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1. Imntroduction

Although a large part of financial economic theory is based on models with continuous-time
security trading, it is widely felt that these models are relevant insofar as they characterize
the behavior of models in which trades occur discretely in time. It seems natural to check
that the limit of discrete-time security market models, as the lengths of periods between
trades shrink to zero, produces the effect of continuous-time trading. That is one of the
principal aims of this paper. If {(5",0")} is a sequence of security price processes and
trading strategies converging in distribution to some such pair (5, 8), we are concerned with
additional conditions under which the sequence {[ 67 dST} of stochastic integrals defining
the gains from trade converges in distribution to the stochastic integral [ 6;dS;. Condi-
tions recently developed by Jakubowski, Mémin, and Pageés (1989) and Kurtz and Protter
(1991a, 1991b) are re-stated here in a manner suitable for easy applications in finance, and
several such examples are worked out in this paper. The paper gives parallel conditions for
convergence of gains in probability. In short, this paper is more of a “user’s guide” than a

set of new convergence results.

A good motivating example is Cox, Ross, and Rubinstein’s (1979) proof that the Black-
Scholes (1973) Option Pricing Formula is the limit of a discrete-time binomial option pricing
formula (due to William Sharpe) as the number of time periods per unit of real time goes
to infinity. Aside from providing a simple interpretation of the Black-Scholes formula,
this connection between discrete and continuous time financial models led to a standard
technique for estimating continuous-time derivative asset prices by using numerical methods
based on discrete-time reasoning. One of the examples of this paper is of the following
related form. Suppose that {S™} is a sequence of security price processes converging in
distribution to the geometric Brownian motion price process S of the Black-Scholes model,
with {S™} satisfying a basic technical condition. (For this, we show that it is enough
that the cumulative return process R"™ for S" converges in distribution to the Brownian
motion cumulative return process R underlying 5, plus the same technical condition on
the sequence {R"}. For example, S™ could be a price process that is adjusted only at
discrete-time intervals of length 1/n, with i.i.d. or a-mixing returns satisfying a regularity
condition.) We show that if an investor, in ignorance of the distinction between $™ and §, or

perhaps at aloss for what else to do, attempts to replicate a call option payoff by following
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the associated Black-Scholes stock hedging strategy C,(S7,T —t), then the investor will be
successful in the limit (in the sense that the final payoff of the hedging strategy converges in
distribution to the option payoff as n — o), and the required initial investment converges
to the Black-Scholes call option value. (This can be compared with the non-standard proof
of the Black-Scholes formula given by Cutland, Kopp, and Willinger (1991), which draws a
different sort of connection between the discrete and continuous models.) While this kind
of stability result is to be expected, we feel that it is important to have precise and easily
verifiable mathematical conditions that are sufficient for this kind of convergence result. As
we show in counterexamples, there are conditions that are not obviously pathological under
which convergence fails. Our general goal is to provide a useful set of tools for exploring the
boundaries between discrete and continuous time financial models, as well as the stability
of the financial gain process [ §dS with respect to simultaneous perturbations of the price

process S and trading strategy 6.

2. Preliminaries

This section sets out some of the basic definitions and notation. We let D¢ denote
the space of R%-valued cadlag! sample paths on a fixed time interval 7 = [0, T]. There are
natural extensions of our results in each case to 7 = [0,00). The Skorohod topology? on
ID? is used throughout, unless otherwise noted. A cadlag process is a random variable §
on some probability space valued in ID¢. A sequence {S™} of cadlag processes (which may
be defined on different probability spaces) converges in distribution to a cadlag process S,
denoted §™ = §, if E[h(S™)] — E[h(S)] for any bounded continuous real-valued function
h on ID¢.

A famous example is Donsker’s Theorem, whereby a normalized “coin toss” random
walk converges in distribution to Brownian Motion. That is, let {Y;} be a sequence of

independent random variables with equally likely outcomes +1 and —1, and let R} =

! That is, f € ID means that f : 7 — IR has a limit f(t—) = limgy¢ f(s) from the left
for all ¢, and that the limit from the right f(¢+) exists and is equal to f(¢) for all t. By
convention, f(0~) = f(0). The expression “RCLL” (right continuous with left limits) is
also used in place of cadlag (continu & droite, limites & gauche).

%2 The Skorohod topology is defined by the convergence of z, to ¢ in ID? if and only if
there is a sequence A, : 7 — 7 of strictly increasing continuous functions (“time changes”)
such that, for each 19 € 7', sup;s, [Aa(t) — t| — 0 and sup;;, |2n[An(t)] — 2(2)] — 0.
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(Y1 +- -4 Yjny)/+/n for any time ¢, where [t] denotes the smallest integer less than or equal
tot. Then R™ = B, where B is a Standard Brownian Motion. Donsker’s Theorem applies
to more general forms of random walk and to a class of martingales; Billingsley (1968),
Ethier and Kurtz (1986), or Jacod and Shiryayev (1988) are good general references.

In financial models, we are more likely to think of {Yx} as a discrete-time return process,
so that R™ is the normalized cumulative return process. The corresponding price process $™
is defined by S = Sp&(R™ ), for some initial price Sy > 0, where the stochastic exponential
E(R™) of R™ is given in this case by

[ni]

g™ =1 (1+%).

k=1

The general definition of the stochastic exponential, introduced into this financial context
by Harrison and Pliska (1981), is given in Section 3. It is well known that S™ = §, where
S; = SoeP+~t/2_ That is, with returns generated by a coin toss random walk, the asset
price process converges in distribution to the solution of the stochastic differential equation
dSy = SydB;. This is the classical Black-Scholes example (leaving out, for simplicity,
constants for the interest rate and the mean and variance of stock returns). We return later
in the paper to extend this example, showing that the Black-Scholes formula can be found
as the limit of discrete-time models with a general class of cumulative return processes R"
converging in distribution to Brownian Motion.

A process X is a semimartingale if there exists a decomposition X = M + A where M
is a local martingale and A is an adapted cidlag process with paths of finite variation on
compact time intervals. Semimartingales are the most general processes having “stochastic
differentials.” Protter (1990) is an introductory treatment of stochastic integration and
stochastic differential equations; Dellacherie-Meyer (1982) is a comprehensive treatment of

semimartingales and stochastic integration.

3. Two Counterexamples

This section presents two counterexamples. In each case, and obviously for different reasons,
even though a trading strategy 6™ converges in distribution to a trading strategy § and a
price process S™ converges in distribution to a price process .9, it is not true that the financial

gain process [ 6™ dS™ converges in distribution to the financial gain process [6ds.
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EXAMPLE 1. Our first example is deterministic and well known. It is essentially the same
as Example 1.1 of Kurtz and Protter (1991a). Let there be d = 1 security and consider
the trading strategies 6" = 0 = 1(7/2,77, all of which hold one unit of the security after
time T/2. Let ™ = li7/a41/n,1) for n > 2/T and let § = 1i7/2,77- Although 8" = 6 and
S§™ = §, it is not the case that (6”,5™) => (6, 5) in the sense explained in Section 2. On
the other hand, f; 8" dS™ =1 for all n > 2/T and all t > T/2+ 1/n, while [0 dS = 0 for
all £. Failure of weak convergence occurs for a rather obvious reason that will be excluded

by our main convergence conditions.

EXAMPLE 2. Our second example is more subtle. Let B be a standard Brownian motion
and let R = o B describe the “ideal” cumulative return on a particular investment, for some
constant 0. Suppose, however, that returns are only credited with a lag, on a moving average
basis, with R} = n ftt—l/n R(s)ds, so that we are dealing instead with the “stale” returns.
Suppose an investor chooses to invest total wealth, X; at time ¢, by placing a fraction g9(X+)
in this risky investment, with the remainder invested risklessly (and for simplicity, at a zero
interest rate). We assume for regularity that ¢ is bounded with a bounded derivative. In

the ideal case, the wealth process is given by
¢
Xe=a+ [ (X)X, dR,,
0
where z is initial wealth. With stale returns, likewise, the wealth process X™ is given by
¢
Xi=z+ / X7g(X?)dRE.
0

It can be shown that the “stale” cumulative return process R® converges in distribution to
R. Is it true, as one might hope, that the corresponding wealth process X" converges in
distribution to X? The answer is typically “No.” In fact, we show in an appendix that
X" =Y, where )

Y= Xe+ [ o)X+ 90X ds. 1)

For instance, with g(z) = k, a constant investment strategy, for all z, we have Y; = e**X t
which can represent a substantial discrepancy between the limit of the gains and the gain of
the limit strategy and returns. In particular, the price process § = So& (R) corresponding

to the limit return process is not the same as the limit of the price processes S™ = SoE(R™).
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Again, the sufficient conditions in our convergence results to follow would preclude this

example. At the least, however, the example shows that care must be taken.

4. Weak Convergence Results for Stochastic Integrals

This section presents recently demonstrated conditions for weak convergence of stochastic
integrals, in a form simplified for applications in financial economic models.

The following setup is fixed for this section. For each n, there is a probability space
(@™, F™,P") and a filtration {F : t € T} of sub-o-fields of F™ (satisfying the usual
conditions) on which X" and H" are cadlag adapted processes valued respectively in IR™
and IM*™ (the space of k X m matrices). (We can, and do, always fix a cadlag version of
any semimartingale.) We let E,, denote expectation with respect to (Q", 7", P").

There is also a probability space and filtration on which the corresponding properties
hold for X and H, respectively. Moreover, (", X") = (H,X). For “(H",X") =
(H,X),” we emphasize that the definition requires that there exists one (and not two) se-
quence A, of time changes such that A,(s) converges to s uniformly, and (H Rn(s) X ;“,,(s))
converges in law uniformly in s to (H, X). We assume throughout that X™ is a semimartin-

gale for each 7, which implies the existence of [ H? dX™.

4.1. Good Sequences of Semimartingales

The following property of {X"} is obviously the key to our goal.

DEFINITION. A sequence {X™} of semimartingales is good if, for any {H"}, the convergence
of (H™,X™) to (H,X) in distribution (respectively, in probability) implies that X is a semi-
martingale and also implies the convergence of (H™,X™, [ H* dX™) to (H,X, [ H_dX) in
distribution (respectively, in probability).

The following result, showing that “goodness” is closed under appropriate stochastic
integration, is due to Kurtz and Protter (1991b), who also provide necessary and sufficient

conditions for goodness.

PRrOPOSITION 1. If (X™) is good and (H™, X™) converges in distribution, then ([ H™ dX™)

is also good.

For our purposes, it remains to establish some simple conditions for a sequence {X"} of

semimartingales to be good. We will start with a relatively simple condition for “goodness,”
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and then extend in generality. Before stating the condition, recall that each semimartingale
X is defined by the fact that it can be written as the sum M + A of a local martingale
M with My = 0 and an adapted process A of finite variation. The total variation of A
at time ¢ is denoted |A[;, and the quadratic variation of M is denoted [M, M]. (If M is

vector-valued, [M, M] is the matrix-valued process whose (i, j)-element is [M*, M7].)

ConpITION A. A sequence {X™ = M™ + A"} of semimartingales satisfies Condition A if

both {E, ([M™,M"|7)} and {E, (|A"|1)} are bounded.

If M is a local martingale with E([M, M]7) < oo, then E ([M, M]r) = var (Mr) [for
example, see Protter (1990), p. 66]. Thus the following condition is sufficient for Condition

A, and may be easier to check in practice.

ConpITION A'. A sequence {X"™ = M™ + A"} of semimartingales satisfies Condition A’

if M™ is a martingale for all n, {var,, (M%)} is bounded, and {E, (JA"|r)} is bounded.

THEOREM 1. If {X"™} has uniformly bounded jumps and satisfies Condition A or A’, then
{X™} is good.

This result can be shown as an easy corollary of results in Kurtz and Protter (1991a).
The assumption of uniformly bounded jumps for {X™} is strong, and not often satisfied
in practice, but we also obtain convergence if, with jumps appropriately truncated, {X"}
satisfies Condition A. Since the obvious method of truncating jumps is not continuous in
the Skorohod topology, we proceed as follows. For each § € [0, 00), let hs : [0,00) — [0, c0)
be defined by hs(r) = (1 — §/r)*, and let J5(X) be the process defined by

Js(X)e=X: - ) hs(|AX AKX,
s<t

where AX, = X, - X,_.

THEOREM 2. If, for some §, the sequence {Js(X™)} satisfies Condition A or A', then {X"}
is good.

A proof is given in Kurtz and Protter (1991a), and also in Jakubowski, Mémin, and

Pages (1989). The conditions here are designed to be easy to verify in practice.

In some cases, the restriction on the quadratic variation in Condition A may be more

difficult to verify than the following condition.
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ConpITION B. A sequence {X™ = M™ 4+ A™} of semimartingales satisfies Condition B if
{E, (SuPth |AM?|)} and {E, (|A"|7)} are bounded.

THEOREM 3. If {X™} satisfies Condition B, then {X"} is good.

This result is proved in an earlier version of this paper, and follows from a result
by Jakubowski, Mémin, and Pagés (1989), based on an application of Davis’ inequality
(Dellacherie and Meyer (1982), VII.90).

Comment: If the semimartingales X ™ have uniformly bounded jumps, then they are spe-
cial: that is, there exists a unique decomposition X™ = M™ 4 A™, for which the finite
variation process A™ is predictable with A} = 0. Such a decomposition is called canonical.
For the canonical decomposition, it can be shown that the jumps of M™ (and hence of A™)
are also bounded, and therefore for the canonical decomposition in the case of bounded
jumps, {X"} is good if {E,(|A"|7)} is bounded. In fact, in Theorem 3, it is enough to
replace the restriction that {E,(|A"|r)} is bounded with a weaker restriction: that the
measures induced by {A"} on [0,T] are tight. (See, for example, Billingsley (1968) for
a definition of tightness of measures.) We also offer the following help in verifying this

tightness condition for special semimartingales.

LEMMA 1. Suppose {Z™}, with Z" = M™ 4 A", is a sequence of special semimartingales
for which the measures induced on [0,T] by (A™) are tight. Then, for the canonical decom-

position Z™ = M™ + A", the measures induced by {Z"} are also tight.

Proor: Since Z™ is special, A™ is locally of integrable variation [Dellacherie and Meyer
(1982), page 214]. Since A™ is the predictable compensator of A", the result follows from
the Corollary of Appendix B, Lemma B1. |

4.2. Stochastic Differential Equations

We now address the case of stochastic differential equations of the form
13
Zy =H} +/ (8,27 )dX7,
0
t
Zy=H:+ / f(57Zs~)dXs>
0

where f, and f are continuous real-valued functions on IRy x IR* into IM*™ such that:
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(i) # = fu(t,2) is Lipschitz (uniformly in ¢), each n,
(ii) t & fa(t,z) is LCRL (left continuous with right limits, or “caglad”) for each z,

each n, and

(iii) for any sequence (z,) of cadlag functions with z, — z in the Skorohod topology,
(Yn,Tn) converges to (y,z) (Skorohod), where y,(s) = fu(s+,za(s)), y(s) =
f(s+,2(9)).

(If fn = f for all n, then condition (iii) is automatically true.) The following theorem is
proved in more generality in Kurtz and Protter (1991a). See also Stomifiski (1989).

THEOREM 4. Suppose {X"} is good and let (f,)n>1 and f satisfy (i)-(iii) above. Suppose
(H™,X™) converges to (H,X) in distribution (respectively, in probability). Let Z™,Z be

solutions® of
¢
zp=HP+ [ (s, 2 dX]
0
¢
Zi = H; + / f(sa Zs—) dX87
0

respectively. Then (Z™, H",X™) converges to (Z,H,X) in distribution (respectively, in
probability). Moreover, if H® = ZF and H = Zy, then {Z"} is good.

An important special case is the stochastic differential equation
¢
Zt = 1+/ Zs_ d—X37
0

which defines the stochastic exponential* Z = £(X) of X. The solution, extending the

special case of Section 2, is
1
Zy = exp (Xt - 51X X];f) [T a+ax)e2x,
0<s<t

where [X, X]° denotes the continuous part of the quadratic variation [X, X] of X. With a
Standard Brownian Motion B, for example, [B, B]¢ = [B, B]; = t and £(B); = eB+~t/2,

3 Unique solutions exist. See Protter (1990).
4 This is also known as the Doléans-Dade exponential.
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5. Convergence of Discrete-Time Strategies

In order to apply our results to “discrete-time” trading strategies 6™ and corresponding
price processes S™, we need conditions under which (8™, 5") = (4,.5). We will consider
strategies that are discrete-time with respect to a grid, defined by times {to,...,tx} with
0=1y <t <---<tx=T. The mesh size of the grid is supy, | tx — tx-1 |-

The following convergence result is sufficient for many purposes. This result is trivial

if f is uniformly continuous. The content of the lemma is to reduce it to that case.

LEMMA 2. Let (S™) and S be ID%-valued on the same probability space, S be continuous,
and S™ = §. For each n, let the random times {T*} define a grid on [0,T] with mesh
size converging with n to 0 almost surely. For some continuous f : R¢ x [0,T] — IR, let

HP = f[S™(T}),T}), t € [T}, Tp,,), and Hy = f(S¢,t). Then (H",S™) => (H, §).

Since the limit process S is continuous, convergence in the Skorohod topology is equiv-
alent here to convergence in the uniform metric topology, so the proof is straightforward

and omitted.
COROLLARY 1. Suppose, moreover, that {S™} is good. Then [ H dSP = [ H;_ dS;.

The following corollary allows the function f defining the trading strategies to depend

on n. The proof involves only a slight adjustment.

COROLLARY 2. Suppose fy, : R? x [0,T] — IR is continuous for each n such that: For any
€ > 0, there is some N large enough that, for any (z,t) and n > N, |f.(z,t) — f(z,t)| < €.
Then, with Hi = fu[S(T}),T{], t € [T{, T}, 1), the conclusions of Lemma 2 and Corollary
1 follow.

6. Example: Convergence to the Black-Scholes Model

The objective of this section is to show that the weak convergence methods presented in this
paper are easy to apply to a standard situation: the Black-Scholes (1973) option pricing
formula. Under standard regularity conditions, the unique arbitrage-free price of a call
option with time 7 to expiration and exercise price K, when the current stock price is z,

and the continuously compounding interest rate is r > 0, is
C(z,7)=®(h)z — Ke ""®(h — o+/T),
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where @ is the standard normal cumulative distribution function and

h— log(z/K)+ r7 + o27/2
= py ,

provided the stock price process S satisfies the stochastic differential equation
© dSy = pSidt +0S¢dBy; So=1z >0, (2)

for constants p, r, and o > 0.5 We will show convergence to the Black-Scholes formula in

two cases:

(a) A fixed stock-price process § satisfying (2) and a sequence of stock trading strategies
{6™} corresponding to discrete-time trading with trading frequency increasing in n,
with limit equal to the Black-Scholes stock trading strategy 6; = C,(S:, T — t), where
T is the expiration date of the option and Cy(z,7) = ZC(z, 7).

(b) A sequence of stock price processes {$S™} constructed as the stochastic exponentials of
cumulative return processes {X "™} converging in distribution to a Brownian Motion X,

and trading strategies {0} defined by 6”(¢) = C,(SP,T — t) for discretely chosen ¢.

Case (a) handles applications such as those of Leland (1985); Case (b) handles exten-
sions of the Cox-Ross-Rubinstein (1979) results.

CASE (a) INCREASING TRADING FREQUENCY.

Let T' > 0 be fixed, and let the set of stopping times 7, = {T?*} define a sequence
of grids (as in Lemma 2) with mesh size shrinking to zero almost surely. In the n-th
environment, the investor is able to trade only at stopping times in 7,,. That is, the trading
strategy 6™ must be chosen from the set ®" of square-integrable predictable processes with
6(t) = 6™(T}_,) for t € (T{_,, T}]. For a simple case, let T = k/n, or n trades per unit
of time, deterministically.

We take the case r = 0 for simplicity, since this allows us to consider stock gains alone,

bond trading gains being zero. For r > 0, a standard trick of Harrison and Kreps (1979)

5 Note that S is the stochastic exponential of the semimartingale X; = ut + oB;.
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allows one to normalize to this case without loss of generality. We consider the stock trading

strategy ™ € O™ defined by 6(0) arbitrary and
on(t) = C-’B[S(TI?)’ T_TIZ:L]a te (Tl?aTI?+1]'

For riskless discount bonds maturing after T', with a face value of one dollar (the unit of
account) and bearing zero interest, we define the bond trading strategy o™ € ©™ by the

self-financing restriction

"

a™(t) = a”(0)+/0 " 67 dS, — 0V (TP)S(TE) + 0°(0)S(0),  te (T8, Tipad,  (3)

where

a"(O) = C(So,T) - 0“(0)50

The total initial investment of + 055, is the Black-Scholes option price C(Sp,T). (Note
that, o™ € ©".) The total payoff of this self-financing strategy (a®,8") at time T is
C(So,T) + fOT 07 dS;. For our purposes, it is therefore enough to show that

T
C(So,T) + / 67 dS, —> (Sp - K,
0

the payoff of the option. This can be done by direct (tedious) calculation (as in, say, Leland
(1985)), but our general weak convergence results are quite simple to apply here. It should
be conceded, of course, that in simple cases such as that considered by Leland (1985), one

could likely obtain® almost sure convergence.

ProposITION 1. In the limit, the discrete-time self-financing strategy 8™ pays off the op-
tion. That is, C(So,T) + [ 67 dS; => (S1 — K)*.

Proor: For X™ = X = §, it is clear that {X"} is good. With H = C(S(TF_,),T-T}_,),
t € [Tp_y,TY), the conditions of Corollary 1 of Lemma 2 are satisfied since Cj, is continuous.
Since 6 = H, it follows that C(So,T) + f7 87 dS; = C(S0,T) + [ 6;dS:. By Black
and Scholes (1973), C(So, T)+f0T 0;dS; = (St—K)* a.s. [For the details, see, for example,
Duffie (1988), Section 22.] Thus C(So, T) + f; 67dS; = (Sp - K)*. 1

6 Leland allows for transactions costs that converge to zero, and (despite appearances)
actually makes an argument for convergence in mean, which does not necessarily imply
almost sure convergence.
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We can generalize the result as follows. We can allow S to be any diffusion process of
the form dS; = u(Ss,t) dt + o(S;,t) dB;. Then, subject to technical restrictions, for any
terminal payoff g(57), there is a sequence of discrete-time trading strategies whose terminal
payoff converges in distribution to g(ST). The following technical regularity conditions are
far in excess of the minimum known sufficient conditions. For weaker conditions, see, for

example, the references cited in Section 21 of Duffie (1988).

ConprITioN C. The functions o : RX[0,T] — IR and g : IR — IR together satisfy Condition

C if they are Lipschitz and have Lipschitz first and second derivatives.

PROPOSITION 2. Let (o, g) satisfy Condition C. Suppose dSy = pu(St,t) dt+0(St,t) dB;, and
that {S™} is good with S™ = S. Then there exist (discrete-time self-financing) strategies
(8™) in O™ such that

T
ElgCtr)+ [ 07 dst = g(51),
0
where X; = Sp + fot o0(Xs,8)dBs, t € 10,T].
The result implies that one obtains the usual “risk-neutral” valuation and exact repli-
cation of the derivative payoff g(St) in the limit, as S™ = S.
PrOOF: Let F(z,t) = E [g(X$")], where X&' = o + [[ 0 (X%, s)dB,, 7 > t. Then,
as in Duffie (1988) Section 22, the partial F} is a well-defined continuous function and

0; = F;(S;,1) satisfies E[g(X7)] + fOT 6:dS; = g(St) a.s. For the trading strategies 7 =
FIS(TE), T, t € (TR, Tf 4], the result then follows as in the proof of Proposition 1. [

Related results have been obtained independently by He (1990).

CasE (b) (CUMULATIVE RETURNS THAT ARE APPROXIMATELY BROWNIAN MOTION).

The cumulative return process X corresponding to the price process S of (2) is the

Brownian Motion X defined by
Xt = [,Lt + O'Bt. (4)

That is, § = So&(X), where £(X) is the stochastic exponential of X as defined in Section 2.

We now consider a sequence of cumulative return processes {X"} with X" = X.

Example 1. (Binomial Returns)
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A classical example is the coin-toss walk “with drift” used by Cox, Ross, and Rubinstein

(1979). That is, let
[nt]

n_ 1 n

where, for each n, {Y}} is a sequence of independent and identically distributed binomial
trials with v/nE(Y{*) — p and var(Y") — o2. It is easy to show that X™ => X. (See, for
example, Duffie (1988), Section 22.)

Let us show that the assumptions of Theorem 3 (for example) are satisfied in this case.
For any number ¢, recall that [t] denotes the largest integer less than or equal to ¢. Since

the (Y*)r>1 are independent and have finite means, we know that

[nt]

1
ME = 72 3 1Y = B )

is a martingale, and thus a decomposition of X" is:

Xr = ﬁ;m — BT+ B (V) = M + A

The jumps of M™ are uniformly bounded. In order to verify Condition B for goodness,
it is therefore enough to show that E(|A™|7) is bounded. This follows from the fact that
A" is deterministic and A} — pt. Thus X™ is good. With S™ = SPE(X™) and S — So,
Theorem 4 implies that {S™} is good and that §™ = S.

We consider the discrete-time stock-trading strategy 6™ € @™ defined by
0F = Co [S™(T}), Tgl,  t € (Tx, Til,

where §* = SFE(X™). In order to show that Black-Scholes applies in the limit, we must
show that C'(S§,0) + fOT 07 dS} == (87 — K)*. [The self-financing bond trading strategy
a™ is defined by the obvious analogue to (3), and the initial investment is the Black-Scholes
value of the option, C(5¢,T).] It is implicit in the following statement that all processes

are defined on the same probability space unless the stopping times {T ©} are deterministic.
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ProposITION 3. Suppose S§ — So > 0, {X"} is good, and X™ —> X, where X is the
Black-Scholes cumulative return process (4). Then S™ = £(X™)5§ = E(X)So = § and
C(55,0) + [ 67 dSp = (Sr — K)*.

Proor: To apply Corollary 1 of Lemma 2, we need only show that $™ = S and that S™
is good. This is true by Theorem 4. Since C(Sy,0) + fOT 6:dS; = (St — K)* as., we are
done. I

What examples, in addition to the coin-toss random walks {X ™} satisfy the hypotheses

of Proposition 37

Example 2. (iid Returns). Suppose {X"} is a sequence of stock return processes defined

by (5), where:
(i) {Y,*} are uniformly bounded,
(ii) for each n, {Y;*} is iid.,
(iii) v/n E(Y?) —n p, and
(iv) v/nvar(YR) —, ol
Then, using Lindeberg’s Central Limit in the proof of Donsker’s Theorem, we have X" —>

X, where X is given by (4). Furthermore, {X"} satisfies the hypotheses of Theorem 3.
Thus, the hypotheses of Proposition 3 are satisfied. This ends Example 2.

Example 3. (Mixing returns). Let the sequence {X™} of cumulative return processes be

defined by (5), where the following conditions apply:
(i) {Y;?} are uniformly bounded, R-valued, and stationary in & (for each n).
(ii) For 1 = o{Y*;k < m}, G = o{Yk < m}, and @}(m) = (G, | FI),
where
p(A| B) = sup || Py(A | B) = Pa(A)llLs,
AcA
Cn'= Y1 [@p(m)]* < o0, each n, where p = o= ﬁ_‘—&, for some § > 0.
(iii) vrE,(Y]) — p and, for U} = Y — E,[YP], sup, /aCu||UP|| 124 < c0.
(iv) 02 = E, (UM +2Y 1o, En(URUD) is well-defined and o2 —, o2.

Under (i)-(iv), for X™ defined by (5), we have X™ => X. [See Ethier-Kurtz (1986), pp.

350-353, for calculations not given here.]

15



In order to invoke goodness, we need to find suitable semimartingale decompositions

of X™. To this end, following Ethier-Kurtz (1986) (p. 350 ff), define:

¢ 0
MPp=YUr+ Y En(Up, | F7).
k=1 m=1

The series on the right is convergent as a consequence of the mixing hypotheses (see Ethier-
Kurtz (1986), p. 351), and M} is a martingale (with jumps bounded by twice the bound
on {Y;*}) with respect to the filtration (F}*)¢>1. We have

n 1 n
X{= ﬁM[zt] + A7,

where
[nt]

1 1
A} = 7=Vog + = D Ba(YD),
O Y
with

o0
Ve ==Y En(Ufim | FP).

m=1

Note that the total variation of the paths of the process V™ are majorized in that

).

and using a standard estimate [Ei;hier—Kurtz (1986), p. 351], it follows that

£

E.(| V"™ o) < 2E, (E

k=1

(e
m=1

z oo
E(|V* ) <)) (Z 8602/”5(?72)) NUT ]| p2+s < BECH[UT || p24s.

k=1 \m=1
Then
54D 7=En (| V" fng) < 500 63/71 Ca [V 5200 < o0
by hypothesis (iii). Since v/nEn(Y{") —n p, it follows that sup,, E,(|A™|r) < oo. Since M™

has bounded jumps, Condition B is satisfied, so X™ is good, and Proposition 3 applies once

again. This ends Example 3.
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Appendix A: “Non-Convergence with Stale Returns,”

This appendix explains the failure of weak convergence for Example 2 of Section 3,
in which returns in model n are given by the “stale return” process R™, which converges
to the Brownian motion R. We need to show that the wealth process X™ defined by the
investment policy g converges to the process Y given by (1). This is really an extension of
the “Wong-Zakai pathology” that was pursued by Kurtz and Protter (1991a). To this end,

consider the following calculations. (Without loss of generality, let ¢ = 1.) We have
R™(t) = R(t) + [R"(2) — R(?)]
= Va(t) + Za(2),

where V,(t) = R(t) for all n and where Z,(t) = R"(t) — R(t). Then, clearly, V,, = R and
Z, = 0. The key is to look at

Ho(t) = /0 Z0(3) dZn(s)

1 1
= §Zn(t)2 - E[Z’“ Znt

1 1
=Z.(t)? — =t,
2 () 2

since [Zn, Zy): = [R® — R,R" — R]; = [R,R]; = t. Since Z, = 0, so does Z2 by the
continuous mapping theorem, and hence H,(t) = —t/2. Similarly, letting K,, = [V,,, Z,],
we have K, (t) = —t. Then U, = H, — K,, = U, where U; = t/2. Theorem 5.10 of Kurtz
and Protter (1991a) then implies that X™ =—> Y defined by (1).

What is “really” going on in this example is that the Br?wnian motion R, which is a
continuous martingale with paths of infinite variation on compacts, is being approximated
by continuous processes R™ of finite variation; moreover the processes have no martingale
properties. Thus the calculus of the R™ processes is the classical path by path Riemann-
Stieltjes “first order” calculus; while the calculus of the Brownian motion R is the Itd
“second order” calculus. This leads to a discontinuity (or lack of robustness) when we
approximate R by R™. This discontinuity is precisely computable in the above calculations,

applied to Theorem (5.10) of Kurtz and Protter (1991a).

Appendix B: An Aid to Checking Goodness of Special Semimartingales
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LEMMA B1. Suppose {Z"}, with Z" = M™ + A", is a sequence of special semimartin-
gales for which the measures on [0,T] induced by (A™) are tight. Suppose further that
sup,, En(sup;<r|AA}|) < 0o. Then, for the canonical decomposition Z™ = M™ + A", the
measures induced by A, are also tight.

PRroOOF: Let

. _dA7

t dl Anlt ’

where |A"|, = I |dA7| denotes the total variation of the paths of the process A™. Then
H™ is predictable and, for any stopping time 7,

E [/ Ht"dA?] _E [/ de,?{;b] = B[|A",] .
0 0

plari)z £ | [ raay| = 6 (1A

By the Lenglart Domination Theorem [Jacod and Shiryaev (1987), Lemma 3.30 (b), page
35, with € = b and 7 = /],

Since |H® =1,

b]jm sup P, ([Z"IT > b) < b]jm sup {% [\/I;-}— E, (sup |AA”|¢)} + P, ([A"IT > \/I;)} =0.
—00 n

—00 n t<r

Since the measures induced by (A™) are tight, it follows that the measures induced by Ar
are tight. [

COROLLARY. Suppose the measures induced by (A™) are tight and A" is locally of integrable
variation for all n. If A™ is the predictable compensator for A™, then the measures induced

by (A™) are tight. !

ProOF: For given b, let T™ = inf{t > 0 : |A"|; > b}. The stopped process (A")'~ is of
bounded total variation. For given #; > 0 and € > 0, there exists b large enough that

sup Pp(T" < to) < sup P, (|A%]+, > b) <€, (6)
n n
since the measures induced by (A™) are tight. It follows that

Jim sup P (|4, 2 6) < Jim sup { P ({147 > 0} (VT > 1)) + Po(2" < 10)}

< b]im sup {Pn (’ (Z”)Tf > b) + Po(T" < to)} <€,
—00 n tD

by the lemma and (6). Since € is arbitrary, the lim sup is 0, so the measures induced by
(A™) are tight. |
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