 (%)
(2.6) LEmm

gn(u) = E HtiSIgn(Xu - eti)l(ti,ti+1](u)'

ticmy,

Since X and 6 are both continuous, we know that if X,, > Ouo(w) (resp. Xy (w) <
Bu,(w)) then there exists an interval (ug — §(w),uo + 6(w)) such that X,(w) > 6,(w)
(resp. Xu(w) < 8y(w)) for all u in the interval. This implies that

Ji_{lgohn(u)l{xu;eou} = H,sign(X, — gu)l{Xu#eu}
,}Lnéogn(u)l{xuaeou} = Husign(Xu — 0u)1(x,0.}-

t t
Since by assumption / lix,=6,}dXu = 1{x,=6,}d0, = 0, we conclude:
0 0

—00 ti41

lim Y Hy(LeH) — L3y = - /o t H,sign(X, — 6,)d(Xy — 6,)
(2.7) + /0 t H,d|X — 6,

We next use the Meyer-Tanaka forr;lula on |X — 6|, and (2.7) simplifies to:
tim S H(@ - L) = [ Buari(x o)

which was to be proved, where convergence is convergence in probability, uniform in time
on compacts (u.c.p.). [



DEFINITION (2.8). For H continuous, adapted, we define

u [} 0
/ HO,LIO(X) = lim Y H, (LX) - L)
ti€mal0,]
when X, 0 are continuous semimartingales, 6 is of finite variation on compacts, and hy-
pothesis (2.2) holds. Convergence is ucp.

With the above definition, Theorem (2.3) gives immediately:
COROLLARY (2.9). With the hypotheses of Theorem (2.3),

t t
/ Ho8. LW (X) = / H.dLY(X — ).
0 0
We can weaken Hypothesis (2.2) in the case where 8 is monotone.

THEOREM (2.10). Let X,0 be continuous semimartingales, with 8 increasing, and

t ,
assume / 1{x,=6,}40x = 0. Let H be a continuous, adapted process. Then
0

lim 3 Hy (L8 — Li)) =

n—oo tl+1
t;ETy

t
[ Huatericx - o) - 18-(x ~ o))
0
If 6 is decreasing, then )
t
lim 37 H,, (L) - L00) = / H,dLY(X —6),
" ti€ma 0
where T, = 7,[0, t] is a sequence of partitions of [0,t] with lim mesh(w,) = 0. Convergence

of the sums is in ucp.

Proof. With the notation (2.6) as used in the proof of Theorem (2.3), note that if
Xu = 64, then g,(u) = Hy,, because X, > 6(t;) for u > t;. Hence

lim g.(u) = H, = Hysign(X, — 6,).

n—oo

Thus as in the proof of Theorem 2.3 (see (2.7)),
lim S Hy (L) — LI)

t|+1
: t
=/ HuSign(Xu, - ou)deu - / HuSign(Xu - eu)l{xu¢0"}dX"'
/ Hulix,= gu}qu'f‘/ H,d|X - 6],
= —-/ Hysign(X, — 6,)d(X, —6,)
0

t t
+ 2/ Hul{X,,:G.,}qu + / Hud|X —_ €|.,
0 0

5



and using the Meyer-Tanaka formula on the last term on the right side of the above
equality:

t t
= 2/ H,1ix,=6,}dXu +/ H,dL(X —6)
0 0

t t
= 2/ Hul{X,,=0,,}d(Xu —6,) +/ HudLg(X - 9)
0 0
t
since l¢x, —¢,1d60, = 0 by hypothesis
; {Xu=04}

t
- / Hod{2I%(X — ) — IO (X — 6)},
0
where we have used Corollary 1, p.177, of Protter [10] (LS~ = lirr%) L?). The formula for

<0
6 decreasing is established analogously. The lack of symmetry is due to the asymmetric

definition of semimartingale local time.
O

DEFINITION (2.11). For H continuous, adapted; X, 6 continuous semimartingales and

t
6 monotone; / 1{x,=6,}d0. = 0. Define
0

t
u . 6(t; 8(t;
[ B0 = Jim, Y HLD - 1)
0 tueﬂ'n[oyt]
where convergence is in ucp.

COROLLARY (2.12). If 6 is increasing in (2.11),
t t
/ H,0,L™ = / H,d{2L(X - 6) — L3~ (X - 6)}.
0 0
If 0 is decreasing in (2.11), then

t t ’
/ H,0,L8™ = / H,dL3(X - 9),
0 0

for H continuous, adapted.

Note that by taking H, = 1 we obtain for example, if § is decreasing,
t
/ 8. L™ = LY(X - 6)
0
and if 6 is increasing,

t .
/0 8, L™ = 2L%(X — 6) — LI~ (X - 9).

t
The preceding results raise the question: When is it the case that / lix,=6,}dXu =
’ 0
0?



LEMMA (2.13). Let X,6 be continuous semimartingales, and 6 be of finite variation

on compacts. Let X = M + A be the unique decomposition of X into a local martingale
t

t
M and a finite variation process A. Then / 1ix,=6,1dX, = l{x,=6,)dA..
0 0

Proof,

4

t t
/ l{xu=0u}qu = 1{X,.=0u}dMu +/ 1{X.,=0.,}dAu-
0 0 0

t
Let Ny = / 1{x,=6,}dM,, a local martingale, with Ny = 0. Then
0

§
[N, N]; = / 1ix.—0uyd[M, M.
0
t
=/ {X.—8,=0}d[X — 6, X — 6],
0

e o]
- / LE(X — 6)1{gmoyda = 0,

— 00

using the space-time local time formula (see, e.g., Protter [10, p.168]). Since [N, N], = 0,
N must be constant, hence it is identically zero. Therefore

t t
/ 1{X,‘=0“}qu = 1{X.,=0..}dAu-
0 0

THEOREM (2.14). Let Z be a continuous semimartingale with decomposition Z =
M + A, and further suppose dA, << d[Z,Z],. Let X solve the stochastic differential
equation (with o continuous and never zero),

dXt = O'(Xt,t)th + b(Xt,t)dAt
Let 6 be a continuous semimartingale of finite variation on compacts. Then

t
/ l{Xu=0u}qu =0.
0
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Proof. By Lemma (2.13), we know that

t t
/ l{X"=9u}dX" = l{Xu=9u}b(Xu,u)dAu
0 0

t
- / 1 xamtu) DX w)h(u, w)d[Z, Z]u
0

¢ b( Xy, u)
= /0 1{X“=0u} mh(u, ’U))d[X, .X]u

¢ (X, —0,+0,,u
/ 1{x,-0,=0} "’((X - ))h(u,w)d[X—G,X—b’]u

/ [ 1o 2 Pt by w)dL (X~ O

where the penultimate equality uses a genera.hzed Tanaka formula established in San Mar-
tin [12] or [13].

0 .
Note in particular that by letting M = B, standard Brownian motion, and dA, = dt,
Theorem 2.14 includes It6 diffusions. An analogous result holds when df, << d[X,X],,

t
but in general 1{x,=6,}d0y is not zero. For example, take X, = B,, or standard one

dimensional Brownian motion. Take 6, = supB;. Then 8 is increasing and the support of
. t<u

¢
df, is carried by {u : B, = 6,}. Thus / 1{B,=6,}d0y = 6;. Nevertheless by Theorem
0

t
(2.14), / 1(p.0.1dBy = 0.
0



3. Change of Variables on R x 2 x R,.

In this section we establish several one dimensional change of variables formulas for
more general situations than have been previously considered. Our principal result is

Theorem (3.2).
We shall consider random functions of the form f(z,t,w) = / h(z,s,w)dA, =

/ h(z,s,w)dAs + h(z,0,w)A,, where A is a continuous, adapted process of finite varia-
tion, and k2 : R x R4 x @ — R such that

(i) h(z,-,-) is adapted and jointly measurable;

(ii) A(-,s,w) is the difference of two convex functions with generalized second derivative
a signed measure (-, s, w);

(iii) sup 3<t

6 (a: s w)) < oo for each t > 0 and compact K C R, where ? is the
z

cadlag version;
(iv) h(z,s,w) =0if z <0, all (s,w).

As in Section 2 let X, 6 be continuous semimartingales, with 8 of finite variation on
compacts. We again make the hypothesis (same as Hypothesis (2.2)):

t

t
HYPOTHESIS (3.1). / Uxu=6,}dXu = | 1{x,=0,}d0, = 0.
0 0

THEOREM (3.2). Let f, h, and A be as above, and let X, 0 be continuous semimartin-
gales with § of finite variation on compacts, and suppose Hypothesis 3.1 holds. Then

F((Xe—60), 1) = f((Xo — 60)™,0) ,

t
9
+ / h(X, — 6,,5)dA, + / / (X — B4, 8)1(x, 0 d(X — 6),
04+ +
1 ¢ af 8(s) ¢ +6(u)
+5 | 090,100+ / BLLEH (X (s, -, dy)dA,
2 04 61‘ 2 0 0+ Js
i
_ / V(X = 0.}, w)d(X — ).,
o

where v is a measure given by
V(A u) = / (AN (0, 00), s)dA,.
0

Proof. We begin by using the generalized It6 formula (see San Martin [12] or [13]): for
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any € > 0 we have
F(Xe = 0" +&,t) = f((Xo — 60)* +¢,0)
g ‘
+/ h((Xs —8,)T +¢,5)dA,
0+

tof + +
+ [ 5 ([(Xs = 6)F +e]-,5)d(X - 6);
o+ 0T
t
+ % /0 /R (L2 — LY)u(s, -, dy)dA,

where LY = LI(X —0)T +e) = LI (X - 9)T)ify > ¢, and 0 if y < e.

Next, using the dominated convergence theorem for semimartingales we get:
F((Xe ~ 6:)%,8) = f((Xo — 60)*,0)

1
n / R((X, — 8,)F,5)dA,
0+

(3.3) N / ‘ g(( X, — 8,)%, 8)d(X — 6)F
0+ 0%

t oo
+ l/ / (Liy_ - Lg_)#(s, '7dy)dAs-
2 0 0+

Let X = M4 C be the decomposition of X into a local martingale M and a finite variation
process C. Then

LYX = 0) = I (X =) =2 [ 1x-aimpd(C = O,
0

since LY(X — 0)* = L¥(X — ) for y > 0. Therefore, letting %I denote the last term on
the right side of (3.3):

4 [}
I= j / (LY~ = L3 )u(s, -, dy)dA,
0 04

t [e <] t
- / / / dLY(X — 6)u(s, -, dy)dA,
0 0+ Js

t [+ <} t
2 [ [ [ 1y d(C = O)un(s, , dy)dA,
0 04+ Js

By Fubini’s theorem the above becomes:

t poo pt
I= / / / dLY(X — 6)u(s, -, dy)dA,
0 Jo+ Js
: t pu 0o
- 2/ / / Lix, —0,=y) (8, ,dy)dA,d(C — 0),.
o Jo Jot
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Letting v(A,u) = / #(AN{0,00),5)dAs, the above becomes:
0

t o0 t
1= [ [ [ drux - outs,  dvyas,
0 04 Js

(3.4) t
—2 /0 V({Xa — 6u},)d(C — 6),.

We next show that d(C—6), can be replaced with d(X —8), in the second term on the right
t
side of (3.4) above. We do this by showing / v({Xu — 04},u)dM, = 0, where we recall
0

t
X has decomposition X = M + C. It suffices to show / v({Xy — 0, },u)d[M, M], = 0.
0

To this end we have:
t
17l = | / v({Xy — 8.}, u)d[M, M1, |

iy / v({Xu — 0.}, u)d[X — 6,X — 6],

| /R /0 ' v({a},w)dL2 dal

=1 [" [ [ stsstananazzaa

where L} = L%(X — ). The foregoing implies

s [T f [ s pllaAazs x - p)de

< [T{ [ s tapann} zicx - oyaa
< st =) [ [ o, (aDlidalda

However since p(s,-) has at most countably many atoms a.s., we deduce |J;| = 0. Thus
(3.4) becomes:

t [’} t
I= / / / dLY(X — 6)u(s, -, dy)d A,
) 0 0+ s

(3.5) t
—9 /0 V({Xu — 6a}, w)d(X — O)u.

Let us return to equation (3.3). We observe that:
A(X = 0)} = 1(x,0,)d(X — 6), + 3dLY(X —6)

11



and
dL¥(X —6) = Ly'H’(’)(X)

by Corollary (2.9). Combining this with (3.5), equation (3.3) becomes:
t
S =0 ) =F(X = 0,00+ [ h(X,—6,,5)d4,
0+
+ / 5 (X2 = 8%, 911,50, (X ~ 0),
+ [ P o lazsx - o)
1
s / [ ) / dLY(X = O)u(s, - dy)dA,
t
- / ({ X — 62}, u)d(X — 6),
0
=f((X - 0)F,0)+ / t h(X, — 0,,s)dA,
0+
/ = 0:)1(x,>06,)d(X — 6)s

+3 /0 D 7.(0,5)0, L& (X))

+l/ / / Bu LY (X (s, , dy)d A,
2 0 04 s

_ /0 V({Xu — 6}, u)d(X — 6),.

COROLLARY (3.6). Ifz — h(z,s,w) is C%, we have (under the hypotheses of Theorem

(32))
FX =001, =F (Ko = 00)", 0+ [ (X, = 0,,5)d4,
0+
./0+ — 05, 8)1(x,>0,)d(X — 6),
1

+3 (0 )8, L) (X)

/ 5 (K = 00,013, 0,)d1X, X o

12



2
Proof. Note that u(s,-,dy) = -ZTZZ(y,s,-)dy, so p has no atoms, and the formula of

Theorem (3.2) reduces to

FX = 0F, ) =A(X =003, 00+ [ h(X, 8, 5)dA,
0+

/ — 00, 8)1(x, 50, d(X — 6)
(3.7)

+ 1/ 5-(0,5), LX)

2
/ / / 8L”+9(")(X) 5 z(y,s)dydA

Consider the last term on the right side of (3.7) above. This term is equal to

1t e, v &h
1 / / (L(X =)~ LY(X = 6) 55 (v, 5)dydA,

=5 [ noc-0 - nyx - opZh, paaa

82h
_L / / / I (y,u)dA,dLY(X — 6)dy
2 Jo+ Jo Oy

1
2 / Lo | S8 (4 LYK — )y

62
2(X eu,u)l{xu>gu}d[X,X]u,

since [X —0,X—9] = [X,X]. O

EXAMPLE (3.8): Let g = g(z,t) be C? in z and C! in ¢, and let 6(t) = 6;(w) be a C?
adapted curve. We wish to consider f(z,t) = g(z,t)1{;>(z)}. In this case it suffices, by
taking ¢(0,t) = 0, to consider f((X;—6,)*,¢) = g((Xt —6,)%,t) where X is a contlnuous

semimartingale. Since g is C?, we have g(z,t) = / h(z,s)ds where h(z,s) = 8t (:c s).
Applying Corollary (3.6) we obtain

F((Xe — 6)7,t) =g((X: — 6:)%,2)

=o((%o— 80)*,0)+ [ "%

(X 0s,s)ds
/ 03,8)1(x‘>9’)d(x - 0)3
o+
+ = (0 $)8, L) (X)
32
/ f — 64, u)l(x,>06.)d[X, X]a.
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O

It is also possible to establish change of variables formulas for functions f(z, t) which
are the difference of two convexes in z for each ¢, without using the generalized process
BuLz(“). The proofs are simpler but the results are less general and less satisfying, since
(for example) in Theorem (3.9) below there are terms that have both “¢” and “s” in the
integrands.

THEOREM (3.9). Suppose f : R x Ry — R and z — f(z,t) is the difference of two
convex functions for eacht, andt — f(z,t) is measurable for each z. Let X be a continuous
semimartingale; then

F0t) = fast) + [ S, 1,
(3.10) . o O
+3 [ Bin(da,1),

2
where —= = u(dz,t) in the generalized function sense.

0z?
Proof. Since z — f(z,t) is continuous, (z,t) — f(z,t) is jointly measurable. For
2

0
each ¢ there exists a signed measure u(dz,t) such that a—zjzc- = p(dz,t) in the generalized

function sense. Thus f has a representation

F@t) =5 [ o= vlu(dy, 1)+ h(t) + 5o

Moreover

—g%(z,t) = % / sign(z — y)u(dy,t) + h(?).

By the Meyer-Tanaka formula,
(3.11) Xe=ul=Xo=ol+ [ sign(X, )X, + 11,
where L7 is local time for X at the level y. Thus
FXot) =3 [1X = vl )+ Xh(t) + 500
— 5 [(Xo—sl+ [ sign(x, ~)ax, + B, ) + Xht) + )
= (o, t) = Xoh(t) = i) + 3 [ [ sin(X, ~ y)Xntay, 1)
+3 [ Tlutdy, )+ X:h(0) +50),

14



and using Fubini’s theorem for stochastic integrals on the second term on the right

= f(Xo,t) + /0 { /R 5 sign(X, - y)u(dy, 1)} dX,
+3 [ Butan ) + (- Xo)h(o)
=f(X0,t)+ af(Xsat)dX
/ Iy u(dy,t) + (X — Xo)h(t).

Note that a priori the result holds a.s. for each t. However since (3.11) holds a.s. for all
t, and since f(z,t) is deterministic, we have (3.10) holds a.s., all £. [J

THEOREM (3. 12) Let f : RxR4 — R be as in Theorem (3.9), but assume in addition
that for each z and each 0 < s < t, fi(z,t) — fo(z,s) = / fet(z,u)du. Then

F(Xert) =F(Xo, ) + (Xe — Xo)h(t) + / 9 (x,,s)dx,

+ [ S wax, bau+ 3 [ Ltucas,.

Proof. By Theorem (3.9),
f(Xe,t) =f(Xo,t)
+ (= Xoh0) + [ L x,, 0ax,

4 / t {ﬂ(xs,t) _ g(x,,,s)} dx,
/L p(dy, t).

Consider the fourth term on the right above. Then
/ tﬂ(Xs t)— (Xa s)dX, / { / i (X, u)du}dX,
o 9z ’ 8tdz "

O f
= 1(s<u X5, u)dudX,,
/0 /0 (o< )3t6:c( u)du

and using the Fubini theorem for stochastic integration, this is:

/{/ 5tz (Xa,U)dX,}du,

and the result follows. ]
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COROLLARY (3.13). With the hypotheses of Theorem (3.12) we also have

" of

f(Xe,t) =f(Xo,0) + A (Xo,s)ds

+ / 0f Z(X,,8)dX,

/ { / (Xs,u)dX }du

4. Change of variables formulas in n dimensions.

The usual change of variables formulas for functions f : R® — R assumes that f is C2.
It has been known for some time, however, that a wider class of functions map vectors of
semimartingale into semimartingales. For example P. A. Meyer [7] showed in 1976 that if
f : R® — R is convex, then it preserves semimartingales. However to date there are not
satisfactory change of variables formulas. Brosamler [1] and Meyer [8] establish a formula
for Brownian motion, Krylov [4] has a formula for diffusions, and perhaps the most general
formula for general semimartingales is in Protter [10, p.216].

Here we present a much more general formula. We are able to maximize generality by
customizing the space of functions under consideration to the vector semimartingale we
apply them to.

Let M be a d-dimensional local martingale, and A an m-dimensional adapted, cadlag,
finite variation process. We define the following measures, where A is a Borel set in R™t4;

(2) #7(tw,A) =/0t 1a(As—, M, )d[M', M

d
(b) p(t, A) =FE {Z ”ii(ts ’A)}

=1

4.1) t
() vi(t,w,A) = /0 1a(Aoe, M,_)|dA |

(d) v(t,A)=E {Z vi(t,-, A)} :

i=1

(Here |dA}| represents the differential of the total variation process.) Note that by the
Kunita-Watanabe inequality p% (¢, w,dz) << p*(t,w,dz) for all 7,j. Also,

(4.2) / 9(Aa_, M, _)d[M", M3); = / Sty ),
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Formula (4.2), which is trivial to establish, is an occupation-time formula for multidimen-
sional semimartingales, and as such p%(t,w,dz) represents an integral version of “local
time”. We let p(dz) = p(oco,dz) in (4.1c), and v(dz) = v(00,dz) in (4.1d). Also, we write

Zs = (A,, M,),

for the m + d dimensional semimartingale.
Let K4 be a closed, convex set with the property {Z, : s > 0} C K, a.s. We define
the support of Z by

(4.3) supp(Z) = ﬂKa.

Next we define a norm we will use to define our space. Let f, f;, 1 <i < m+d, fiis
1 <¢,7 < d be measurable functions from R™ x R? to R, and consider the 1+ m + d + d?
dimensional vector function

(44) F=(f)fla"'7fm+d7f11,"'7fdd)-

We define a norm |-||z, which depends on the vector-valued semimartingale Z in question,

by:

IFllz = Ifllzez) + 11D 1FilllLaqan)

i=1

m+-d 1/2
(4.5) +I|{ > Ifil"’} |l 2(an)

t=m-1

1
+§l|;|f:‘j|llm(du),

where ||f||Lo(zy = sup |f(2)|. It is convenient to establish some additional notation.
z€supp(Z)
For F' as in (4.4) we define:

m m+d 1/2
D.F = Zlf'l’ D.F = { E |ft|2}
i=1

i=m+1

1
D,.F = 5 Z lft]l
i,j
Therefore,

I|1F|lz =|lfllzeo(zy + | DaF L2 (ar)
+ [|D2F|p2(dp) + (1D 22 Fl| L1 (dp)-

17



Our basic space is C1'2(R™ x R?,R), the space of functions from R™ x R? into R, such that

2
6f 1<:<m, a—f, 1<:<d, and L, [ <£1,5 <d all exist and are continuous.
du;’ Oz; 0z;0z;

(The Meyer-It6 change of variables formula applies to the case C1*(R™ x R¢, R).) When
we are considering C1'2(R™ x R?,R), in this case we can take:

T A A oY
V%4 " Bay By Bz B2’ Bl

andDaF=Z| IDF {Zl |}1/2 D, F = Zlaaf l In this case, we
i=1
write F' € C1?(R™ x R4, R). If F(0) = —-—(0) —(0) = 0, we write Cy’>(R™ x R¢,R).

DEFINITION (4.6). Let ¥ > 0 be fixed. We define C.(Z) to be the closure under ||- ||
of {F € C3*(R™ x R%,R) such that |Fllz < oo and [|D;.F|lre(z) < v}. We define
c(2) = |Jx(2).

>0

DEFINITION (4.7). We say that F € Cioc(Z) if there exists a sequence of stopping
times T™ increasing to co a.s., a sequence of vectors g, € R™%%, and a sequence p, € R
such that

F(Z)-(qn-2 +pn) € C(ZTn—)'

Recall that Z]~ = Z,1(3<1} + Zr_1{;>7) for a stopping time T, and that Z7~ is a
semimartingale when Z is one.

If F € Coc(Z), then writing F = (f, f1,..., fm+d> f11,-- -, fad), We write f; = %f—_,
_ 6F §2F ’
1<t <m, fogi= o 1<i:<d,and f;; = Fr— 52; . We use the symbol “§” rather than

“0”, because not only do the real derivatives need not exist, but in general the functions
in question will not be equal to the corresponding derivatives in the generalized function
sense.

We remark that we follow the convention that if a function ¢ is defined only in a Borel
subset K of R™*¢, we extend it to R™*¢ by setting ¢ = 0 in K°.

LEMMA (4.8). For any semimartingale Z:
(i) CY3(R™ x R4, R) C Cioc(2)
(1) Cioc(Z) is an algebra.
Proof. By pre-stopping (that is, replacing Z with ZT~ where T is a stopping time) we
[ o]
can assume without loss of generality that all of Z, / |dAL], (1 <3 < m)and [M?, M2,
0

18



(1 < ¢ < d) are all bounded a.s. To prove (i), take F' € C;”*(R™ x R%,R), w.lo.g.. Since:
supp(Z) is compact, g and v are finite measures concentrated on supp(Z), and by the
continuity properties of F' we have:

||F||Z < 00, and ”.D:,;IF”LOO(Z) < 00.

This implies F' € C(Z). Removing the pre-stopping localization gives F € Clo.(Z )-

To prove (ii) it suffices to show (once again after pre-stopping as at the beginning of
this proof) that if f € C(Z) and g € C,(Z), then there exists a 4" < oo such that
fg € Cyi(Z). Further, wlo.g. we take f,g € 03’2(Rm x R, R). An easy computation
gives

(4.9) I7gllz < lI£llzllgllz,

and moreover

[|Dzzfglle(z) <IDzzfllLee(2)ll9l| Lo (2)
+ [|1Dzzglleo (2| fllLoo(2)
+ 1Dz fll Lo (2) || D2gl| Lo (2)-

Using the fundamental theorem of calculus:

5
ai a,5) = a 91 o, 0)+/ a 9T (4 t2)a;dt

/ 02: 3 -(a,tz)z;dt.

Since the support of Z is assumed compact, we have || D, f|| «(z) is bounded, with a
bound that depends on 7 and supp(Z) only, and not on f. This holds for g analogously,
and the result follows. []

In the following theorem we again use the notation 5o instead of — to underscore
@

Oda;

that these functions need not be the derivatives of F in the usual nor in the generalized

function sense (though if F € C1?(R™ x R%,R) then they agree up to equivalence: -6—F =

Oa;
:555’ also in certain cases — e.g., d[M*,M']; << dt and |dAi| << dt — they agree also

with the generalized function derivatives. In particular in the case where Z is a diffusion
(the solution of an SDE), then the derivatives agree with the usual generalized function
derivatives.
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THEOREM (4.10). Let M be a d-dimensional local martingale and let A be an m
dimensional adapted, cadlag process with paths of finite variation on compacts. Let Z =
(A,M) and let F € Cioc(Z). Then

P2y =Rz + 3 [ 5z ias

+Z/ 52, (% _)dM:

(4.11)
i ari
+3 Z/ Feopos (a- MM M
m+d SF
+ {F(Zs)—F(Zs_)— Z 5% )AZ}
0<s<t
6F oF
Proof. (In the last term on the right side of (4. 11) = — for 1 <i < m, and
gF gf for m+1 <4 < m+d.) By pre-stopping we can assume w.lo.g. that Z,
Z, i

/ |dAL (1 < i < m), [M{, M, (1<i< d) are all bounded a.s. Further we can and

do assume F € C,(Z), for some v > 0.

With the above assumptions it is simple to check that there exists a sequence F™ €
C1?NC4(Z) converging to F in ||-||z. Since F* € C'? we have by the standard Meyer-1t6
change of variables formula that (4.11) holds for F™:

F™(2,) =F™(2,) + / t VF™(Z,_)dZ,

(4.12) zZ/ g (Ze- )M M
A
+ {F"(z,)—F"(zs_)— > 5 (Zs_)AZ‘}
0<s<t i=1

Call the last term on the right side of (4.12) JF™(t). Then letting n tend to co and using
standard techniques we obtain:

F(Z4) =F(Z,) + / t VsF(Z,-)dZ,
1 ¢ 8F i e
(4.13) +§Z /0 Miaxj(Z,_)d[M,M]s

+ fim JF™(t).

n—oo
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It remains to analyze lim JF"(t). We write
n—oo

(414)  JF(t)= Y {F™(Z,) = F"(Z,_) = Vo F™(Z,_)(AA, + AM,)}
0<s<t

Observe that

E{ | Y VsuF(Z.2)A4, — Y VaF"(Zs_)AA,I}

0<s<t 0<s<t

0<s<t

<E { > VsaF(Z-) ~ VaF"(Za_)HAA,I}

<B{ [ MiuF(z.) - VP (2, )i, |

S “F - Fln”Za
hence
im > {F™(2,) - F(Z,_) — V.F™(Z,_)AA,}
(4.15) O<est
= Y {F(Z,)~ F(Z,_) — V5,.F(Z,_)AA,}.
0<s<t

Next consider the AM, terms on the right side of (4.14). We write

Vi=lim Y {F™Z,)- F"(2,_) - V.F"(2,_)AM,},
0<s<t

a limit which we now know exists. Moreover by (4.13) and (4.15) we know the jumps of
V: '
AV, = F(Z,) — F(Zs-) — V5, F(Z,_)AM;.

Therefore it suffices to show that V is a pure jump process. V is the difference of semi-
martingales, so it too is one. By an examination of (4.13) and (4.15), it is clear that V
can jump only if Z jumps. Thus it suffices to show

t
/ liaz,201dV, = V4.
0
Since F™ € C(Z), we have:

|F™(Z,) — F™(Z,_) — V,F™(Z,_)AZ,|
< k) (AZE)
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where k is a constant depending on the support of Z only. Since the right side is inde-

pendent of n, Z (AZ})? < oo as., we conclude lim JF™(#) is a finite variation process.
n—oo
0<s<t
Also, the limit in (4.15) is clearly a finite variation process. Therefore V is a finite variation

process as well. Moreover, since

t
/ liaz, 0y dJF® = JF™(t),
0

t
taking limits gives / liaz,20)dJF, = JF(t). Clearly
0

/Ot L{az,#0)d { > {F(2,)- F(Z,.)- Vg,,,F(Z,_)AA,}}

0<r<s

= Y {F(Z.) = F(Zs_) - V5,,F(Z,-)AA,},
0<s<Lt

t
from which we deduce / liaz,#0ydV, = V4, whence V is pure jump. Finally, we note
0

that the integrals in formula (4.11) of Theorem (4.10) do not depend on the versions of
8F &F 82F

E, E, and m that are used. |:|
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