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Abstract

This paper deals with the problem of estimating the probability of a correct selection (PCS) in
location parameter models. Practical lower confidence bounds for the PCS in location parameter
models are presented with a user’s choice of dimension ¢ (1 < ¢ < k —1) for computation, where
k is the number of populations. It is shown that the larger the g, the better the lower bound,
but the more complicated the computation. The result when ¢ = 1 coincides with Kim’s (1986)
result. A numerical example is presented to show that our lower bound with ¢ = 2 improves
Kim’s result considerably. With an appropriate modification, our result can be applied to
location-scale parameter models with the scale parameter unknown.

Key words and phrases: Ranking and selection, probability of a correct selection, confidence

region, location parameter.

1 Introduction

In many practical situations, the goal of the experimenter is to compare two or more populations
in order to make a decision in the form of ranking the populations. The best studied ranking goal
concerns the best population (the most efficient treatment for an ailment, the worst car in fuel
efficiency and so on). The classical tests of homogeneity were not designed to provide answers
to such questions. Rejecting the null hypothesis is not the final solution to the experimenter’s
problem; so the methods of ranking and selection come into play. In this paper, we focus on these
problems in the case of location parameter models.

Let X;; (1 <4 < k;1 < j < n) be independent observations from each of k populations with
cdf’s F(z — 6;). Let ¥; = Y(Xi1,+ -+, Xin) be an appropriate statistic with cdf G(y — 6;) and pdf
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g(y — 0;). We denote the ordered values of §;’s and y;’s by 033 < --- < 0y and yq) < -+ < Yx)s
respectively. Let Y}; and 7(;) denote the statistic and the population associated with the ordered
but unknown parameter 6};}, respectively. It is assumed that there is no a priori knowledge of the
corresponding pairing of the Y(;) and 6f; (1 < j < k).

The experimenter wishes to select the population associated with the largest unknown parameter
0j1, so the natural selection rule “select the population corresponding to the largest Y; value as the
best” is used. Then the probability of a correct selection (i.e. the selected population is indeed the

best) (PCS) is
o k=1
PCS = / T1 Gy + 6 - 8)dG (). 1)

T =1

Now, the PCS depends on the parameter § = (1, --,0k) only via the differences O — 0y,
1< i< k-1. So, if we can find some reasonable lower bounds on the differences [y — f;}, based
on the sample, then we can provide a reasonable lower bound for the PC'S.

Bechhofer (1954) applied an indifference zone for the difference 6 — O[z—1) to get a lower
bound for the PCS, which requires the experimenter first to specify a positive constant §* so
that Oy — Opk—1j 2 0*. Considering this as a retrospective analysis problem, Olkin, Sobel and
Tong (1976, 1982) and Gibbons, Olkin and Sobel (1977) have presented estimators of the PCS.
Faltin and McCulloch (1983) have studied the small-sample properties of the Olkin-Sobel-Tong
estimator of the PCS for the case when k = 2. Bofinger (1985) has discussed the non-existence
of a consistent estimator of the PC'S. Anderson, Bishop and Dudewicz (1977) have given a lower
confidence bound on the PCS in the case of normal populations having a common variance which is
either known or unknown. Kim (1986) and Gupta, Leu and Liang (1990) found a 100(1 - )% lower
confidence bound for the difference between the best and the second best parameters 8y —0[;_y) for
two different types of distributions, respectively, and then derived a conservative lower confidence
bound for the PCS for the corresponding distributions. In addition, Gupta and Liang (1991)
obtained a lower confidence bound for the PC'S by deriving simultaneous lower confidence bounds
on the fjx) — [}, ¢ # k, where a range statistic was used.

In this paper, using a new approach, we derive a confidence region for the differences 0 _;41) —
Olk—i> ¢ = 1,...,k—1,and then obtain a lower confidence bound for the PC'S which is sharper than
that of Kim(1986). The paper is organized as follows: In Section 2, we formulate the problem and

state the main result. Section 3 describes a numerically feasible approximation to the main result



and compares it with that in Kim (1986). Section 4 is concerned with the case of an unknown
scale parameter and illustrates two practical problems. Section 5 gives some final remarks. The

Appendix provides a proof for the key Lemma 2.1.

2 Main Result

For convenience of computation, let &; = O[x_i11]—Ox—i) and Z; = Yg—ip1) — Y(k—s), (1<i<k=-1).
Then for an observed sample of X;; = z;; (1 < i < k;1 < j < n), we have a corresponding sample

value Z; = z; (1 < i < k—1). We first consider the distribution of Z;. As one would expect, we

have

Lemma 2.1 (a) The distribution of Z; depends on § only via § = (61,---, 6x-1)T;

(b) For any value of § > 0 and any constant c > 0,

EF oo i—1 i-1 k i—1
Ps(Z, > ¢) = Z/ [IGw-c+d 6) TI Gly—ec—> 6k-1)dG(v); (2)
i=1V "

—o0 i1y 1=; j=it1 I=i
(c) If g(y) is (strictly) log-concave, then the cdf of Zy is (strictly) decreasing in § in the sense
that P5(Z1 < ¢) < Pg=(Zy < c) for any fized ¢ whenever § > §*, where § = (61,-- o)t > 6 =
(6%,+++,6;_1)T if and only if & > 87 for every i.

Proof: Proof is given in the Appendix. O
Let K(8) be the (1 — @) quantile of Z; given §. That is, K(§) = c if and only if Ps{Z; < ¢} =
1 — o. Then K(-) is a well-defined mapping from (R*)¥~! to R*. Also, for the function K(§), we
have
PAE®) > Z) = 1-a, 3)
for all §(> 0). Let C(z1) = {d: K(§) > 21}, then

Theorem 2.1 C(z1) is a 100(1 — @)% confidence region for the parameter §, based on the sample

Z = z. Consequently, a 100(1 — a)% lower confidence bound for the PCS is

0o k-1 i
PCS = inf {/_oo I G+ Zcﬁ,)dG(y)} . (4)

8eC(z1) =1

That is, Ps{PCS > PCS} > 1~ a for all § (> 0).



Proof: It is a straightforward result from (3). O
In the following we study the case when the density g(y — 6;) of the distribution is log-concave.

We need the following lemma which is an immediate consequence of Lemma 2.1(c).
Lemma 2.2 : If g(y) is (strictly) log-concave, then K(§) is (strictly) increasing in §. O

Notice that, under the log-concave condition, C(z;) is not empty for any sample value z; and

consists of all the values of §(> 0) if 23 < 4k, Where 4 is the solution of the following equation

k /_ °:° Gy — ¢)dG(y) = . (5)

The left hand side of (5) is obtained from (2) by setting § = 0. Hence PCS =1 [kif 21 < zop,
which is a trivial lower bound for the PC'S. See also Kim (1986) for the explanation of a similar

situation.

For z1 > Tk, let C*(21) = {6 : K(§) = 21}, then
C(z) ={8: Ps(Z1 < =) =1-a}, (6)

in which § satisfies the equation

ko opoo i-1 i1 k -1
> / [Mew-a+Y 60 [[ Clu-2n-3 6)dG(y) = o. )
=1 o0

=1 =3 j=i+1 1=
Since both K(§) and the integrand in (4) are non-decreasing in §, it follows that the infimum

of (4) is achieved on C*(21). Hence we have

Corollary 2.1 If z1 > zqk, then

oo k-1 i
PCS = ;nf { /_ TG+ Z; «%)dG(y)} , (8)

® =1
where C*(2zy) is determined by (7). Otherwise, PCS=1/k. O

So, to evaluate PCS for a given sample value z; > z, first we figure out C*(2;) numerically
at some grid points, then find out the infimum of (8) on those points.
We would like to point out the difference between the method here and the method in Gupta-

Liang (1991). First, we briefly describe the Gupta-Liang method. The notations are the same as



defined in Section 1. We know that Y; — 6; ~ G(y), independent of 6;, ¢ = 1,---,k. For a given
a, 0 < a < 1,let ¢(k, ) be the value such that

. — 0:) — mi .~ 0.) < =1-c.
P{fg‘?g’i(“ 0:) — min, (% ;)< ck,a)}=1-a

Define
bri= (Vi) — Y — ek, @), i= 1,k 1;

and

o k-1 )
Pp = / 11 Gy + 81,:)dG();

® =1
where (z)* = max(0, z), and Py, is obtained by replacing O1x) — Oy bY 51,,,- in (1). Gupta and Liang
(1991) showed that
PQ{SLJ <O -0, t=1,---,k— 1}>1-a.

Then Py, is a lower confidence bound for the PCS.

The difference between our method and the Gupta-Liang method lies in using data differently
to construct lower confidence bounds for O — 6, ¢ = 1,---,k — 1. We employ Y4y — ¥{(1_y)
whereas Gupta and Liang use all data Y3, — Y(;), ¢ = 1,...,k — 1. However, one method does
not dominate the other completely in the sense of providing larger PC'S values (see Examples 4.2
and 4.3 in applications). Usually our method does better when Y(;) — ¥(3_1) is not too small.
The Gupta-Liang method may perform better when Y(x) — ¥{(;_;) is small and, at the same time,
Yoy = Ye—i), ¢ = 1,---,k — 2, are large. Generally speaking, for moderate k, say k¥ > 5, the
Gupta-Liang method tends to underestimate the PCS since ¢(k, ) is quite large, and the estimate
for 1) — f[x—1) would be close to 0, and then Py, would be only around 0.5. The method in this
paper obtains the best lower confidence bound for 6|3 — 0[x_1) based only on data Y(z) — Y(r_1). It

is better not to underestimate Oz — fjx_1) since Ojx) — Oy > Opx) — O[x_q), for all <.

3 Some Practical Lower Bounds

There is not much difficulty in evaluating PCS$ for small k. However, this computation becomes
very difficult for moderate or large k£ (> 5). In the following, we propose a method to reduce the

dimensionality of § involved in (7). However, this may make the value of PC'S more conservative.



For 1 < g < k — 1, denote g(§) = (61, ...,6;)7, and define

K(q(é)): oll-i—Igo K(Q)=K((ﬁl,---,ﬁq,oo,---,oo)T),
i=q+1,....,k

and
Co(z1) ={6: K(q(8)) 2= }.

Denote 24441 as the solution of the following equation in ¢ (setting §; = 0, ¢ = 1,---,¢, and

6j=°°7j=q+1,""k_1in(2)): ‘
(@+1) /_O:qu(y—c)dG(y):a. ©

For 21 > Za,g41, define C;(z1) = {g(§) : K(q(6)) = = }, in which (61, +,84)T is determined by

the equation

ko oo -1 i—1 k -1
3 / [T Gu-n+> 60 [[ Cu—n+Y 60)dG(y) = a. (10)
i=k—q "V ~® j=k—q I=j j=i+1 I=:

Note that Cy(z1) is in (R*)*™1, C¥(#1) is in (RT)?, but both are determined only by (61, ...,8,)T.
For any §(> 0), we have K(q(§)) > K(§) by Lemma 2.2. Therefore

PAK((®) > %1} > PHE() 2 21} = 1 - .
That is, Ps{§ € C4(Z1)} > 1 — a. Hence, we have the following theorem:

Theorem 3.1 For any given sample Z = z, C4(z1) is a 100(1 — a)% confidence region for §.

Consequently, a 100(1 — a)% lower confidence bound for the PCS is

. ‘ oo k=1 i
PCS, = _inf { / [Mew+>] 6j)dG(y)}
oo o

§GCq(Zl ) i=1

=1 7=1

- q(g)é%g(zl) {/_oo H G(y + Z‘Sj)[G(y + ; 5j)]k_qu(y)} ,

if 21 > Tog41, and 1/k otherwise. O
Notice that Cg(21) 2 Co41(21) if g(¥) is log-concave; so we have:

Theorem 3.2 If the density function g(y) is log-concave, then P/CTSQ < P/(?S,I.H and Tog41 >

Ta,gt2; Jor ¢ = 1,....k — 2, with strict inequalities if strict concavity is assumed. O
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Theorem 3.2 implies that as ¢ increases, the accuracy of the lower bound improves and the
critical value x4 441 decreases. However, it should be noted that the price of choosing a larger ¢ to
get a more accurate lower confidence bound for the PC'S is more complicated computation.

Specifically, for ¢ = 2, if z; > @4 3, the set C3(21) is a collection of (61, 8,)7 satisfying following

equation

./—Z {G(y - 21 — 61 - 62)G’(y - 21— (52) + G(y —z21 — 61)G(y - zZ1 + (52)
+G(y— 2+ 61+ 62)G(y — 21 + 61)} dG(y) = o, (11)

which is a curve in the (61, 62)-plane. The corresponding lower bound is given by

inf b é 81 + 86:)152d ) 19
(61,62)€C3 (1) /_wG(?/"' DIG(y + 81 + 82)]F2dG(y) (12)

PCS, =
The case ¢ = 1 corresponds to Kim’s(1986) result, in which case, the set C{(2;) consists of only
one value of §; determined by
[o o]
| 16— - )+ Gly— 21+ 82))d0() = o (13)
—00

and

PCS, = /_ :[G(y + 6 1dG(y). (14)

We note that, by choosing ¢ = 2, we obtain a better lower confidence bound for the PCS
than that of Kim (1986). To see how much improvement can be achieved for this choice of ¢ = 2,
notice that & < & for all & € Cf(2z1) and (64,64)T € C3(21) by the increasing property of K(-)
in §. Comparing (12) with (14), we see that there is considerable improvement. Even if the
infimum of (12) occurs at 6 — oo, we have 6 = &, but PCS; = [%_ G(y + 6/)dG(y) and
PCS, = = [G(y + 6,)]¥"1dG(y), which again results in the same conclusion as above. Another
advantage in choosing ¢ = 2 is that z, 3 < 4,2, which implies that PCS 1 becomes a trivial bound

while PCS; can still be pretty good. The following is an example to show the difference numerically.

Example 3.1 Let Y; be independently distributed as N(6;,1),¢ = 1,2,...,k. And let the differences
of ordered statistics and parameters be denoted as Z; = Y _;;1) — Y(5—s), and & = O _;41) — O
respectively, where ;; and Y(;) are not directly related. For a given sample Z = z and confidence

100(1 — @)%, C3(21) represents the curve in the (81, 82)7-plane, determined by



doa2

/_o:o {8y— 21— 61— 82)@(y— 21— &2) + ®(y — 21 — 61)@(y — 21 + 62)
+®(y— 21+ 614+ 6)8(y — 21 + 61)} (y)dy = (15)

and PCS, is the infimum of I e(y+ )@y + 61+ 62)]%¢(y)dy on the curve. For a = 0.05 and

0.10, respectively, and z; = 3.5, the curves are shown as follows:

© ©
[T w
- - -~ -
- E @
3
o~ o~ =
T T 1 T T T
1 2 3 1 2 3
dettal detal

The vertical lines correspond to & = 8, the value of § in Kim (1986).

Figure 1. Plots of C3(z1) for 21 = 3.50, a = 0.05(1eft) and o = 0.10(right).

The lower bounds PCS 2(ours) and P/C'\.S'l(Kim’s) are computed for k£ = 3,4,---,12 and are
listed in the following table:



Table 1. The lower bounds P/CTSZ(top entry) and PCS, (bottom entry) for z; = 3.5

0.05 [| 0.7954 | 0.7954 | 0.7745 | 0.7438 | 0.7176 | 0.6947 | 0.6744 | 0.6562 | 0.6398 | 0.6248
0.6809 | 0.6043 | 0.5483 | 0.5049 | 0.4699 | 0.4410 | 0.4163 | 0.3954 | 0.3771 | 0.3608

0.10 || 0.8835 | 0.8835 | 0.8703 | 0.8498 | 0.8317 | 0.8155 | 0.8007 | 0.7873 | 0.7749 | 0.7634
0.8072 | 0.7511 | 0.7071 | 0.6711 | 0.6409 | 0.6149 | 0.5923 | 0.5722 | 0.5543 | 0.5381

4 TUnknown Scale Parameter Case

In this section, we consider the normal distributions to demonstrate how to construct a lower
confidence bound for the PCS when each population has the same scale parameter. The result
can be easily extended to the general distribution of location-scale parameter models with a similar
setup as that in Gupta-Leu-Liang (1990).

The case when the scale parameter is known can be easily solved as discussed in the previous
sections. So we only focus on the case of unknown scale parameter. The derivation is similar to
those in Kim (1986) and Gupta-Leu-Liang (1990). Hence we simply state the result.

Suppose that the samples X;; (1 < 7 < k;1 < j < n) are from N(6;,0?), where the common
variance g2 > 0 is unknown. The best population is the one associated with 0k, and we select the
population corresponding to the largest X; value as the best.

Let S2 denote the pooled sample variance. Note that v5%/0? has a x? distribution with v =
k(n — 1) df. Denote the cdf of v/X2/v as Q(u). Let Zy = /u( Xy — X(x-1))/S, & = v/n(Op—iy1 —
Ox_i)/o, i=1,...,k—1,and § = (8,...,6k—1)T. We note that the distribution of Z; depends only
on §. For a fixed integer ¢ (1 < ¢ < k — 1), denote 24 441 as the solution of the following equation
in ¢

(+1) [ Hy- iAW) = o (16)

where H,(-) is the cdf of the ¢ distribution of df v. For a given sample value Z; = z; > 24,441,



define
Ci(z1) = 4 (61,0, 8g)T lm  P(Zi>zn)=a . (17)
i=q:I-1,...,k

Then C}(z) is the collection of (éy, ..., é,)7 satisfying the following equation

/ [Z / H (I>(y—uzl+26k 1) H <I>(y—u21+26k 1)(,0(y)dy] dQ,(u) = a. (18)

i=k—q ” " j=k—q I=j j=it1
And with 100(1 — a)% confidence, we have

PCS> i {/w qf] o(y+ Za )@y + Ea e thb(y)} (19)

a(8)eCy (=) =

If 21 < Zag+1, only the trivial lower bound 1 /k can be achieved.
Specifically, for ¢ = 2, the set C3(21) represents the curve in the (61, §2)-plane determined by

/Ooo /_o:o {®(y — uz — 61 — 62)®(y — uz1 — 62) + B(y — uz1 — 61)®(y — uz1 + 62)
+®(y — uzy + 81 + 862)P(y — uzy + 61)} p(y)dydQ o (u) = a. (20)

And a 100(1 — )% lower confidence bound for the PC'S can still be evaluated by (12) with C3(21)
defined in (20). Again, the case ¢ = 1 corresponds to Kim’s (1986) result.

Example 4.1 Kim’s (1986) ezample. Consider the example in Section 4 of Kim (1986), where
k=5, v=5(49) = 245, § = 228.26, and 2z = v/2(2.92). Choosing ¢ = 2 as an illustration, we
computed a 90% lower confidence bound for the PC'S as 0.9465 by our method. The bound given
by Kim (1986) for this case is 0.856.

Example 4.2 Gupta-Liang (1991) ezample. Consider the example in Section 4 of Gupta-Liang
(1991). The data is taken from Example 3, page 506, of Gupta and Panchapakesan (1979), in which
an experimenter wants to compare the glowing time of five different types of phosphorescent coatings
of airplane instrument dials. Assume that the distributions of the glowing time for each type of
phosphorescent coatings are normal with a common unknown variance. A two-stage selection rule
as described in Gupta-Liang (1991) requires eight observations for each population. The data are
summarized as k = 5, n = 8, v = k(n - 1) = 35, § = 5.06, Z; = 50.44, Z; = 50.83, T3 = 55.76,
%4 = 57.56, and %5 = 64.88. Then z = /n(Z(5) — F(4))/S = 4.09. For a = 0.1, the Gupta-Liang
bound is 0.518, and ours with ¢ = 2 is 0.9295.
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The reason that the method here gives a much better result is because the value of z; (4.09)
from the data is relatively large and our method is good in using 2y, while the lower bound for

0%} — O[x—1) given by the Gupta-Liang method is 31,,4 = 0.4835, which is very small.

Example 4.3 The case when the Gupta-Liang method is better. Let us look at an example showing
that the Gupta-Liang method performs better than the method here. The data is taken from
Problem 3.1 of Gibbons-Olkin-Sobel (1977), in which Black and Olson (1947) reported a study to
compare dry shear strength of £ = 6 different resin glues for bonding yellow birch plywood. They
obtained n = 10 observations for each glue. Assume that the distributions for each glue are normal
with common unknown variance. The data are summarized as k = 6, n = 10, v = k(n — 1) = 54,
S = 25.63, T, = 56.0, T, = 78.8, T3 = 92.4, T4, = 128.8, 5 = 178.6, and Zg = 196.5. Then
21 = v/n(Z(6) — (5))/S = 2.2. For @ = 0.10, only the trivial bound 1/6 can be obtained by using
Kim’s method because 2.2/v/2 < sg = 1.671. Our lower bound with ¢ = 2 is 0.4505, while the
Gupta-Liang bound is very close to 0.5.

Examining the data carefully, we note that Z) — Z(5) = 17.9 is not large enough to claim that
61 > 0 under any procedure, but Z(g — Z(4) = 67.7 is so large that one of the first two populations
can be claimed as the best at level & = 0.10. The Gupta-Liang method uses the latter information
to give a slightly better result. However, both bounds are low due to the nature of the data. Also

see the following remark.

Remark 4.1 If the bound given by Kim (1986) is trivial, then our bound (others should be the

same) can not be larger than 0.50, because there is a § with 6; = 0 in the confidence region C(2).

Note: Details of Computation. To compute the lower confidence bounds using the method here
with ¢ = 2 in the three examples above, we took §2 from 0 to 7.5 with increment 0.25 and found
the corresponding §; determined by (20) using the method of bisection. Then the corresponding
integral in (12) was evaluated, and its minimum was recorded, which gave our bound. The double
integration in (20) was carried out via the method of Monte Carlo with sample size of 10,000, and

the integral in (12) was evaluated via IMSL’s subroutine QDAGI.
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5 Appendix: Proof of Lemma 2.1
Actually, it is easy to show that (Kim (1986))

PBylYis) = Yiu-1) > ] = Z / [1 Gy + 61 - 0151 — ©)dG(y)- (21)
0 j#i

Hence, (a) and (b) follow.
For (c), it is sufficient to show that, given ¢ > 0, Ps{Z; > c} is increasing in 8., keeping
other §;, i # k — m, fixed, for m = 1,2,...,k — 1. Now we write Ps{Z; > c} as

Z/ HG(y c+261c 1) H G(y— C—Z5k 1) H G(y— c—Z&k_l)dG(y)

l—] j=i+1 I=¢ J—m+1 I=1¢
-1
t E / HG(!/ C+Z5k ) H G(y- C+E5k ) H Gy~ C—Zﬁk—z)dG(y), (22)
i=m+1 =3 j=m+1 =3 j=i+1 =1
therefore
oP
8((jls:—m
m k
=y > {/ [g(y—c+25k z)g(y)HG(y—c+25k I+25k 1)
i=1t=m+1 I=¢ 7=1 =5 1=

— -1 - _
: H G(y—c— Z5k—z+zﬁk_z) H Gy - C—Zﬁk—z+25k-z)} dy

j=i+1 =i I=1 Jj=t+1 I=t =i

_/_ [ y— c—zék z)g(y)HG(y c+26k 1) H G(y— c—E&k 1) H G(y— c—Eék 1)] dy}

I=1: =3 j=i+1 I=1 j=t+1 1=

m k - -
= Z Z / {g(y—c)g(y—Zﬁk_z)—g(y—c—zak—l)g(y)}

=1 t—m+1 I=1 =1

HG(y—c-}-Z&k 1) H G(y—c—Zﬁk 1) H G(y-—c—Z&k 1)dy.

j=i+1 =t j=t+1 =1
The first equality is obtained through differentiating the third product in the first term and the

first product in the second term of (22). The last equality results from a variable transformation
v =y+ Z,_, 61 in the first term of the previous equation.
By the equivalence between the concavity of log g(y) and the monotone likelihood ratio property
of g(y — 8) in y, we have
t—1 -1
9y —g(y— D 6ka) —g(y—c—Y_ -1)g(y) 2 0,

=1 I=1

12



with strict inequality if the concavity is strict. Hence the result follows. O
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Figure 1. Plots of C}(z1) for z1 = 3.50, o = 0.05(left) and a = 0.10(right).



