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ABSTRACT

(From two independent normal populations with unknown means and a common
known variance, samples of unequal sizes are observed at stage 1. The goal is to find that
population with the larger mean. Using the Bayes approach, optimum allocations of m

additional observations, at stage 2, are derived under the linear and the 0—1 loss.
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1. Introduction

Let P1,..., Pk be k > 2 given normal populations with unknown means 6;,...,60; € R
and a common known variance ¢ > 0. Suppose we want to find the population with the
largest mean using a Bayes selection rule which is based on a known prior density 7(0) and a
given loss function L(0,%), € R, i € {1,2,...,k}. Assume that k independent samples of
sizes ni, ..., Nk, respectively, have been observed already at a first stage, and let m more
observations be allowed to be taken at a future second stage. The problem considered
is how to allocate these m observations in an optimum way among the k populations,
given the information gathered so far. It should be pointed out that the special case of
ny = ... = ng = 0 represents the analogous problem of how to allocate m observations at

a first stage.

Looking ahead one stage using the expected posterior Bayes risk, given all observations
collected so far, does not only lead the way to an optimum allocation of observations in the
future. It also provides a relative measure of how much better the decision can be expected
to be after further sampling has been performed following this optimum allocation. In
many empirical studies in marketing reseach (e.g. direct marketing), medical research
(e.g. clinical trials) and social research (e.g. survey sampling), there are interim analyses
performed at certain stages to decide if sampling should be continued, and if so, how to

allocate observations.

Under the assumption of k independent normal priors and either a linear loss or a
0-1-loss, a solution to the problem has been obtained for the case of ¥ = 2, which turns out
to be already rather involved. It allocates observations in such a way that the posterior
gets as close as possible to being decreasing in transposition (DT). Moreover, somewhat
surprising, it does not depend at all on the observations gathered at the first stage. This
fact implies that one can allocate in an optimum way one new observation at a time, until

all m have been drawn, thereby arriving at the same allocation as in the former approach.

Selecting the population with the largest (overall) sample mean is usually called the
natural selection rule, since it is the uniformly best permutation invariant selection pro-
cedure in the frequentist sense for a general class of loss functions, if the sample sizes

are equal. However, for unequal sample sizes, the natural selection rule loses much of its
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quality, although it still remains intuitively appealing. Therefore, optimum sample size
allocations for this rule have been considered in the frequentist approach by Bechhofer
(1969), Dudewicz and Dalal (1975), and Bechhofer, Hayter, and Tamhane (1991). On
the other hand, Bayes rules with normal priors turn out to have complicated forms that
cannot be represented explicitly, except for those situations where the posterior is (DT).
This has been shown in Gupta and Miescke (1988), where it was recommended to plan
an experiment’s sampling allocation in such a way as to make the posterior (DT). The
present result adds now substantial support to this earlier recommendation, although thus

far, however, only for the case of two populations.

2. General Framework and Notation

After a standard reduction of the data by sufficiency, the model assumptions can be
summarized as follows: At 8 = (61,...,60;) € R*, X; ~ N(6;,p;") with p;! = 02 /n;, and
Y; ~ N(6;, qi_l) with ¢! = 02/m;, are the sample means from the samples of population
Pi at stage 1 and stage 2, respectively, ¢ = 1,..., k, which are altogether independent. A
priori, the parameters @ = (Oy,...,0;) are random and follow a given prior distribution
which will be later assumed to have ©; ~ N(u;,v; '), i = 1,...,k, independent. Let
the loss function for selections at stage 1 and stage 2 be denoted by L(0,s), 6 € RF,

s=1,...,k, which will be later assumed to be either linear or of the 0-1-type.

After X = x € R¥ has been observed at stage 1, every Bayes selection rule dj (@) can

be found through
B{L(©,d}(2))|X =} = min B{L(O,)X = o}. (1)

Likewise, after Y = y € R* has been observed additionally at stage 2, every Bayes rule

satisfies
E{L(@’d;(m)y))!X =z,Y = y} = ___I{nnkE{L(@’Z)IX =z,Y = y}' (2)

There will be no need to consider randomized Bayes selection rules in the following since

minimaxity and invariance concepts will not be used.

Many results for Bayes selection rules can be found in the literature. An overview is

provided by Gupta and Panchapakesan (1979, 1991). Only recently, however, attention
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has been given also to non-symmetric models. The binomial case has been treated by
Berger and Deely (1988) and by Abughalous and Miescke (1989), whereas the normal
case is studied and discussed in Gupta and Miescke (1988). Rather than studying the
properties of the Bayes selection rules di and d5 in details, let us assume that they have
been derived already, are ready to be used, and all that is needed is to allocate sample

sizes in an optimum manner.

Before entering each of the two stages, similar allocation problems arise which are
closely related. Before entering stage 1, by looking ahead one stage, we would like to
minimize the expected posterior risk subject to ny + ... 4+ ngy = n, where n is the total

number of observations allowed to be taken at stage 1. This leads to the criterion for

Nyy...,Ng
min  E( min E{L(©,7)|X}). (3)
mLim i=1,..,k
ny+...fnpm=n
Likewise, at the end of stage 1, the criterion for m,,...,m with a total number of m

observations allowed at stage 2 is the following

min, E{._nllinkE{L(@,i)lX =z, Y}HX ==z}. (4)

In the next two sections, solutions to criterion (4) will be obtained under linear and 0-
1-loss for k = 2 populations assuming independent normal priors for 1, ..., 0. Formally,

or using a standard sequential updating argument as described in Berger (1985) p. 445,

one can get solutions of (3) from those of (4) by setting ny = ... = ny = 0 and then relabel
m; by ni, ¢ = 1,...,k, and m by n. Thus, we need to consider only criterion (4) in the
sequel.

To simplify notation, let a; = p; +v; and pi(2) = (vips +piz:)/(vi+p:), i =1,..., k.
Then, under the assumption of independent normal priors, i.e. under ©; ~ N (pi,vit),
2 =1,...,k, independent, the following conditional distributions will be relevant for solving

criterion (4).

Given X =z and Y =y, 0Oy,...,0; are independent with (5)

il iYi 1 .
@i~N(O‘“(w)+qy, ),z:l,...,k.
a; + g i+ g
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By setting ¢1 = ... = ¢x = 0 in (5), one gets also the conditional distribution of @, given

X = z. Moreover,

Given X = @, Y3,...,Y} are independent with (6)

Y—ZNN(,Uz(w)) ai+qi)7 Z:]-’)k
s

4

The posterior distribution of ©4,...,0; at stage 2, as given by (5), is (DT) if and
only if
ar+qr=az+qg =...= o+ qx. (7)

It was recommended by Gupta and Miescke (1988) to plan an experiment in such a way
that (7) is satisfied, because of two reasons. First, the Bayes rule is then of a very simple
form, and second, the posterior information about the & unknown parameters is then
equally and fairly balanced. The solutions of criterion (4) for ¥ = 2 under linear and
0-1-loss, which are derived in the next two sections, turn out to be the same: Choose m;
and my subject to m; + my = m in such a way that one gets as close as possible to the
(DT) configuration (7). Since this common solution does not depend on the observations
X = =z at stage 1, the solution has been found also to the analogous sequential problem
where one observation at a time has to be allocated. Using the latter m times leads to
the same result as performing the former in one single step. Finally, one can see that this
solution applies to the open sequential setting where m is not finite and stopping rules are
employed. Whether these results can be extended to the case of k > 3 populations is an

interesting question which has to be investigated in the future.

3. Linear Loss

In this section we assume that the loss in linear, i.e. L(8,7) = Oy — 6,1 =1,...,k,
0 € R¥, where O[] = max{61,...,0;}. Criterion (4) reduces then to minimize as a function

of my,...,mg, subject to my + ... + my = m, the look ahead expected posterior risk
E{Op|X ==z} - E{._nllanE{GAX =2z, Y} X =z)}. (8)

For k > 2 and the independent normal priors introduced in section 2, this reduces further

by using first (5) and then (6) to maximize as a function of my,...,ms, subject to m; +

)



...+ mp = m, the following

aipi(e) +¢Ye o , g : .
P v o =E (m W) +(metr) ™)) @
where N;,..., Ni are independent standard normal generic random variables.

For the case of k£ = 2 populations, using the identity max{v,w} = (v4+w)/2+|v—w]|/2,

(9) has the following simple representation

S01(2) + (@) + 3 B(a(2) = ) + 7)), (10)
q1 + 92
ai(og +q1)  az(az + q2)

where 72 = , and N ~ N(0,1).

Finally, one can see that the function E(|u+oN|) = 2u[®(p/0)+(u/o) " (/o) —0.5]
is increasing o > 0 for every fixed . € R. As usual, ® and ¢ denote the c.d.f. and density
of N(0,1), respectively. Therefore, to maximize (10), subject to the given side condition,
one has to maximize 2 as a function of m; and mg, subject to m; +mg = m. Substituting
for ¢, the condition g, = (m/0?) — ¢; makes 4? a function of ¢; alone, which can be seen

easily to be increasing (decreasing) whenever a1 + ¢1 < (>)ag + ¢o.

To summarize, the following result has been proved.

Theorem 1. Under linear loss, the optimum look ahead m observations Bayes allocation
rule for selecting the larger mean of two normal populations with a common known variance
o2 > 0 is to minimize the absolute difference of oy +¢1 and a2+ gz, t.e. to get the posterior

as. close as possible to the (DT) configuration.

To conclude this section, let us look at the more general situation where the two
populations have, rather than a common known variance ¢ > 0, known positive variances
o? and o2, say. In this situation, the optimum allocation of m observations is to minimize
the absolute difference of 01 (a1 + ¢1) and o2(as + ¢2). However, under the side condition
of g1 + g2 = ¢, where ¢ is fixed, the optimum allocation turns out to be the same as in
the theorem. Thus, Theorem 1 has to be considered as a result on optimum allocation of

sampling information rather than that of sample sizes.



4. 0-1-Loss

In this section we assume that the loss is of the 0-1 type, i.e. L(0,7) is equal to zero if
8; = 0[x), and equal to one otherwise. Criterion (4) reduces then to minimize, as a function

of my,...,mg, subject to my + ...+ my = m, the look ahead expected posterior risk

1-— E{'—n;laxkp{@i = 0| X =2,Y}X =2} (11)

For k > 2 and the independent normal priors introduced in section 2, the expectation
expression in (11) can be represented in the following form, which can be derived by

using (5) and (6), and which has to be maximized as a function of my, ... , Mk, subject to

mi+...+mrg=m

e [ T18 (Vo F5 | S + o) = (o) + 3 = i|) ez
J#i itq
(12)
where v = q¢/(a¢(as +¢¢)), t = 1,...,k, and where Ny, ... , Vi are independent standard

normal generic random variables.

For the case of k = 2 populations, using the identity max{®(v — w), ®(w — v)} =
®(|v — wl), (12) has the following simple representation

E(®(la+ bN|)), where (13)

(011 +€J1)(az +92)r
— - d
—[ T tqitastg i#l(w) #2(‘”)3, an

- [q1a2(az + ¢2) + gy (ay + ‘11)]
ajaz(a +q1 + ag + q2)

It has been shown below of (10) that the function E(|a + bN|), where N ~ N(0, 1),
is increasing in |b| for every fixed @ € R. An analogous result does not hold for the
function E(®(|a + bN|)). An investigation in this direction shows, on the contrary, that
E(®(|a + bN|)) is increasing (decreasing) in |b| for small (large) values of |a|. Therefore,

another more involved approach has to be taken to derive the optimum allocation.

At this point, it is convenient to express a and b in (138) as functions of, say, w =

3(g+az—a1) —q1, where ¢ = m/o?, by incorporating the side condition ¢; + g2 = ¢. This
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leads to

2

o) = h)A, Ho) = |32 - 1] (14)
.~ where A = |y(x) — pa(@)], p = daraz /(a1 + az), and

B(w) = [((g + a1 + a2)? — 407)/(g + a1 +a2)] 7

(—gtar—a2)/2<w < (g4 a2 — aq)/2.

The crucial tool for finding the optimum allocation turns out to be the following derivative
d
= [ (law) + bw)zDp(=)dz (15)
R

= [ sign (afe) + He)2) (@) + B @)2)
X p(a(w) + b(w)z)p(z)dz.

After some further steps of standard calculations one can see that (15) has the follow-
ing representation, where for convenience the argument w is suppressed in the functions

a,b and their respective derivatives a’, b’.

1 a / . + a b L abl’ (1)d
re \Vize) PV wize) \ el T "1 ) W
(16)

This holds for any differentiable a(w) and b(w). For the particular forms of a and b

as functions of h, as given in (14), further simplification is attained by the fact that
a'(1+ b*) = abl', and by expressing a,b,a’ and ¥’ by kh and h' using (14). This leads to
the following form of (16)

%V’ (\/ﬁ%) /R sign (y + %{;%) ye(y)dy. (17)

Evaluation of the integral is straightforward, and the final result can be summarized in

the following

Lemma. £ [ ®(Ja(w) + b(w)z|)p(z)dz

__ 2/ph(w) w( N7 é)‘
h(w)/ R (w) ~ p h*(w)—p 2
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The sign of the derivative in the lemma coincides with the sign of A'(w) = —4w/(h(w)(g +
o1 + az)), and thus will the sign of w itself. This shows that E(®(|a(w) + b(w)N|)), with
N ~ N(0,1), is maximized by letting w be as close as possible to zero, i.e. by letting ¢; as
close as possible to (¢ + a2 — @1)/2. The optimum allocation is thus seen to be the same
as the one for linear loss given in Theorem 1. To summarize, the following result has been

shown.

Theorem 2. Under 0-1-loss, the optimum look ahead m observations Bayes allocation
rule for selecting the larger mean of two normal populations with a common known variance
o? > 0 is to minimize the absolute difference of a; +q1 and oy +q, i.e. to get the posterior

as close as possible to the (DT) configuration.

As it has been done at the end of section 3, let us look at the more general situation
where the two populations have, rather than a common known variance o2 > 0, known
positive variances o7 and o2, say. All results in this section up to and including the
lemma can be extended to this more general situation by letting w = mq, ¢ (W) = w/o?,
@ (w) = (m —w)/o2, and

_ Hoa1 + @1(w)) (a2 + g2(w)) o< m
M) = @) ta faa() O SOS™ (18)

The optimum allocation of m observations is, as before under linear loss, to minimize
the absolute difference of o1 (a; + ¢1) and o2(az + ¢2). However, under the side condition
of g1 + ¢2 = ¢, where ¢ is fixed, the optimum allocation turns out to be the same as in the
theorem. Thus, also Theorem 2 has to be considered as a result on optimum allocation of

sampling information rather than that of sample sizes.
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