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Abstract

This paper surveys the empirical Bayes methodology for ranking and selection prob-
lems. Three empirical Bayes approaches are discussed. They are nonparametric empirical
Bayes, parametric empirical Bayes and hierarchical empirical Bayes. For each of them,
two kinds of empirical Bayes procedures are considered. One is to incorporate information
from past data to improve the current decision. The other is to incorporate information
from each other so as to simultaneously improve the decision for each of the component
problems under study. Certain important models including Poisson, binomial and hyper-
geometric distributions are investigated. The empirical Bayes methodology is discussed
through these examples.
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1. Introduction

A common statistical problem faced by an experimenter is one of comparing several
populations (treatments). Suppose that there are k(> 2) populations =y,..., 7, and for
each i, m; is characterized by the value of a parameter of interest, say 6;. Let f;) < ... < 0y
denote the ordered values of the parameters 6,,...,60;. The population associated with
O} is called the best population. For a given standard 6, a population 7; is said to be
good if §; > 6y, and bad otherwise. In many practical situations, an experimenter may be
interested in the selection of the best population and/or the selection of all good popula-
tions. These problems are known as selection and ranking problems. The formulation of
selection and ranking procedures has been accomplished generally using the indifference
zone approach (see Bechhofer (1954)) or the subset selection approach (see Gupta (1956,
1965)). A discussion of their differences and various modifications that have taken place

since then can be found in Gupta and Panchapakesan (1979).

In many situations, an experimenter may have some prior information about the
parameters of interest and he would like to use this information to make an appropriate
decision. If the information at hand can be quantified into a single prior distribution, one
would like to apply a Bayes procedure since it achieves the minimum of Bayes risks among
a class of decision procedures. Some contributions to selection and ranking problems
using Bayesian approach have been made by Deely and Gupta (1968, 1988), Bickel and
Yahav (1977), Chernoff and Yahav (1977), Goel and Rubin (1977), Gupta and Hsu (1978),
Miescke (1979), Gupta and Miescke (1984), Gupta and Yang (1985), and Berger and Deely
(1988), among many others.

The empirical Bayes approach in statistical decision theory is typically appropriate
when one is confronted repeatedly and independently with the same decision problem. In
such instances, it is reasonable to formulate the component problem with respect to an
unknown prior distribution on the parameter space. One then uses information borrowed
from other sources to improve the decision procedure for each component. This approach
is due to Robbins (1956, 1964). Empirical Bayes procedures have been derived for multiple
decision problems by Deely (1965). Recently, Gupta and Hsiao (1983), and Gupta and
Liang (1986, 1988, 1989a, b, 1991a, b, c¢) have investigated empirical Bayes procedures



for several selection problems. Many such empirical Bayes procedures have been shown
to be asymptotically optimal in the sense that the component Bayes risk will converge to
the optimal Bayes risk which would have been obtained if the prior distribution were fully

known, and the Bayes procedure with respect to this prior distribution was used.

The present paper is concerned with the selection and ra.nking problem using the em-
pirical Bayes approach. Two kinds of empirical Bayes procedures will be considered. One
is to incorporate information from accumulated past data to improve the current decision.
The other is to incorporate information from each other so as to simultaneously improve
the decision for each of the component problems under study. The paper is organized in the
following way. We briefly introduce the Bayes and empirical Bayes selection problems in
Section 2. Through Sections 3-5, we consider certain important selection problems includ-
ing Poisson, binomial and hypergeometric distributions. The empirical Bayes methodology
is discussed through these examples. Certain simulation results are provided to show the

small sample performance of the related empirical Bayes procedures.

2. Formulation of Bayes and Empirical Bayes Selection Problems

2.1 Bayes Selection Problems and Procedures

Let ; € © C R denote the unknown characteristic of interest associated with the
population m;,¢ = 1,...,k. Let X;,..., X} be random variables representing the % popu-
lations my, ..., mk, respectively, with X; having the probability density function f;(z|6;). It
is assumed that given § = (61,...,0;),X = (X1,...,Xk) have a joint probability density
function f(z|f) = i]_’zc'l fi(z:]6:), where £ = (z1,...,2x). Let 6y < ... < fix) denote the
ordered values of §;’s. The population associated with O[x) is called a best population. For
a given standard 6y, a population =; is said to be good if 8; > 6y and bad otherwise. Let
Q={0]6; € ©,i =1,...,k} denote the parameter space. Also, it is assumed that the value
of the parameter 6; is a realization of a random variable ©; having a prior distribution
Gi and O1,..., O are mutually independent. Hence © = (O,...,0;) have a joint prior

. . k
distribution G(§) = K G(6;) on the parameter § over the parameter space €.
1=

In many situations, an experimenter is interested in identifying the best population

or selecting the more promising subset of the k populations for further experimentation.
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For a specified selection goal, an action is a subset of the set {1,...,k}. When action
S c {1,...,k} is taken, it means that population =; is included in the selected subset if
i € S. Let A denote the action space. For each § € Q and S € A, let L(4,S) denote
the loss incurred when 8 is the true state of nature and the action S is taken. A decision

procedure d is defined to be a mapping from X x A into [0, 1] such that > d(z,S) =1
SeA

for all z € X, where X is the sample space of X. d(z, S) can be viewed as the probability

of taking action S when X = z is observed.

Let D be the class of all decision procedures. For each d € D, let (G, d) denote the
associated Bayes risk. Then, r(G) = «}Iel’f) r(G, d) is the minimum Bayes risk. An optimal de-
cision procedure, denoted by dg, is obtained if d(; has the property that r(G,dg) = r(G).

Such a procedure is called Bayes with respect to G. Under some regularity conditions,

(@d) = [ 3 des) | [ 1,560k f2)iz
X seA f )

where G(|z) is the joint posterior distribution of § given X = z, f(z) = _1,?1 fi
(z;) and fi(z;) = fo fi(zi|60;)dG:(6;) is the marginal probability density function of X;.

For each fixed z € X, let

Mgz 5) = [ 16,5)d6(¢le),
~ Q
— — 3 ,
Alz) = {5 € AjAg(z,5) = min Ag(z, S)}-
Then, the Bayes decision procedure dy clearly satisfies that >, dg(z,5)=1.
< SEA(z)

It should be noted that the Bayes decision procedures vary for different selection
problems and goals, and depend on the loss function chosen. Also, the Bayes decision
procedure is very sensitive to the prior distribution which is obtained through quantifying

prior information into a single prior distribution.

2.2 Empirical Bayes Selection Procedures

In this subsection, we continue with the general setup of the early subsection. However,
. . . . k

we assume only the existence of a prior distribution G(§) = K Gi(0;) on @ over Q; the
1=

form of the prior distributions G;,¢ = 1,...,k, are either unknown or partially known.
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We use the empirical Bayes approach. Two kinds of empirical Bayes procedures will be
considered. One is to incorporate information from the accumulated past data to improve
the current decision. The other is to incorporate information from each other so as to

simultaneously improve the decision for each of the component decision problems.
Incorporating Information from Past Observations

According to the usual empirical Bayes framework, for each i = 1,...,k, let Xi;
denote the random observation taken from =; at stage j. Let ©;; denote the random
characteristic of 7; at stage j. Given ©;; = 6;;, X;; has the conditional probability density
function fi(z|6:;). Let X; = (Xuj,...,Xkj), and ©; = (Oyj,...,0k;). Suppose that
independent observations X1i,...,X, are available and Q;,7 = 1,...,n, are mutually
independent and have the same prior distribution G, though @; are not observable. Also,

let X = (Xi,...,Xk) denote the present random observation.

Consider an empirical Bayes decision procedure dn((z; X1,...,X3),S) = du(z, S),
which is a function of the present observation z and the past random observations X1,...,
Xn. Let r(G,dy) be the conditional Bayes risk associated with the empirical Bayes pro-
cedure d,, conditional on the past observations (X1,...,Xy). That is,

(God) = [ 3 dala,5) [ 16, 5)a6(01) S (2)iz
¥ seA 2
Also, let E[r(G,dn)] be the overall Bayes risk of the empirical Bayes procedure d,,. That

1s,

E[r(G,d)l = [ > Elda(z,S)] | L(8,5)dG(8lz)f(z)dz,
Q

X seA
where the expectation E is taken with respect to (X1,...,Xx). Note that r(G, d,,)—r(G) >

0 since r(@) is the minimum Bayes risk among the class of all decision procedures D.
Hence E[r(G,dn)] — r(G) > 0. Either of the two non-negative difference can be used as a
measure of optimality of the empirical Bayes procedure d,. A sequence of empirical Bayes
procedures {d, }52 , is said to be asymptotically optimal relative to the prior distribution G
if E[r(G,dn)]—r(G) — 0 as n — co. The problem concerned here is to construct empirical
Bayes procedures possessing the desired asymptotic optimality. Gupta and Liang (1986,
1988, 1989a, b) have investigated several empirical Bayes procedures for certain selection

problems under this empirical Bayes framework.

5



Incorporating Information from Other Components

We now consider the case where it is assumed that the k prior distributions G4,..., G
are identical, but there is no past observation available. Under this assumption, the em-
pirical Bayes idea can still be employed. We may incorporate information from each of the
k populations to make an appropriate decision for the concerned selection problem. Let
dr be a decision procedure constructed under such consideration (the detailed methods
will be discussed later through some examples), and let 7(G, dx) denote the corresponding
Bayes risk. Since r(G) is the minimum Bayes risk, r(G, dr)—r(G) > 0. An empirical Bayes
procedure d is said to be asymptotically optimal if r(G,dx) — r(G) — 0 as k — co. One
may desire to construct empirical Bayes procedures having such asymptotic optimality.
Gupta and Liang (1991b, c) have studied several empirical Bayes selection problems using

this empirical Bayes approach.
Approaches for Constructing Empirical Bayes Procedures

There are three main approaches for constructing empirical Bayes procedures, accord-
ing to how much we know about the prior distribution G, namely, nonparametric empirical

Bayes, parametric empirical Bayes and hierarchical empirical Bayes, respectively.

For the nonparametric empirical Bayes approach, one assumes that the form of the
prior distribution G is completely unknown. In this situation, one may either use the
information obtained from other sources (may be either from the past data or from the
other components) to estimate the prior distribution G, then do a Bayesian analysis based
on the estimated prior or represent the Bayes procedure in terms of the unknown prior,
and then use the d;ata to estimate the behavior of the Bayes decision procedure directly.
Gupta and Hsiao (1983) and Gupta and Liang (1986, 1988, 1991a, b) have studied some

selection problems using the nonparametric empirical Bayes approach.

For the parametric empirical Bayes approach, it is assumed that the prior distribution
G is a member of some parameter family T and is indexed by some unknown parameter(s),
say A. Hence the prior distribution is denoted by Gx. Suppose now an estimate X depend-
ing on the data can be found and we denote the prior distribution associated with A by
G's. Note that Gj is also a member of the family I. We use G to estimate the unknown

prior G'x. We then follow the usual Bayesian analysis and derive the Bayes procedure dg.
< A
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with respect to the estimated prior distribution G 5. Using this line of parametric empirical
Bayes approach, Gupta and Liang (1989a, b) have studied empirical Bayes selection proce-
dure for selecting the most probable event in a multinomial distribution and for selecting

the best population from among k binomial populations.

For the hierarchical empirical Bayes approach, it is assumed that the prior distribution
of component ¢ belongs to some parameter family I' and is indexed by a parameter (or
parameters) A; and the \;’s are assumed to be iid, follow a hierarchical prior distribution.
This hierarchical prior distribution may be either known or indexed by an unknown param-
eter (or parameters). In the latter case, the unknown parameter(s) should be estimated.
One then follows a hierarchical Bayesian analysis. A decision procedure derived through

this framework is called a hierarchical empirical Bayes procedure.

In the following sections, the empirical Bayes methods will be more detailedly dis-

cussed through some examples.

3. Selecting Good Poisson Populations

3.1 Formulation of the Selection Problem

Let my,...,m denote k independent populations. For each ¢ = 1,...,k%, let X; de-
note a random observation arising from population =;, having a Poisson distribution with

probability function f;(z|6;) where

fi(z|6;) = e %67 /2!, 2=0,1,2,...;6; > 0.

Let 6y > 0 be a known standard. Population =; is said to be good if §; > 6, and bad

otherwise. The goal is to select all good populations and exclude all bad populations.

Let @ = {§ = (61,...,0k)|6; > 0,7 = 1,...,k} be the parameter space and let
A={a=(a1,...,ar)la; = 0,152 =1,...,k} be the action space. When action q is taken,
it means that population ; is selected as a good population if a; = 1, and excluded as a

bad one if a; = 0. For each § € 2, and a € A, the loss function L(§, a) is defined to be:
k k
L(g,a) =Y ai(80 — 6:)I(6o — 6:) + > (1 — a:)(8; — 60)I(6; — 6o) (3.1)
i=1 i=1
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where I(z) = 1(0) if z > (<)O0.

It is assumed that for each z, the parameter 6; is a realization of a random variable
©; which has a prior distribution G;. It is also assumed that ©1,...,0; are mutually

k
independent so that @ = (@y,...,0) has a joint prior distribution G(8) = [] G:(6;).

i=1

Let X denote the sample space of X = (Xi,...,X). A selection rule d = (dy,...,dx)
is defined to be a mapping from X into [0, 1]¥, such that d;(z) is the probability of selecting
population 7; as a good population when X = z is observed. Let D be the class of all
selection rules, and for each d € D, let r(G,d) denote the associated Bayes risk. Then

r(G) = (}nf r(G,d) is the minimum Bayes risk. One can see that for each d € D,
deD

k
r(G,d) =) _ri(G.di) (3:2)

where .
ri(G,di) = Y 10 — pi(e:)ldi(z) [ ] filzi) + Ci, (3.3)

TeXx j=1
where p;(z;) = E[0;|X; = z5] = hi(zi + 1)/hi(z:) is the posterior mean of ©; given
Xi = zihi(zi) = fizi)/a(z:), fiz:) = i filzil0)dGi(8) = [~ e™06% [2,1dGi(6) =
a(z;)hi(z;) is the marginal probability function of the random variable X;, and a(z;) =

(:Ei!)_l,hi(wi) = fooo e“’H"“dG,-(G) and C; = fof(a - Go)dG,(G)

It follows that a Bayes rule, say d¢z = (dg,---,d@q,), is clearly given by: for each

i=1,... .k
1 if pi(zi) 2 6o,
dg(2)={ (3.4)

0 otherwise.

k
The minimum Bayes risk is: r(G) = r(G,dg) = - ri(G,dg,)-

=1
When the prior distribution G is unknown, it is not possible to apply the Bayes rule
d¢ for the selection problem. In the following, the empirical Bayes approach is employed.

3.2 Incorporating Information from Past Observations

According to the usual empirical Bayes framework, it is assumed that for each i =

1,...,k, there are marginally iid past random observations X;1,...,X;, with marginal
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probability function f;(z) available when a decision is made. Three empirical Bayes selec-

tion rules are constructed according to how much we know about the prior distribution

G.

~

3.2.1. A Nonparametric Empirical Bayes Rule

It is assumed that the prior distribution G is completely unknown. Thus, a nonpara-
metric empirical Bayes approach is employed. It should be noted that ¢;(z;) is increasing
in z; for each ¢ = 1,..., k. Therefore the Bayes rule d(; is a monotone selection rule. Thus,

it is desirable that the considered empirical Bayes rule be also monotone.
Foreachi:i=1,...,k, and 2 =0,1,2,..., define
fin(z) =071 Y Iy (X))
=1

hm(m) = fm(z)/a(a:)

Let N;, = max Xi; — 1 and for each z = 0,1,..., N;,, define
<j<n
pin(2) = [Rin(z + 1) + 6n]/[Rin(2) + 8,

where 6, > 0 is such that 8, = o(1).

Since ¢in(z) may not be increasing in z, a smoothed version of ;,(z) is given be-
low. Let {p%,(z)}Yin be the isotonic regression of {pin(z)}Yin with random weights
{Win(2)}oy, where Win(z) = [hin(2) + 8ala(e + 1). For y > Nin, let ¢3,(y) = 03, (Vin)-

Therefore, ¢, (z) is nondecreasing in z. We may use ¢%,(z) to estimate ¢;(z). Based on

¢i(z), i = 1,...,k, an empirical Bayes rule d} = (d},,...,d},) is proposed as follows:
Foreach:=1,...,k,and z € X,
* 1 ifof,(zi) >0
d: = { Pin\ZTi) Z Vo, )
in(2) 0 otherwise. (3.5)

3.2.2. A Parametric Empirical Bayes Rule

It is assumed that the prior distribution G; is a gamma distribution with unknown
shape and scale parameters o; and ;, respectively, ¢ = 1,...,k. That is, G; has a density

function ¢;(0|ai, B;), where
gi(8las, Bi) = B e~Fi® IT(as), 6 > 0.
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Then, Xi1,...,Xin are iid with marginal probability function f;(z) = I'(z + a;)8;'/
T(a;)(1+ Bi)*t*izl], 2=0,1,2,.... Also, pi(z) = %‘—;—i Straightforward computations
yield that pi = E[Xu] = ai/Bi, piz = E[X3] = ai(a; + 1),3 + ;B ! Thus, 8; =
pir(piz — pin — p3) 7" and oy = pd (piz — pia — py) ™" Therefore, ¢i(z) = [z(piz — pi —
ph) + phl(pie — uh) ™"

For each ¢ = 1,...,k, let pj1, = n™?! E Xij and pign = n7! E X . That is, gi1n
and p;2, are moment estimators of p; z:ujl_d1 Hi2, respectively. S1nce it is possible that

Pizn — Hiln — B3 n = Yin < 0 though pio — s — u?l > 0, thus, for each z = 0,1, ..., define

Bizn—H (36)

z otherwise.

R M’i;].l if 7in > O,
Gin(z) =

Then, an empirical Bayes rule cjn = (ciln, e ,(fkn) is proposed as follows: For each

1=1,...,k,and z € X,
. 1 if @in(zi) > bp;
din<@>={ i Pinle:) 2 O (3.7)

0 otherwise.

3.2.3. A Hierarchical Empirical Bayes Rule

Suppose that the prior distribution G; is a gamma distribution with a known shape
parameter «; and an unknown scale parameter §;. In this situation, the preceding para-
metric empirical Bayes approach can be applied here. However, an alternative method,

called hierarchical empirical Bayes, is introduced in the following,.

Since f; is a scale parameter, it is assumed that §; has an improper prior p(8;) =
51'7, Bi > 0. Thus, conditional on f;, Xi1,...,X:, are iid with the probability func-
. oo T i)B;"
tion fi(z|8:) = [, fi(=|0)gi(0)ai, Bi)d0 = z,r(o(lx)'fﬁzﬂ),ﬂ', z = 0,1,2,.... Therefore,

Xit,...,Xin has a joint marginal probability function fi(zi1,...,Zin), where

(i, oim) = / Hfz(rvulﬁ)p(ﬂ)dﬂ

} I'(na;)T'(b; — na;)/T(b;)



n
where b; = na; + ) z;;. Thus, the posterior density function of 8; given (X;1,... y Xin) =
j=1

(Tity. .- Zin) is
p(Bilir, ..., zin) = BITH(1 + Bi) T4 T(6:)/[T(nai)T(bi — na)),

and the posterior mean of §; given (zi1,...,Zin) is

n
B S 3 > 2,

Bin = E[ﬂi|$i1,...,xin] = ngz-'i—l J=1

00 otherwise.
For each i =1,...,k, and (z1,...,Zin), define
n
&j& if T > 2
o) = { i o2 )
0 otherwise.

We then propose an empirical Bayes rule En = (Eln, e ,Ekn) as follows: For each
i=1,...,k,
- 1 i g, (z;) > bo;
din(z) = { H @in(20) 2 09 (3.9)

0 otherwise.

3.2.4. Asymptotic Optimality

For an empirical Bayes selection rule d,, let E[r(G, d,)] denote the overall Bayes risk.

That is,
k oo
E[r(G,dn)] =) [ [60 — i(2:)) Einldin(z:)] fi(z:) + Ci

=1 Lz;=0

where the expectation E;, is taken with respect to (Xi1,...,Xin). Since r(G) is the
minimal Bayes risk E[r(G,d,)] — r(G) > 0 for all n.

Following Gupta and Liang (1991b), it is easy to obtain the following result. Let
B;i(6y) = {z|pi(z) < 65} and let
i {SuPBz‘(eo) if Bi(fo) # ¢;

-1 otherwise.

Theorem 3.1. Let d, denote any of the three precedingly constructed empirical Bayes
selection rules cj;';,(jn and En. Suppose that f0°° 0dGi(0) < oo and m; < oo for all 1 =
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1,...,k. Then, E[r(G,dn)] — r(G) = O(exp(—cn)) for some positive constant c, where the

value of ¢ varies depending on the empirical Bayes selection rule used.

3.3. Incorporating Information from Other Components

We now consider the case where it is assumed that the k prior distributions Gy, ..., G
are identical, but there is no past observations available. Under this assumption, Xj,...,
X} are marginally iid with probability function f(z) = [;° e%6°/z!dG(6) where G =
G1 = ... = Gg. Therefore, we can still incorporate information from each other to im-
prove the decisions for each of the k¥ component decision problems. The idea is described
again through the nonparametric empirical Bayes, the parametric empirical Bayes and the

hierarchical empirical Bayes approaches.

3.3.1. A Nonparametric Empirical Bayes Rule

It is assumed that the prior distribution G is completely unknown. Following the
discussion of Subsection 3.2.1, a nonparametric empirical Bayes selection rule is constructed

as follows.

k
For each : = 1,...,k, let N;x = mg?(Xj —1, and let fix(y) = Fi—l- > I{y}(Xj), hik
JF ji=1
J#
(v) = fur(y)/aly), y = 0,1,.... Also, let pix(y) = [hir(y + 1) + 8k}/[Rir(y) + 6x] for each

y=0,1,..., N, where é; > 0 is such that §; = o(1).

Nii
y=0

(¥)}y%, where Wik(y) = [hir(y) + 6la(y + 1). For y > Nig, let o3 (y) = 0%(Nik). Now,
an empirical Bayes rule df = (d},...,d};) is proposed as follows: For each i =1,...,k,

and (X1,...,X%) = (21,...,zk), define

Let {05 (y)}% be the isotonic regression of {@ix(y)}

y— with random weights {Wj;

W)= {1 PR 2 0 (3.10)

0 otherwise.

3.3.2. A Parametric Empirical Bayes Rule

It is assumed that the prior distribution G is a member of gamma distribution family

with probability density function g(8|a, 8), where
g(6la, B) = B6°" e P [T(a), § > 0

12



and both the parameters o and § are unknown. Following the discussion of Subsection

J#d
p2k() — par(i) — pig(i). Define

ziTi+pi, () if Tor > 0:
Gir(zi) = { pak (i) —ni, (3) =%

z; otherwise.

k k
3.2.2, for each i = 1,...,k, let p1x(i) = 225 Y X;, and pux(3) = — > X?. Let i =
j=t j=1

J#

(3.11)

An empirical Bayes rule dy = (diz,..., di1) is proposed as follows: For each i = 1,...,k

and (X1,...,Xk) = (¢1,...,2k), define

" 1 if @ik(z;) > bp;
dik(%)z{ i Pualz1) 2 B

0 otherwise.

3.3.3. A Hierarchical Empirical Bayes Rule

(3.12)

It is assumed that the prior distribution G is a gamma distribution with a known

shape parameter o and an unknown scale parameter 8. Similar to that of Subsection

3.2.3, a hierarchical empirical Bayes rule gk = (31 Eyoo- ,Ekk) is constructed as follows.

For given (X1,...,X) = (z1,...,7k), let

=1

k k
ka/ zj—1) if Y z; >2;
Br = =1
oo otherwise.

For each: =1,...,k, and (Xy,...,X%) = (21,...,2¢), define
(i +a)/(1+B) i 3,
— Tit+« +Bk) 1 z; > 2;
Pir(zi) = J=1 !

0 otherwise.
Define, for each ¢ = 1,...,k, and (X1,...,X%) = (21,...,2x),

- 1 G, (x;) > 6o,
- 1 P20

0 otherwise.

13
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3.3.4. Asymptotic Optimality

Let di, denote any of the three precedingly constructed empirical Bayes selection rules.

The associated overall Bayes risk r(G, di) is:

k
r(G,dr) = Y ri(G, dae),

i=1

where

ri(G,dir) = B Ei[(60 — @i(Xi))di(X)] + C

where the expectation E; is taken with respect to X; and the expectation E;; is taken
with respect to (Xy,...,Xi—1,Xit1,...,Xk). Also, here C = f;f(e — 65)dG(6).

Since r(G) is the minimal Bayes risk, r(G,dr) — r(G) > 0 for all k. For the present
problem, Gupta and Liang (1991b) obtained the following strong asymptotic optimality.

Let B(6o) = {z|e(z) < 69} where o(z) = p1(z) = ... = pp(z) since Gy = ... = G}
and let

_ [supB(6y) if B(6o) # ¢,

{ -1 otherwise.
Theorem 3.2 Let dy denote any of the three precedingly constructed empirical Bayes
selection rules df, dy and dy. Suppose that Jo” 8dG(6) < 0o and m < oo. Then, r(G, d;)—
r(G) = O(exp(—ck + Ink)) for some positive constant ¢, where the value of ¢ varies

depending on the empirical Bayes rule used.

3.4 Small Sample Performance: Simulation Study

In this study, we only consider the case where one may incorporate information from
each other among the k populations. A Monte Carlo study were designed to investigate
the performance of the three empirical Bayes procedures. We let the prior distribution G
be a gamma distribution with @ = 1 and 8 = 1. With this specified prior distribution,
the minimum Bayes risk for each of the k component decision problems is r;(G, dg,) =

e~% — 47% where , is the known standard. Therefore, the total minimum Bayes risk

Q) = X r(Gdg,) = k(e —4%)
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Let dr = (dik,-- dkk) be any of the three proposed empirical Bayes procedures.
Since 7(G,dr)—r(G) = E[r,(G’ dir) —ri(G, dG )] = k(r1(G, dix) — (G, dG )], in the fol-
lowing, we have mmulated the difference r1 (G, d1x) — 1 (G, dG ) by D(d1x) = R1(G, dyx) —
(G, dGr1 ), which is the difference between the conditional Bayes risk of d;; conditional on
(Xo,.. ~, X3) and the minimum Bayes risk. We have then use k[R;(G, d1z) — 7'1(C}',dG1 )]
as an estimator of the difference r(G,dg) — r(G). ’

The simulation scheme is described as follows:

(1) For a fixed k, generate independent random values Xi,..., Xk according to the prob-

ability function f(z).

(2) Based on the values Xj,..., X, construct the empirical Bayes procedure d;; and
compute the conditional difference D(d1x) = R1(G,d1x) — m1(G, dG1)°

(3) The process was repeated 1000 times. The average of the differences based on the
1000 repetitions, which is denoted by D(d;x), is used as an estimator of the difference
ri(G,dix) —r1(G,dg, ). Then kD(d1x) is used as an estimate of the total difference
"(Gd)-r(@).

Table 1 list some simulation results on the performance of the three empirical Bayes
procedures df, (jk and Ek for the case where 8y = 1.5. The notation SE(ﬁ(dlk)) is used to

denote the estimated standard errors of the corresponding estimate D(d; k)-

The simulation results indicate that for the empirical Bayes procedure gk, k—ﬁ(gl k)
tends to zero very fast, and that kD(d;x) = O for all ¥ > 100. Also, for the empirical
Bayes procedure di, kD(dy;) roughly increases in k for k < 40, then decreases in k and
k-ﬁ(a?,l x) = 0 for k > 280. However, the behavior of the nonparametric empirical Bayes
procedure kD(d?,) was not the same as we might expect. Though D(d?,) roughly decreases

in k, its convergence speed is a little slow so that kD(d},) seems to be increasing in k.

In general, Ek performs better than the other two, since kﬁ(alk) < k_D—(Jlk) <
kD(d,) for all k listed in the table. This result is reasonable since we have the most
information regarding the prior distribution G when the hierarchical empirical Bayes pro-
cedure Ek is applied and we have no information regarding the prior distribution G' when

the nonparametric empirical Bays procedure dj is employed.
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Table 1. Small Sample Performance of df,d; and dj.

D(djy) SE(D(dfy)) KD(dsy)

D(dix) SE(D(dy)) KD(dyx)

D(dix) SE(D(dix)) KD(dvx)

()

10
20
30
40
50
60
70
80
90
100
120
140
160
180
200
220
240
260
280
300

0.02419  0.00109 0.24190
0.01877  0.00088 0.37541
0.02493  0.00111 0.74800
0.02787  0.00119 1.11474
0.02680  0.00116 1.33987
0.02553  0.00110 1.53189
0.02603  0.00106 1.82214
0.02508  0.00102 2.00718
0.02407  0.00096 2.16587
0.02404 0.00101 2.40478
0.02306  0.00093 2.76767
0.02149  0.00092 3.00801
0.01961  0.00082 3.13834
0.01897  0.00080 3.41499
0.01810  0.00076 3.61943
0.01738  0.00072 3.82250
0.01726  0.00072  4.14188
0.01634 0.00070  4.24938
0.01589  0.00067  4.44938
0.01530  0.00066  4.59140

0.01803  0.00118 0.18030
0.01609  0.00108 0.32187
0.01305  0.00096 0.39154
0.01167  0.00091 0.46678
0.00925  0.00099 0.46245
0.00581  0.00062 0.34874
0.00440  0.00050 0.30784
0.00318  0.00041 0.25453
0.00236  0.00036 0.21270
0.00174  0.00030 0.17378
0.00109  0.00024 0.13124
0.00078  0.00020 0.10876
0.00061  0.00017 0.09750
0.00041  0.00014 0.07453
0.00032  0.00013 0.06406
0.00013  0.00006 0.02750
0.00006  0.00004 0.01500
0.00003  0.00003 0.00813
0. 0. 0.

0. 0. 0.

0.00666 0.00044  0.06656
0.00266  0.00029 0.05313
0.00134  0.00020 0.04031
0.00072  0.00015 0.02875
0.00059 000013 0.02969
0.00019  0.00007  0.01125

0. 0. 0.
0. 0. 0.
0.00003  0.00003 0.00281
0. 0. 0.

0.98130
1.96260
2.94390
3.92521
4.90651
5.88781
6.86911
7.85041
8.83171
9.81301
11.77562
13.73822
15.70083
17.66343
19.62603
21.58864
23.55124
25.51384
27.47644
29.43905
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4. Selecting the Best Binomial Population Compared with a Control

It is assumed that given 6;, X follows a B(M, 6;) distribution with probability function
fi(z]6;) = (AI/I) 67(1—6;)~7, and 6; has a beta prior distribution G; with pdf 9i(8;) given

by

(8.) = I'(e:) aipi—loq __ pgyai(l—pi)—1
940 = NNy e =8 ! (1)

where 0 < p; < 1,04 > 0, and both a; and p; are unknown. We call this statistical model

as a binomial-beta model.

Population 7; is called the best if §; = 1rsnjas.xk 0;, and said to be good if §; > 6, where
0 < 6y < 1 and bad otherwise. The parameter 8 is assumed to be known and may be
viewed as a required standard. The selection goal is to select a population which should
be the best among the k£ binomial populations 71,..., 7 and be good compared with the

standard. If no population is good, we select none.

Let A= {ili =0,1,...,k} be the action space. When action i # 0 is taken, it means
that population m; is selected as the best among the k binomial populations and believed
to be good compared with the standard 6,. When action = 0 is taken, it means that all

populations are excluded as bad populations. For the parameter 6 and action 7, the loss

function L(d,7) is defined as:

L(Q, z) = max(a[k], 90) - 0,’. (4.2)

Let &' be the sample space of X = (X1,...,X¢). A selection rule d = (dy,ds, ..., dx)
is deﬁned to be a mapping from X into [0,1]¥+! such that 0 < di(z) < 1,7 =0,1,.. ok,
and Z di(z) = 1. di(z) can be viewed as the probability of taking action ¢ when X =z
is observed We denote the associated Bayes risk of d by (G, d). Under the precedingly
described statistical model,

"G,d) = / M S 16 (x)HfJ(wJIG )dG(9)

:CGX =0
=C-> Zdi(@)w(@)f(@),
C TEX i=0
where C' = [, max(z, 60)dG(6), pi(z) = E[0:|X = z] = ﬂ"—' is the posterior mean of
©; gives X =g for each t = 1,..., k, and @o(z) = .

(4.3)
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For each z € &, let
A(z) = {tlpi(z) = max ¢;(z) and pi(z) 2 6o,i =1,...,k}. (4.4)
i - 1<5<k
Then, a randomized Bayes rule, say diz = (d(,,--.,d, ) can be obtained as follows:
For each z € X, if A(z) # ¢, define, for each ¢ =0, 1,...,k,
A(z)|™t ifi € A(z),
dg &)= ) ) (49
=* 0 otherwise,
and if A(z) = ¢, define, dg (z) = 1 and dg (z) = 0,i = 1,...,k, where |A(z)] is the
cardinality of the set A(z).
The minimum Bayes risk is r(G) = r(G,dq).

In view of (4.4) and (4.5), it is clear that the Bayes selection rule d¢y is sensitive to
the values of a; and p;. When the values of «; and p; are unknown, the Bayes rule dg
cannot be applied. It is assumed certain past observations from each of the k£ populations

are available. Hence, a parametric empirical Bayes approach is employed.

A Parametric Empirical Bayes Selection Rule

Following the usual empirical Bayes framework, it is assumed that foreach: = 1,.. ., k,
there are marginally iid past random observations Xj, ..., X;, with marginal probability
function fi(z) = fol fi(z]0)g:(0)dO available when a decision is made. It is also assumed

that the random observations obtained from the £ populations are mutually independent.

Under the binomial-beta statistical model, for each i = 1,...,k,
E[X:/M] = pi, (6)
Bl(Xi/M)*] = pi/ M + (aipi + Dpi(M = 1)/ (M(eii +1)) = pis.

From (4.6), through straightforward computation, the parameter o; can be written as

a; = B;/A;, where

{Bi=#i—ﬂi2 ()

A = piz — pa/ M + p /M — 3.
Note that B; > 0 and hence A; > 0 since a; > 0. Hence p; and p;o satisfy that

pi/M — p2 /M + u? < pip < p;. From (4.7), a; can be viewed as a function of y; and pi;
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for p; € (0,1) and pio € (pi/M — p? /M + p?, 1;). For each fixed p;, o; is decreasing in iz
and lim o; =0, lim a; = oo, where a; = pi/M — p2 /M + 12,

Hiz— pi Hiz—a;

Let pm and iz, be the moment estimators of p; and g2, respectively. That is,

Pin = 3 Z Xij/M, and pizn, = Z:(X,J/M)2 Also, let Aijn = pion — prin /M + p2, /M —
i=1

K2, Bin = lin — Wizn. Since it is p0831b1e that A;n < 0, we consider the following estimator

«in for a;, where

{ Bin/Ain if Ajn >0,
Qip =

00 otherwise.

(4.8)

We then propose an estimator ¢;,(z) for the posterior mean ¢;(z) = %’f'—, where

(zi + Qinprin)/(M + ain)  if ain < 00,
Pin(z) = { : (4.9)
Hin if ajp = 0.
Now, an empirical Bayes selection rule d}, = (d§,,...,d}, ) for the selection problem under
study is proposed as follows:
For each z € &, let
A(2) = Giloin(z) = e, oin(z) and pin(2) 2 b0yi =1, k). (410)
If A%(z) # ¢, define, for each iz = 0,1,...,k,
Ax(z)|7t if i€ Ax(2),
din(z) = A2 (2) (4.11)
0 otherwise,

and if A} (z) = ¢, define d},(z) =1 and df,(z) =0,i = 1,..., k.
The overall expected Bayes risk of the empirical Bayes selection rule d¥ is
E[r(G,dy)]=C— ) {Z Eld; (ﬂf)]soz(x)} f(2). (4.12)
rex

where C = [, max (0], 00 )dG(0) and the expectation E is taken with respect to Xij g =
L...,n,u=1,...,k. Note that E[r(G,d})] — r(G) > 0 since r(G) is the minimum Bayes

risk.

Following a proof analogous to that of Gupta and Liang (1989a), for the empirical

Bayes selection rule d},, we have the following asymptotic optimality.
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Theorem 4.1 E[r(G,d})] — r(G) = O(exp(—cn)) for some positive constant c.

5. Selection Rules for Sampling Inspection

The hypergeometric distribution arises in sampling without replacement from a finite
population. Consider a finite population, say, a batch of M items, which is inspected for
defective. One takes a sample of size m without replacement from the population. Let X
denote the random number of defectives in the sample. Also, let d denote the number of

defectives in the population. Then, the random variable X has a probability function

el = (O (M=), (51)

where max(0,d +m — M) < z < min(m, d). Such a finite population with the probability
model (5.1) is denoted by (M, m, d).

Consider the problem of acceptance sampling for £ independent hypergeometric pop-
ulations, say m; = w(M;,m;,d;), i = 1,...,k. Let di be a positive integer such that
0 <dip < M;,:=1,...,k. dj is a given number used as a standard to evaluate the
quality of the population m;. Population =; is said to be good and acceptable if d; < do,
and bad otherwise. Qur goal is to select all good populations and to exclude all bad

populations.

5.1. Formulation of the Selection Problem

Let X; denote a random variable arising from the population m; = n(M;, m;,d;).

Conditional on d;, X; has a hypergeometric distribution with probability function

el = (F) (2 8) ()

It is assumed that Xq,..., X% are mutually independent so that (X3,...,X%) has a joint
probability function f(z|d) = H fi(zildi), z = (z1,...,2%),d = (d1,...,dr). It is also
assumed that for each 1, d; follows a B(M, 6;) distribution and that dj, ..., d; are mutually
independent. Note that §; is the probability that any item in m; will be defective. It follows
that given 6;, X; has a marginal probability function

M;—m;4z

fzl8) = Y fi(eld)gi(dl6:) (5.2)
d=z
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— (m’)ef(l — ai)m.'—z’ r = 07 1’ - eey My,
I

where
oo = (U)ot - 0%, dy=0,1,..., 00

Also, Xi,..., X} are marginally mutually independent.

Let @ = {d=(di,...,dr)|0 < di < M;, i =1,...,k} denote the parameter space and
let 4 ={a = (a1,...,ar)la; = 0,1;¢ = 1,...,k} be the action space. When action ais
taken, it means that population =; is selected as a good population if a; = 1, and excluded
as a bad one if a; = 0. For the parameter d and action g, the loss function L(d,a) is

defined as follows: . .
L(d,a) =) (1 —a)Lio(d:) + > aiLu(di) (5.3)
i=1 i=1

where Lio(d;) and L;;(d;) are bounded functions and satisfy

=0 ifd; >d;y
Lio(ds)

>0 and nonincreasing in d; for d; < d;o;

=0 ifd; <dj
Lii(d;)

>0 and nondecreasing in d; for d; > d;o.

Let X denote the sample space of (X1,...,Xz). A selection rule 0r = (6k1y.. -, 6kk)
is defined to be a mapping from the sample space X into [0,1]%, such that for each z €
X, 6ri(z) is the probability of selecting 7; as a good population, ¢t =1,...,k.

Gupta and Liang (1991c) consider the following two cases:

Case 1. It is assumed that 6; = ... = 6; = 6, and the value of the common parameter 8

is fixed, but unknown.

Case 2. It is assumed that for each i = 1,...,k, the parameter 6; is a realization of a
random variable ©;, and Oy, ... O are iid, having a beta prior distribution Beta(ay, a(l—
1)), with probability function h(8|a, p),

I'(a)
I{ap)l(a(1 - p))
where 0 < u < 1, o > 0, and the values of both the parameters o and p are fixed but

h(f)a, 1) = g*F1(1 —9)*0-M-1 g g <1,

unknown.

21



It is assumed that there is no past data available for the current decision problem. In
such an instance, Gupta and Liang (1991c) investigate certain empirical Bayes selection

rules by incorporating information from each of the k& populations.

5.2. A Parametric Empirical Bayes Selection Rule for Case 1

In order to construct the empirical Bayes selection rules, as a first step, we derive the

Bayes rule.

A Bayes Selection Rule Relative to 6

Consider the unknown hyperparameter ¢ as fixed. For each i = 1,...,k, define
dio—1
Ci(6) = > Lio(di)gi(ds]6), (5.4)
d;=0
Mi—mi+z; dio—1
Hi(zi,6) = Y La(di)gi(di|z:,8) — > Lio(di)gi(dilzi, ),
di=dig+1 =i

where g;(di|zi,0) = fi(xi|di)gi(di|0)/ fi(z:|6) is the posterior probability function of d;
t
given X; = z;, and )5 = 0if t < s. Let rg(6, 6ri) denote the i—th component Bayes

d=s
risk, 2 = 1,...,k, and let rx(6,8) be the overall Bayes risk of the selection rule Or =

(6k1,- -+, 6kk). Then,

rki(6,6k) = Y 8ki(z) Hi(w:,0) f(26) + C:(6),
X

: (5.5)
ri(8,8%) = ) rii(6, 6ki),

=1
k
where f(z]6) = '1;[1 fi(z;0).
[

Therefore, relative to the fixed parameter 6, a Bayes rule, denoted by §9 = (6F1s---»

6%,) can be obtained as:
Foreachz € X, i =1,...,k,

521-(@) _ { 1 if Hi(:l:,',e) <0 (5.6)

0 otherwise.
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k
The minimum Bayes risk is r (6, §9) = Z:l rri(6,82)).

1

A Parametric Empirical Bayes Selection Rule

Under the statistical model of Case 1, Xi,...,X} are mutually independent with
k A
Xi ~ B(m;,0),i = 1,...,k. Hence, X7 +...+ Xp ~ B(3_ mi,0). Therefore § = (X; +
i=1

k
...+ X&)/ >0 m; is an unbiased estimator of and sufficient statistic for the parameter 6.
i=1

Gupta and Liang (1991c) use Hi(z;,0) to estimate Hi(z;,60), and propose a parametric

empirical Bayes selection rule §; = (8},,...,0%;) given as follows: For each i =1,...,k,
and z € &,
. 1 if Hi(z;,0) <0
ori(z) = { (=3,6) (5.7)
0 otherwise.

Asymptotic Optimality of §%

Gupta and Liang (1991c) establish the following asymptotic optimality of the para-

metric empirical Bayes selection rule §3.

Theorem 5.1. Suppose that m, < m; < M; < M* forall ; = 1,...,k, and L;;(d;) < L*
for all j = 0,1 and 5 = 1,..., k, where the bound values L* m, and M* are independent

of k for all k. Then, under the statistical model of Case 1, for each 6 € (0, 1),
re(6,67) - ri (6, 82) = O(exp(—c(8)k +Ink)),

where ¢(f) > 0 depends on § € (0,1).

5.3. A Hierarchical Empirical Bayes Selection Rule for Case 2

A Hierarchical Bayes Selection Rule wrt Beta (ap, (1 — u)) Prior

Foreach: =1,...,k, let

fi(zila ) = / Fi(w:10)h(Blx, )8
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fi(wi,dila,#)=/0 fi(zildi)gi(d:|0)h(0|a, p)do
gi(dilzi, o, p) = fizi, dila, p)/ fi(zila, p)

C; = / ' CH(O)h(Bla, )b

M;—m;+z;
Qi(zisa,p) = > La(di)gi(dilei, a, )
di=d;o+1
d;o—1
- Z Lio(di)gi(dil.‘l,‘,‘,a,,u)
di=z;

k
fzla,p) = _Hfi(wila,#)-

For fixed values of the parameters o and p, we denote the i~th component Bayes risk
and the overall Bayes risk of the selection rule §x = (6k1,...,0kk) by Rii(a, p,6k:) and

Ry(a, p, 8k ), respectively. Then, under the corresponding statistical model,

Reio, 1, 613) = D 8ki(2)Qi(s, 0, ) (2, ) + Ci,
x

k (5.8)
Rk(a7 K ék) = Z Rki(a’ M 6ki)'

=1

Under this hierarchical statistical model, a Bayes selection rule, called the hierarchical

Bayes selection rule, is 628 = (6HB, ... 6HB) where for each z € X,
Y %k k1 1Ok ) z

1 if Q,-(a:,-,a,p) < 07

0 otherwise.

) - { (5.9)

k
The minimum Bayes risk is Ry (e, p, §23) = El Rii(a, p, 61B).
=

A Hierarchical Empirical Bayes Selection Rule
Under the statistical model of Case 2, for each i = 1,..., k,

E[X,] =mil

mio(l — p)p  m(ap+1u
E[Xiz]: OE+1) (a+1 ) = Hi2
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where p;2 is decreasing in a and tends to m;u(1—p)+m?u? as « tends to infinity. Therefore

k ] k
E z Xi| =p Z m; and
i=1 . i=1
k ko,
ko1 ap(l—p) Zl mi  (ap+1)p Zl m;
2| 1= 1=
B ; Xl = a+1 + a+1
Hence
k 9 k
H E m; — E Hi2
a= = = n (5.10)

- :
2 iz = i 3 i — (1 — ) 2 mi
1= 1= 1=

k k k k
We may use i = ) X;/ Y m; to estimate g and ) X? to estimate Y piz. Note
= : : :

=1 =1 =1
k k
that pip —m?2p® — mip(l —pu) > 0 foreach i = 1,...,k, and hence 3 pip — p2 3 m? —
p 2 u > ut 3 m}
= 1=

k
w(l = p) > m; > 0. However, it is possible that
~

?

k k k
D(X1,...,Xx) =Y XF =P Yy Jm} — 41— ) mi 0.
=1 =1 i=1

Motivated by the form of (5.10) and the decreasing property of u;; with respect to a, one
may define

k k
By mi- Y X2
'5—(1X1,'5{1k) lf D(X]-,"',Xk) > 0, (5.11)

& =

00 otherwise.

Note that when z; and u are kept fixed, Qi(zi, 00, p) = lim Qi(z;,, ) exists. Gupta

a— 00
and Liang (1991c) use Qi(zi, &, i) to estimate Q;(z;,a,p) and propose a hierarchical
empirical Bayes selection rule <:5k = (Skl, ceesy Skk) defined as follows: Foreach:=1,...,k

andz € X,
A 1 if Qi(zi,é,p) <0,
bulg) = {1 ) (51

0 otherwise.
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Asymptotic Optimality of <:5k

Gupta and Liang (1991c) establish the following asymptotic optimality of the hierar-

chical empirical Bayes selection rule 8.

Theorem 5.2. Suppose that 1 < my, < m; < M; < M* for all : = 1,...,k, and
Lij(d;) < L* for all j = 0,1; ¢ = 1,...,k, where the values of the bounds L*, m, and
M* are independent of k. Then, under the statistical model of Case 2, for each pair
of the values (a,p), 0 < & < 00, 0 < p < 1, the empirical Bayes selection rule c:5k is

asymptotically optimal in the sense that
Ri(a, 4, 8x) — Ri(a, 1, §§°) = O(exp(—7k + Ink)),

where 7 > 0 depends on the values of (a, u).

5.4 Small Sample Performance: Simulation Studies

In the Monte Carlo studies, we have assumed that

Mlz...ZMk';'M m;=...=mr=m d10=...=dk0'—_-d0. (513)

Under the preceding assumption and the statistical model of Case 1, for the Bayes se-

lection rule 67 = (87;,...,60,),781(6,6%,) = ... = rix(6,62,) and r&(6,89) = krix(6,69,).
Also, for the parametric empirical Bayes selection rule 85 = (6%;,...,05z), it can be seen
that re1(6,6%,) = ... = rrx(6, 6%, ) and therefore ri (0, 6%) = krix(6, 6%)-

Similarly, under the assumption (5.13) and the statistical model of Case 2, for the hier-
archical Bayes selection rule §78 = (6HB, ... 6EB) Ryy(a, p, 688) = ... = Rpx(o, s §HB)
and R(a, u, 678) = kRgg(er, 11, 684B). Also, for the hierarchical empirical Bayes selec-
tion rule & = (8k1,--.,0kk), Re1 (@, i, 051) = ... = Rix(e, ,81x) and Ri(a, p,8%) =
kRir(a, p, Skk)

Therefore, in the following, we simulated the differences rix(0, 6;1) — rex (6,69, ) and
Rii(a, p, 5kk) — Rix(a, p, 6,5‘23), and used k[rix (0, 65) — rix(6, 6zk)] to estimate ri(6, §%) —
rk(6,6%) and used k[Rir(e, p, 6kk) — Rer(e, u, 652B)] to estimate Ri(a, i, %) — Ri(e, i,
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§HB) respectively. In the simulation studies, the following linear loss functions L;; (d;)

and Lio(d;) are used, where
{Lil(di) = (di — dio)I(d; > dio),
Lio(di) = (dio — d,‘)I(dio > d,‘).

The simulation scheme used is described as follows:
Case 1. The Parameter 6 Being Fixed

(1) For any fixed value of the parameter 8 and a given value of m, generate & — 1 inde-

pendent random numbers X; ... X;_1 from a B(m,#) distribution.

(2) Let zx be an observed value from a B(m,#) distribution. Use X; ... Xx_; and zj to
estimate 6 and construct the parametric empirical Bayes selection rule éf,. Then,

compute the conditional regret Bayes risk of 65, (conditional on X;...X_1) by
DY(X1...Xx-1) = rex(8, 65,1 X1 - .. X—1) — r2x(8, 65,).

(3) The above process was repeated 500 times. The average of the regret Bayes risk based
on the 500 repetitions denoted by EZ was used as an estimate of the regret Bayes risk
rie(0,6%:) — rrk(6,6%,). Then, we used kﬁ,’i as an estimate of the total regret Bayes

risk r(6,63) — rk(6,8%). A summary of the simulated results is given in Table 2.
Case 2. The Parameter 6 with a Prior Distribution Beta (apy, a(1 — u))

(1) For given values of a and u, we generated k — 1 random variables from a distribution

having the probability function f(z|a,r) where f(z|a,p) = fol f(z|0)h(0)|a, 1)do.

Then we followed steps (2) and (3) analogous to steps (2) and (3) of Case 1, by just
replacing the Bayes risk by the corresponding Bayes risks of the hierarchical empirical
Bayes selection rule §x; and the hierarchical Bayes selection rule §f2B, respectively. We
denote the average of the conditional regret risks based on 500 repetitions by 5:”. 5‘,:"
was used to estimate the regret Bayes risk Rgx (o, g, 6xx) — Rix(a, i, 6EP). Then, we used

kﬁ:ﬂ to estimate the total regret Bayes risk Ri(a, g1, 4%) — Ri(a, s, §HB),
The results of these simulations are reported in Table 3 and Table 4, respectively.

The simulated results indicate that in each of the two models, the total regret risks

converges to zero as the value of k become large. Of course, the rates of convergence vary
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according to the models. In Case 1 model, for small values of k, kﬁz is small and kb—z
tends to zero gradually. While in Case 2 model, though for small values of k, the kD"

—ap .
values are larger, however, the rate of convergence of kD, to zero is very fast.
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Table 2. The Small Sample Performance of 63,
M =100, m =20, dy =6, and § = 0.02.

k D, kD SE(D})
10 2.9878 x 10~% 29.8785 x 10~% 0.6169 x 103
20 0.5254 x 10~3 10.5073 x 10~3 0.0822 x 103
30 0.1811 x10~% 5.4324 x 10~% 0.0369 x 10~3
40 0.1097 x 10~% 4.3891 x 10~® 0.0190 x 10~3
50 0.0719 x 10~3 3.5932 x 10~3 0.0047 x 103
60 0.0774 x 1073 4.6418 x 10~% 0.0190 x 103
70 0.0539 x 10~3  3.7705 x 10~% 0.0043 x 103
80 0.0386 x 103 3.0882 x 10~% 0.0038 x 10~3
90 0.0359 x 10~% 3.2319x 10~% 0.0037 x 10~3

100 0.0310 x 10~3  3.0972 x 10~% 0.0035 x 103
120 0.0269 x 1073 3.2319 x 10~% 0.0033 x 103
140 0.0162 x 103 2.2623 x 10~% 0.0026 x 103
160 0.0148 x 10~ 2.3700 x 10—3 0.0025 x 10~3
180 0.0076 x 1073  1.3755 x 10~% 0.0018 x 10™3
200 0.0108 x 10~%  2.1546 x 10~3 0.0021 x 10~3
250 0.0022 x 1073  0.5611 x 10~% 0.0010 x 10~3
300 0.0031 x 10~% 0.9426 x 103 0.0012 x 10~3
350 0.0004 x 10~2* 0.1571 x 10~3 0.0004 x 103
400 0.0004 x 10~2  0.1795 x 10~% 0.0004 x 103
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Table 3. The Small Sample Performance of §#B

M =100, m =20, do = 6, a = 10 and g = 0.02.

k D" D} SE(D}"
10 36.7345 x 10~3 367.3446 x 10~% 1.8780 x 103
20 30.8095 x 10~3 616.1903 x 10~ 1.8231 x 1073
30 26.0696 x 10~% 782.0877 x 10™% 1.7493 x 1073
40 17.4362 x 10™% 697.4465 x 10~3 1.5324 x 103
50 17.0976 x 102 854.8797 x 10~ 1.5213 x 1073
60 11.6805 x 10~3 700.8327 x 10~3 1.3069 x 10~3
70 9.3106 x 1073 651.7408 x 10—3 1.1856 x 103
80 9.8963 x 102 791.7044 x 103 1.2592 x 1073
90 6.7713 x 10™3 609.4202 x 10~3 1.0280 x 10~3
100 8.6335 x 10~ 863.3451 x 10~% 1.1468 x 102
120 3.8935 x 1073 467.2222 x 10~3 0.7938 x 10~3
140  3.5550 x 10~3 497.6932 x 10~3 0.7600 x 10~2
160 2.2009 x 10~% 352.1094 x 10™2 0.6030 x 10~2
180 0.8464 x 10~% 152.3550 x 103 0.3770 x 1073
200 0.5079 x 10~% 101.5700 x 10~% 0.2926 x 103
250 0.3386 x 10~% 84.6417 x 10~2 0.2392 x 103
300 0.1693 x 10~ 50.7850 x 10~% (.1693 x 103
350 0. 0. 0.
400 0. 0. 0.
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Table 4. The Small Sample Performance of §{1B
M =100, m =20, dp =6, a=1and u = 0.02.

k D"

10 4.4973 x 1073
20 4.6379 x 103
30 3.8649 x 1073
40 3.3027 x 10~3
50 2.1784 x 1073
60 1.9676 x 103

kD"
44.9733 x 1073
92.7573 x 103
115.9467 x 103
132.1090 x 103
108.9196 x 103
118.0547 x 103

SED"
0.5255 x 103
0.5324 x 1073
0.4921 x 10~3
0.4590 x 103
0.3793 x 102
0.3616 x 1073

70

80

90
100
120
140
160
180
200
250
300
350
400

1.1946 x 1073
0.5622 x 10~3
0.7730 x 10~3
0.3514 x 10—3
0.2108 x 10~3
0.2811 x 1073
0.0703 x 103
0.

coocoo

83.6221 x 1073
44.9732 x 103
69.5680 x 103
35.1353 x 103
25.2975 x 1073
39.3516 x 103
11.2433 x 1073
0.

coooo
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0.2851 x 103
0.1974 x 1073
0.2307 x 103
0.1565 x 10~3
0.1215 x 10~3
0.1401 x 103
0.0703 x 10—3
0.

coooo
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