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§0. Introduction.

Let D be a domain in R?,d > 2, and let PP(z,w), t > 0,z,w € D, be the heat kernel
for one half the Dirichlet Laplacian in D. We assume that D has a positive eigenfunction
¢ in L?(dz) with eigenvalue ), an assumption which holds for all domains considered in

this paper. Since

1 z—w|2

PP(z,w) < We— *

the Markovian semigroup associated with PP (z,w) is ultracontractive. That is, it maps
L*(D, dz) into L*(D, dz) for all t > 0. Following Davies and Simon [10] we shall say that
D is intrinsically ultracontractive, which henceforth we write as IU, if the new Markovian
semigroup in L%(¢2dz) with kernel
B(z,w) = e PP (z,w)
o))
is ultracontractive. That is, if it maps L?(p?dz) into L>°(p?dz) for all ¢ > 0. Davies and

Simon [10], (Theorem 3.1), gave several other equivalent formulations of IU including the

following: There exist constants a; and b; depending only on ¢ such that

(0.1) arp(2)p(w) < PP(z,w) < bip(2)p(w),

forallt > 0,z,w € D. In this paper we shall also say that D is IU for t > ¢, if (0.1) holds for
all t > . IU is closely related to estimates on the expected lifetime of certain conditioned

Brownian motions (hA-processes) in D, and naturally, to estimates on eigenfunctions.

In [10], Davies and Simon also introduced a weaker notion of intrinsic contractivity.
Following their definition we shall also say that D is sntrinsically supercontractive, which we
shall write as ISC, if the semigroup of P; maps L?(p2dz) into LP(p?dz) forany 2 < p < o0
and all £. As with IU, Simon and Davis [10], (Theorem 3.1), have several equivalent
formulations of ISC including the following: Let Q:(z) = 1/ Pi(2,2). Then D is ISC if and

only if

(0.2) HQ:(2)|| L7 (4242) < oo for all £ > 0.

Our main result is a simple geometrical characterization for IU, for planar domains

with boundaries given by the graphs of a finite number of functions. We also determine
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for which of these domains the expected lifetimes of all k processes are bounded. We give
a geometrical characterization for ISC, in terms of the Whitney distance, for domains in
R4,d > 2, which satisfy a capacity boundary condition, a class which includes all simply
connected planar domains, (see Theorem 5). Theorem 5 leads to a result on IU, (see
Theorem 6), for domains in R? with the capacity boundary condition which even though
not sharp, is likely to be the best that can be done in terms of the quantities used in

Theorem 5.

To simplify our presentation, we first state special cases of some of our results when

the domain is “above the graph of a function”.

Let f be an uppersemicontinuous function on (0,1), taking values in [~o0,0) which

1s not identically —oo. Define
Dy ={2=(z,y):0<z<1f(z)<y<1}.

A maximal horizontal line segment, MHLS, of Dy, is a subset of Dy of the form {(z,y):a <
z < b} which is not strictly contained in another set of the same form. We call y the height
of this segment. Let A be the collection of all connected subsets of D which are unions of
MHLSs, no two of which have the same height. Let A, be those sets in 4 which contain
no points with y coordinate larger than r. If A C R?,|A| will denote its area. We have

Theorem 1. Dy is IU if and only if lim sup |4| =0.
r——00 AEAr

If f is increasing on (0, 1), Theorem 1 says that Dy is IU if and only if it has finite
area. Davies and Simon [10] prove this under certain additional conditions on f, but even
for general increasing f, Theorem 1 is new. When f is a bounded function, it was proved
in B. Davis [13] that Dy is IU. This result was extended to the case when f belongs to
L?[0,1] for p > 1 by R. Bass and K. Burdzy [7]. Theorem 1 as stated was conjectured in
Davis [13] and parts of our proof are modifications of the arguments used there. All our
theorems are proved in ways which translate geometric information about a domain into
estimates for the a; and b; of (0.1), and in this sense they give information even for C®
domains. For example, for the domains Dy, it can be shown that given & > 0 there are

numbers ¢ and C which can be explicitly given, such that if ¢ > ¢=! and sup |4| < e,
AcA



then a; and b; in (0.1) may be chosen so that 1 < b;/a; < 1 + € (we note that always
a; <1< by), while if sup |4] > Ct, it must hold that b:/a: > 1/e.
AcA

IU has also been proved for several other types of domains and we refer the reader to
Bafiuelos (3], where a survey of recent results is given. As is well known by now, if D is
IU for t > ty for some to then the expected lifetimes of h-processes in D are bounded, (a
subject which also has been widely investigated in recent years), but the converse is false.
For this connection we refer the reader to R. Bafiuelos and B. Davis [6]. Our second result,
which is a corollary of the proof of Theorem 1, gives a geometrical characterization for the

boundedness of the expected lifetimes in Dy.

Let H(Dy) be the collection of all positive superharmonic functions in Dy. For z € Dy
and h € H(Dy), we write E*(rp,) for the expected lifetime of the Brownian motion in D
starting at z and conditioned by A (the Doob-h process).

Theorem 2. sup Ef('rpf) < oo if and only if D¢ is IU for ¢ > ¢ for some #3 and this
z€D
heH(ﬁt'f)

in turn holds if and only if sup |A4]| < oco.
AcA

The equivalence of the finiteness of the two suprema appearing in the statement of
Theorem 2, for a special class of functions f, has been proved by Xu [17], and we use some
of his methods. Our main result, Theorem 3, states that if the domain D = i_—(.jl Vi, where
Vi is the image under an analytic map z — a;z + b;, with a;,b; constants, a; # 0, of a
domain Dy,, then D is IU if and only if each Dy, is IU, that is, satisfies the conditions of
Theorem 1. We also prove an analogous extension of Theorem 2. The formal statements
appear at the beginning of Section 4. We note that it is not in general true that a domain,

which is the union of two IU domains, is itself IU.

The paper is organized as follows. In §1, we set up some notation and give a new
proof of a lemma due to Davies and Simon [11] and Bass and Burdzy [7] which provides
the probabilistic connection to IU. In §2, we prove the “only if” part of Theorem 1. In
§3, we prove the “if” part of Theorem 1 and explain how the proof of Theorem 1 implies
Theorem 2. In §4, we state and prove our results for domains given locally by the graph
of a function. In this section we also present the characterization of ISC in terms of the

Whitney distance, (Theorem 5), and its consequences for IU, (Theorem 6). We can also
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give an analytical (that is, non probabilistic) proof of the special case of Theorem 1 in the

case that f is increasing (see Theorem 6 and the comments at the end of Theorem 6).

Throughout the paper, the letters ¢, C, ', C’, will be used to denote constants which
may change from line to line but which do not depend on the variable points z,y, z, w, etc.
C(r),Cy,C4,... are also constants but they will not change. Constants depending only on
t, or on ¢, ¢, and which may also change from line to line, will be denoted by ay, b;, C, Ct ¢,

etc. We will sometimes use A and V to denote the minimum and maximum respectively.

§1. Notation and Preliminaries.

If f is negative and uppersemicontinuous, we set Q5 = {z = (z,y):0 < z < 1, f(z) <
y < 0}. The MHLS for Qy are defined as were those for Dy. If L is a MHLS we denote by
k(L) and £(L) its height and length, respectively. If L; and L, are MHLS we shall say that
L, is above Ly if h(L1) > h(L2) and the vertical line through any point in L, intersects
Li. We also let Tp = (0,1) x {0} and Ty = (0,1) x {1}. Notice that if L is a MHLS of
then the union of all MHLS of Q5 below L is also an §,, (after scaling and translating),

for some g, and furthermore note that each Dy is also, after translation, an €.

Points in R? will be written as z = (z,y) or w = (u,v). In Sections 2 and 3, D will
always stand for a domain of the form Dy and Q will always stand for a domain of the form
Q¢. We will use O for the generic domain in R2. If k is a positive superharmonic function
in ©, we will use P® = P? and E®® = E? to denote the probability and expectation
associated with the Doob h-process in O started at z. In the case h is the Green function
for ©, Go(z,w), (which gives Brownian motion conditioned to go from z to w in ©), we
simply write P}” and E}’. Similarly, if h(z) = K(2,£),z € O, ¢ € 80, K the Martin
kernel, we will write P¢ and E¢. We refer the reader to Doob [14] for more information on
h processes. We just recall here that if 7¢ denotes the lifetime of this process in ©, then

up to time 7g the h process is a strong Markov process with transition functions

P}z,w) = ——<P2(z,w)h(w),

h()

where P?(z,w) is as in the introduction. The following result is due to Cranston and

McConnell [8].



Lemma 1.1. There is a constant C such that for any © C R2,

E?T@ < C|@|

By a square ) we shall always mean a closed square with sides parallel to the co-
ordinate axes. A Whitney decomposition of ©, denoted by W(0©) = {Q;}, is a col-
lection of squares in © with disjoint interiors whose union is © and which satisfy 1 <
d(Qj,00)/4(Q;) < 4v/2 for all j. This can be easily seen to imply 15 < Q;)/4Qk) < 10
if Q:iNQk # ¢. Here £(Q;) is the side length of @; and d(Q;,00) is the Euclidean distance
from @; to 00. The Whitney decomposition gives rise to the quasi-hyperbolic distance
in the following way. Fix Qo,Qr € W(0O). We say that Qo — Q1 — ... = Qm = Qi
is a Whitney chain connecting Qo to Qi of length m if Q; € W(O) for all 7 and if
QiNQiy1 # ¢, 0 < i < m. We define the Whitney distance dw(Qo,Qr) to be the
length of the shortest Whitney chain connecting Qo to Qx. If z; and 2z, € O, we let
pe(z1,22) = dw(Q1,Q2) where z; € Q1 and z2 € Q,. This is the quasi-hyperbolic dis-
tance between 2; and z;. From these definitions it follows by the Harnack inequality that

if h is a positive harmonic function in © then
(1.1) h(zg) > ce~CPelzn2)p (4

where ¢ and C are absolute constants.

If © is a simply connected domain in R? we let dg(z1, 22) be the hyperbolic distance in
O. It is well known, (it follows easily from the Koebe distortion theorem and the Schwarz
lemma), that cpe(z1,22) — C < do(z1,22) < cpo(z1,22). We recall that if © is simply
connected then the curve I' is a hyperbolic geodesic if it is the image of the segment (-1,
1) in the unit disc under a conformal map from the disc to D. The hyperbolic geodesic T'
splits the boundary of O into two pieces Fy and F; with the property that if z € T then
the harmonic measures of F} and F, with respect to z are both 1/2. This follows from the

disc case by the conformal invariance of harmonic measure.

The next lemma is from Bafiuelos and Carroll [5]. A weaker and somewhat different
form of this lemma , which will be enough for our applications in this paper, will also

follow from some of the arguments in Xu [17].
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Lemma 1.2. Let © be a simply connected planar domain and let ' be a hyperbolic
geodesic ending at the Martin boundary point €. Let z € T" and let v be the part of T from
z to €. Then if Q € W(O) and z¢g denotes the center of @, we have

(1.2) Pf{Bt € Q for some t < 19} > ce~Cde(zg,7)

for some constants ¢ and C. In particular, if @ intersects the curve I' at some point (or

points) between z and £, the probability in (1.2) is larger than c.
Next we need a well known estimate for harmonic measure in simply connected do-

mains. (See Tsuji [16], p. 112 for a proof which even gives information on constants.)

Lemma 1.3. Let © be a simply connected domain. Given § > 0 and p < 1 there exists a
constant C(p) such that for all z € © with d(z,00) < §C(p),

(13) Px{TO < TB(z,ﬁ)} > P,
where 7g(z,s) is the exit time from the ball centered at z and radius §.

We now present a lemma which provides the probabilistic connection with IU. The
lemma was stated without proof in Davies and Simon [11] and independently discovered
later and proved by Bass and Burdzy [7]. Here we provide a different proof. Let us assume
that © is a domain in R?,d > 2, for which the Dirichlet Laplacian has discrete spectrum
in L?(dz). Notice that this condition is clearly satisfied for our domains in Theorems 1

and 2 by Theorem 1.6.8 in Davies [9].

Lemma 1.4. Suppose that for each ¢ > 0 there exists a compact set K; C ©, such that
for all z € O,

(14) PZ{T@ > t} S G,th{T@ > t,Bt e Kt}

where a; does not depend on z. Then O is IU.

Proof: Let po = ¢,¢1,02,... be the eigenfunctions with corresponding eigenvalues
Ao = A, A1, A2, ... and normalized to have L? norm 1. Since the semigroup of P2(z,w) is

ultracontractive, (independent of the domain ©), we have that for all z € O,
(1.5) (@)l = | | P wpn(w)du] < adllpnlle = ar.
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Thus we have |pn,(2)| < ase***. On the other hand, since ¢ is strictly positive and contin-
uous, ¢(z) > C; for all z € K;. Using our convention that a; may change from line to line

we have,
e 20, (2)] = |E:(¢n(Bst2); T0 > t/2)]
< a1’ P {re > t/2}
< a;e*t?P{ro > t/2,Byy € Kyy9}
< a2 E.(¢(B:); 10 > t/2)
= a;e* 2™ M2 (7).
Thus (1.4) implies that for all n =0,1,2,...,

(1.6) lpn(2)] < are'e(2),

where a; depends only on ¢. It is proved in Davies and Simon [10], Theorem 3.1, (and it

follows very easily from the expansion of the heat kernel in terms of eigenfunctions), that

(1.6) is equivalent to IU. O

Remark 1. Notice that our proof shows that if (1.4) holds for ¢ > ¢ then (1.6) holds for
t > 2ty and this gives IU, (0.1), for ¢ > Cto, C an absolute constant, (4 will work). We

shall use this in the proofs of Theorems 1 and 2 below.

Remark 2. IU may be defined without reference to eigenfunctions purely in terms of
P2(z,w) as in Davis [13]. However, as shown by Davies and Simon [10], [11], IU implies

discrete spectrum in L2,

§2. Proof of the “only if” part of Theorem 1.

We start with some lemmas.

Lemma 2.1. Let € > 0. Let © be a simply connected domain, and let @1, Q2,...,Qx be
squares in © with £(Q;) = ¢, d(Q;,00) > /4 for all j and such that Q; and Q;+; have
a common side for all j = 1,2,...,n — 1. There exist constants c and C such that for all

z € 1 and S, any one of the four sides of @,

(2.1) P,{B; € S, for some t < cne?,t < T0} > C".

8



Proof: Let O, = {z € ©:d(z, _61 Q;) < €/4}. Let z be the center of Q,,. Then P, {rs, <
]=
70, } = C > 0 and by the Harnack inequality, (1.1),

(2.2) P{rs, <t10,} >C"

for all z € Q.

Next, by Lemma 1.1 we have
E.(7s,|7s, < Te,) < c area (0,) < cne?.
This inequality together with the Chebychev inequality gives that
(2.3) P {rs, < 2cné®|rs, < 1p,} >1/2,
which together with (2.2) gives
2 1 n
P {rs, < 2cne®,7s, <7p,} > EC ,
and (2.1) follows. O

Lemma 2.2. Let Ly be either Ty or a MHLS of  and let L, be a MHLS of . Suppose Ly
is below Ly, £(L2) > $4(L1), and h(L;) — h(L3) > $4(L1). Let T be a hyperbolic geodesic
in Q5 which has one end point £, € Ty and which has a point z € Ly. Then there exists
a constant 7 such that dist(Z,0Q U Ly U Ly) > C14(Ly) for some % € T, 7 below L; and

above L.

Proof: Let L be the MHLS midway between L; and L,. Let D3 be the points of 2
which are below L, and let Dy be those that are below L but not below Ly and let
Dy = Q\(D; U D3). Let & € 00 be the other end point of I'. We shall consider three
cases, namely (i) §; € 0Dy, (ii) & € ODs, and (iii) & € 8D;. All cases are similar so we

just discuss (i).

Let F1 and F; be the two sets into which the end points of I divide the boundary of
Q. As explained earlier, w,(F) = w,(F;) = 1/2, for any z € I where w,(+) is the harmonic
measure for Q at z. If {; € 0Dy, then 0D,\(L U L,) is either completely contained in F}

9



or completely contained in Fy. If L' is the MHLS midway between L and Ly, T’ cannot

intersect L' at a point Z with
(2.4) d(%,0Q) < min (C’(%) 4(Ly)/4, €(L1)/4)

where C(3) is the constant of Lemma 1.3 corresponding to p = 1/2. If this were to happen
then by Lemma 1.3, there would be a subset FF C 8Dy with FF C Fj or F C F, such that
wz(F) > 1/2, which is impossible. O

Lemma 2.3. Let L be a MHLS of Q such that £(L) >  and k(L) < —%. There is a

constant C such that if z is on or below L, then
(25) Pz{.B-,-n € TOIBTQ S To} > (s,

where Ty = {z € Tp: d(2,0\T) > C1} and C; is the constant of Lemma 2.2.

Proof: We may and do assume that z € L, since otherwise we just use the strong Markov

property at 7. We may also assume that k(L) = —2Z, since if A(L) < —% we can just

replace L by the MHLS of height —% and use the strong Markov property again. Set
F={z=(z,y) € ty>—3, d(2,00) > C1}. If £ € Ty we have by Lemma 1.2 that

Pf{BtEQforsomet<Tg} >c

where Q) is the Whitney cube containing the Z € F' given by Lemma 2.2. By the Harnack
inequality, we have

PS(TF < TQ) >c,

which implies

(2.6) P.(tr < 1) > cPy,(Br, € Tp).

Next, if w € F, we can construct squares Q1,@Q>,...,Q, with w € Q;, n depending
on C, but not on w,£(Q;) = C and d(Q;,00) > C, C also depending on C; but not on w.
Furthermore we can construct this chain in such a way that Q; and @;4+; have a common
side, and such that any curve in G = {w:d(w,UQ;) < C} which connects w to the top

side S, of Q, must intersect Th. By Lemma 2.1, there is ¢’ not depending on w such that
Pw(TS,, < Tc;) > C',

10



implying
(2.7) Py(rq = TTO) > c.

The lemma now follows from (2.6), (2.7) and the strong Markov property at 7. O

In general, if L is a MHLS of Q we define L = {z € L: d(z,00\Ty) > C1£4(L)}, where
C; is the constant of Lemma 2.2 and if L is a MHLS of D we define L analogously.

Lemma 2.4. Let I" be a set of the form _Y<l_rJ<0((a(r),b(r)) x {r}) where v < —2 and
(a(re),b(r2)) C (a(r1),b(r1)) € (0,1) if ¥ < rp < ry < 0. There exist numbers v = ag <
aj <ay <ay <...<ap such that

(i) =2 < am <0

(i) a; —a; = Ma}) > $M(ai), 1<i< M

and

(iii) a; — Qi1 S 2/\((1,'), 1 S ) S M.

Proof: With ap = v let zp = ao,z1 = 20 + AM20),...,2; = zj_1 + A(zj—1) and let
N =inf{j: A(z;) < 2X(zj-1)}. Set a] = zy_1 and a; = zn. Let a; now play the role of ag
and define a; and a; in the same way. Continuing this way we get ap < a} < a; < ay < ...
Let us now define M. First, we claim that aj < —1. To see this observe that by definition,
Azj—1) < 3M(z;) for 1 < j < N — 1. Also, since A(7) < 1, we must have A\(z;) < % for
0<j <N —2. Thus,
a; —ao = (Mz0) + ...+ Azn-3)) + Mzn-2)
(2.8) <(BAMz) + .o+ EMev=2)) + Men—2)
=2(Mz1) + ...+ Men=3)) + (1 + M zN=2).

Continuing this way and using the fact that ag < —2 we find that
ag+2<ai—a<(1+i+1+5+.. ) ev-2) <2 -1 =

and so @) < —1. Thus a; < 0. We define M = min{j:a; > —2}. The properties (i)

and (ii) are clear from the definition of N and M. For (iii), let 29,21,...,2n be the 2;’s
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constructed by starting with zg = a;_1. Then a; —a;—1 = (A(20)+.. AMzv-2))+ A (zN-1)

and continuing as in (2.8), (iii) follows. O

We now complete the proof of the “only if” part of Theorem 1. Let us first note that

if lim  sup |A|> 0 then one or both of the following hold:
r—+—00 ACA,-

(i) sup |A| = .
AcA

(i) There exists a § > 0 such that for any € > 0 there is A, € A such that each MHLS
contained in A, has length smaller than ¢ and |A.| > 6.

Suppose (i) holds. Let N > 0 and A C Abe such that |AN{y < —2}| > N. By Lemma
2.4 and scaling so that the top line of A is scaled to have length 1 and assumes the role of
Ty, we may find disjoint intervals (dk,er), 1 < k < n, such that (di,ex) C {y: (z,y) € A}
and the MHLS of A of height e has length at most twice the length of the MHLS in A
of height d which equals ex — di and such that if Ty = {(z,y) € A:dy < y < e} then
ZTe| > ClAN{y < —2}{ — c. Let z be a point below the MHLS in A of height dy. Let
I' be a geodesic with one end point at ¢ = (1/2,1) and which contains z. By Lemma
2.2 there exists a Whitney cube Qy in each T'y which touches this geodesic and such that
ITx| < C|Qk|.- By Lemma 1.2,

P¢{rq, <D} >C.

By Theorem 1.1 in Davis [12] (or Corollary 2.2 in Bafiuelos and Carroll [5]),
Ei(rp)> C)_1Qkl 2 C ) ITs| 2 C(IAN{y < —2}| - ¢) > CN —c.

Now, N may be arbitrarily large. Thus if (i) holds, the domain D does not have the

expected lifetime property and hence it is not IU; (see Bafiuelos and Davis [6]).

Before we deal with case (ii) we make some observations concerning IU. The left
equality of (1.5) with n = 0 implies that in (0.1) with D = © we may always choose
at = a; nondecreasing as t increases and b; nonincreasing as ¢ increases, if ® is IU. From

this it follows that there is a C}, depending only on ¢, such that

2t co
(2.9) / PO (z,w)ds > Ct/ PO (z,w)ds.
t 2t
By definition,
w 1 . N
(210) Pz {7’@ > t} = mLPt@(Z,Z)Ge(Z,w)dZ,

12



for any z,w € O. Differentiating both sides of (2.10) in ¢t and integrating by parts we find
that the density of ¢ under PY is given by P2(z,w)/Ge(z,w). Thus dividing both sides
of (2.9) by Ge(z,w) we obtain

(2.11) P{t < 1o <2t} > CtP} {10 > 2t}
for all z,w € ©. Since C; depends only on t, we also have that for any 2z € © and £ € 00,

(2.12) PiHt < 10 < 2t} > C P¢{re > 2t}.

Let us now assume that (ii) holds. Then as in case (i) for large enough n there
exists a hyperbolic geodesic I', ending at ¢, € 17 and a collection of Whitney cubes
QT,Q%,...,Qn in Ay such that £(Q?) < L forallj, | le Qj| > €4, and with Q7 touching

n J=

the geodesic I',, for every 7. Let R, = _1L1J1 Q7 and let z, be a point in D such that each
]=

of the @7, 1 < j < n’, touches that part of ', between z, and {,. Let Tr, be the total

time By spends in R,. That is,

TD
Tn, = / 1(B, € Rn)dt.
0

Then by Lemma 1.2 and Theorem 1.1 in Davis [12] (or Corollary 2.2 in Bafiuelos and
Carroll [5]),

(2.13) E$rTg, > C|R.| > C6.

By the argument used to prove (5.1) in Davis [12] there exists h, which goes to zero as n

goes to infinity such that
(2.14) var (Tr, ) < ha|Ral?,

where by var(Tg, ) we mean the variance of Tg, with respect to the measure P¢». This

implies there is a constant k = k(6) such that lim P& {Tk, > k} =1 and hence
(2.15) lim P {rp >k} =1.

Then with ¢ = k/2, Pt~{rp > 2t} > 1 and Pén{t < tp < 2t} — 0, contradicting (2.12)
with D = O. Thus the proof of the “only if” part is complete. U
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§3. Proof of the “if” part of Theorem 1.
Lemma 3.1. Let zo = (zg,y0) € . There exists a constant C3 such that

(3.1) E.(ta|Br, € To) £ C3 + Cslyo).

Proof: Let h(z) = P,{B,, € Tv}, the harmonic measure of Ty with respect to Q. Let
u(z) = P,{B,; € To} where S is the half strip {(z,y):0 < z < 1,y < 0}. Clearly
h(z) < u(z) for all z € . Let v(z) =1 — u(z). Then v(z) is a positive harmonic function
in S which vanishes on Tj. As is well known, such functions cannot vanish faster than the

distance to the boundary. That is, for y > —C, where C is small enough,
(3.2) v(z) 2 cly|
where z = (z,y). From (3.2) we have

(3.3) u(z) <1—clyl, -C <y <0.

Now let € < min(C, |yo[). Let L be the MHLS above zy and of height —e. Let L be
the set of those points of T directly above L and let 2z, = (zo,yo + €). If we take a path
which starts at zp and terminates at L and which has not exited Q and translate it up to

start at z, it will terminate at I and hence

(3.4) P{rp <7} < P, {r; = ma} < h(z).
From the martingale property of h(B;);t < Tq, we obtain

(3.5) h(z) = E.(h(Br); 7L < TQ)-
Since h(z) < u(z) < (1 —cly|]) = (1 —ce),z € L,

(3.6) h(z) £ (1 —ce)P {71 < 1a}.

Thus
h(ze) — h(z) > P{1L < Tp}ce > ceh(z),
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and we conclude that

(3.7) —Z—Z(z) > ch(z),z € Q.

Next we recall that h-processes satisfies the stochastic differential equation
h

and hence (3.7) implies that the vertical component of the drift of the associated h-process

is larger than or equal to ct everywhere in Q. Thus if n < y,

(3.8) PZ’; {B; ever gets below the line y = n}

< Py{w¢ + ¢t < n —y for any t}

< 620(3/0—71),

where w; is standard one dimensional Brownian motion, the second inequality since if wy
is one dimensional Brownian motion, then —inf{w; + ct} has an exponential distribution
t

with parameter 2¢ (this follows from the exponential martingale).

In particular we conclude from above that the probability that our A processes ever

hits a Whitney square below y = 5, for 5 < yo, is bounded by e2¢(7=¥%0) Now

(3.9) E.(ma|Bn € o) <C Y PolQ)]
QeW(D)

where Pg = Py,(1qQ < T1,|Ta = T1,), which follows from Theorem 1.1 of Davis [12], upon

integrating over the points of Ty. Together with (3.8), (3.9) proves the lemma. O

Remark. One can also use Corollary 2.2 in Bafiuelos and Carroll [5] to prove Lemma
2.3, by using the fact that hyperbolic distance decreases with increasing domains, and the

easily computable distance in S.

Lemma 3.2. There is a positive constant C(r), —oo < r < 0, which is bounded below on

bounded subsets of (—co,0) such that if z = (z,y) € Q,

(3.10) P {ra >2ly|} < C(y)P.{Br, € Ty, < 2|y|}.
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Proof: Let Lgy be the horizontal line at level 2y. Let 72, be the hitting time of Ly,. Set

A = {12y < Ta; T2y < 2ly[}
B = {By, € Ty; e < 2y|}

C = {ra > 2|y|; r2y > 2|y|}.

Notice that if we take a path in A and reflect it about the MHLS L, containing z
after the last time before 2|y| it hits L, we obtain a path in B. Since the reflected motion

is still Brownian motion, (see the explanation following (3.8) in Davis [13]); we have

(3.11) P.{A} < P,{B).

Next we apply the Girsanov argument used in [13]. Under the transformation B; + ¢
for 0 <¢ < 2|y|, any path from C is transformed into a path in B. Thus if we apply (2.9)
in [13] with M = 2|y| we have

(3.12) PAC} < C(y)P:{B}
which together with (3.11) proves the lemma, since {rq > 2|y|} C AU C. O

Lemma 3.3. Let L be a MHLS of D = Dy which lies below Ty. Then if z € L and wis

on or below L,

(3.13) Pu{rp >t} < CtP,{rp > t}.

Proof: Let K =[1,3]x[1, 2]. Let # be any point directly above w. That is, if w = (u,v),

then Z = (£, 9) with £ = u, v < §. By translating the path up we see that

(3.14) Py{tp >t} + Py{rp < t,B., € T1}
< PE{TD > t} +P§{7’D < t,BrD S Tl}

By the argument used to prove inequality (3.4) in Davis [13] (the reader may read the
proof of (3.4) in [13] without reading the rest of that paper; just substitute X and D for
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A and Q respectively, note that we never use Imz > —1/4, and that to hit (0,1) x {1}
without hitting A you must hit L without hitting A) we have

(3.15) PE{TD St,B-,-D ETl} SCtP;{TK<7‘D,TK<t},

and we may even take Cy = 1. Since iélf{Pz{TD > t} = C¢ > 0, the right hand side of
(3.15) is less than CyP;{rp > t}. This together with (3.14) imply that

(3.16) Pu{rp >t} < C;P;{rp > t}.

If we now let V be the vertical line through w and 7y+ the hitting time of those points in
V above L. The lemma then follows from the strong Markov property provided we show

that
(3.17) P{ry+ <t} >C

for some constant C independent of z. To see (3.17) we may assume that V, is to the
left of z. Let € = $14(L) where C) is the constant in the definition of L. Let Q; be the
square centered at z and with side length . Let ()2 be the square of same size as Q; and
on top of J1. That is, the bottom side of Q5 is the top side of Q1. Let Q3 be the square
of same size as ()2 and on the left of Q;. That is, the left side of @, is the right side
of Q3. Continuing this way we get squares Q1,Q2,...,Q, where n depends only on C;
and such that V3 N @, # ¢. Our desired inequality (3.17) now follows from the Harnack
inequality, applied to the domain consisting of all points within /2 of O Qi. Even though
this domain is not necessarily contained in D, if a curve in this domai;,l started at z, hits

V4, it also hits V. before leaving D. O
Lemma 3.4. Let L be a MHLS of Q such that —1 < h(L) < —1 and ¢(L) > 1. There are
constants C4y and C5 such that

P.{B., € Ty,7a < Cs} > Cs[P,{rq < C4, B, € To} + P.{rq > C4}]

for z = (z,y) on or below L and y > —2.

Proof: Let d be the distance between Ty and L. By Lemma 3.1,

1
Pz{TQ 2> tIB-rn € TO} < ;Ez(TQIBTn € TO)

1
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Together with Lemma 2.3, this implies

3C. o
PZ{TQ > t, Brn € To} < C—:—PZ{BTQ € To}
2

Thus

CZPz{BTQ € TO} S PZ{BTQ € TO} = Pz{TQ 2 t,-Brn, € TO} + Pz{Tﬂ < t, B'rn € TO}

3C A ]
< -C—;P,,{Bm € Ty} + P{rq < t, B, € Ty}
2

and if we choose ty large enough depending only on C; and C3 we find that

Cy

7Pz{BTQ € T()} < Pz{TQ < to,B,-n € To},

which together with Lemma 3.2 gives the result with Cy = t,. O

Lemma 3.5. Let L; be a MHLS of  such that —1 < h(L;) < —-;— and % <4(L1) < 1. Let
Ly be a MHLS such that h(L¢) < h(L1) and h(Lg) > —2. Let m be a subprobability mea-
sure which puts all of its mass on or below Ly and such that m(f)o) > min (%2, C's) m(Q).

Then there is a constant Cs such if 5 is the distribution under P, of
BCG/\TQI({TQ > Ce} U {06 > TQ,B.,-n € To}),
then n(Ty) > 92117(9 UTp). Here C; < 1 is the constant of Lemma 2.3.

Proof: We can and do, without loss of generality, assume m is a probability measure.

Define the function

h(z,t) = P{B., € To,ma < t}
h(z,t) = P,{Bqq € Ty, mq < t},
g(z,t) = P,{mq > t},

f(z,t) = h(z,1) + g(2, 1),

and

wz(A) = P,{B, € A}, A C 00Q.
We first show some properties of these functions. Clearly,
(3.18) h(z,s) < h(z,t), s<t
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and
(3.19) wz(To) < f(z,t), for any t.

By Lemma 2.3, Lemma 3.2, and a translation of the path argument similar to that used

in the proof of (3.14), we have, respectively,

(3.20) w,(Ty) > Cow,(Ty), =z on or below Lo
(3.21) 9(2,4) < Ch(z,4), z € Lg

and

(3.22) f(w,t) < f(z,t),w directly below z € Ly.

From (3.21) we obtain
(3.23) h(z,4) < f(z,4) £ Ch(z,4), z € L.
Also, since h(z,4) < w,(Ty) we have

(324) wz(T()) S f(2,4) S sz(To), z € Lo.

Next, if zg € Lo and z is any other point in Lo we have, by the strong Markov property,

that
weo(To) > v wu(To) Pz {Tv+(:) < Ta}

where V1 (z) is the vertical segment connecting z to Tp. As in (3.17), we have that
P {Tv+(;) < Ta} > C and by translating the path again we see that inf )ww(To) =

weV+(z
w;(To). Thus we have
(325) wz(To) S szO(Tg), Zy € ﬁo, zZ € Lo.
This together with (3.22) and (3.24) gives

(3.26) f(w,4) < Cf(z,4), z € Ly, w on or below L.
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From (3.23), (3.26), and the hypotheses of the lemma we obtain,

(3.27) Em(h(Bo,4)1(By € Lo)) > CEm(f(Bo,4)1(Bo € Lo))
> C max{f(z,4): z on or below Ly}
> CEmf(Bo,4)
> CEmg(Bo, 4).

On the other hand if we apply the Markov property at ¢ = 4 and use the fact that Q is
contained in the half strip (0,1) x (—o0,0) we obtain for any z = (z,y) € ,

(3.28) 9(z,4+3j) = P{rp > 4 +j}

< sup Po{ro,1) > j}P:{mD > 4}
z€(0,1)

—x2.
< Ce2 7g(z,4),

where the last inequality follows from the fact that 1’2-2- is the lowest eigenvalue for (0,1).

From (3.28), (3.27) and (3.18) we see that for j large enough,
(3.29) Emg(Bo, 4+ §) < Ce™ T4 Eng(Bo, 4)
< Ce™ i Ep(h(Bo, 4)1(Bo € o))
< CeTIEm(h(Bo, 4+ 5)1(Bo € L))

C. ) A
< —4—2Em(h(Bo,4+J)1(Bo € L,))

< B h(Bo, 4+ 5).

From now on we consider j fixed and large enough so that (3.29) holds.
Next, by (3.19), we have

(3.30) Ew5o(To) — Emh(Bo, 4+ ) < Emg(Boy4 + )

which together with (3.20) and (3.29) gives

Enb(Boy4 = §) 2 Enwsy(Fo) = [Bmwso(To)) — Em((Bo,4 + )]
> EmwBo(TO) - Emg(BO,4 +.7)
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" C .
> Enws,(Th) - TzEmh(Bo,‘l +37)
Ca

> Emws,(To) — TEmh(B074 +37)
e .
> Emh(Bo,4+5) = < Emh(Bo, 4 + 5)
3

= ZC2Emh(B0,4 + ])

UL Ot W il | w

4 . 1 .
Cz[gEmh(Bo,‘l +7)+ gEmh(Bo,‘l + 7))

v

4 . 1 }
C2E[Emh(B074 +.7)) + ZEmh(‘BO74 +.7)]

\v4

N, C :
ColBmh(Bo,4 + 1) + = Emh(Bo, 4 + j)

v

CZ[Emh(BO,4+J)+Emg(BO’4+])]1
and thus we may take C¢ = 4 + 7, since % > % ' )

Lemma 3.6. Let L be a MHLS of D and let z € D be below L and a distance at least
two from L. Let V' be the vertical line segment connecting z to L and let T be the union
of all MHLS of D which intersect V. Let v =y, (2 = (z,y)), and let ag,ay,...,ap be the
numbers corresponding to I' and v guaranteed by Lemma 2.4. Let L; be the MHLS with
h(Lx) = ax, let p = {z € D : z below Ly}, and set § = |T'|. Then

. C
PAB,, € L,ry < C76} > min(—éz,Cs)[Pz{Bw € L,my < C78} + |P{ry > C16}],
where C7 = max(Cy, Cs).

Proof: Let Ty = {(z,y) € ' : ax—1 <y < ax} and let A\x = C7|Tt|. Let vy = inf{t >0:
By € Ly}, k=1,2,...,M. We denote by 8 be the usual shift transformation for Markov
Processes. Let T1 = (M Av1),Ts = (M Avz)ofry,...Tnm = (A Awpy) o O7,,_,. Notice

M
that Ty < To < ... < Ty < E A < C7|FI = C76. Define A = {BTk € Ly, Ty < T,pk},
k=1

Ay ={Bp, € Ly, Tk < Ty, } and By = {Br, ¢ Li, Tk < Ty, }, where ¢y is the region below
L. Notice that each 9y is a region of the shape £(Li )y for some f. By Lemma 2.4 and
scaling, we may apply Lemma 3.4 to obtain that

(331) Pz{/il} Z C5PZ{A1 U Bl} Z min (%2—,05) Pz{Al U Bl}
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Now, Lemma 3.5 with m the distribution of B, I(T1 < 7y), and the strong Markov
property, give

(3.32) P.{As} > ZP.{4, U By} > min (92— cs) P.{4; U By},

Continuing to apply Lemma 3.5, we obtain the analog of (3.32) with Ays, Ap and By in
place of Ay, A,, and B,, which proves the lemma. U

We are now ready to complete the proof of the sufficiency part of Theorem 1. We
retain the notation of the previous proof. Let € > 0 and choose ¢ = ¢(¢) so negative that
the maximal length squared of the horizontal line segments of height ¢ is less than ¢ and

such that sup |A| < e. The proof of (3.1) in Davis [13] gives a constant C;. depending
AEA,

only on ¢t and ¢, hence on t and ¢, such that

(3.33) Pz{Bt € K;mp > t} > Ct,ePz{TD > t}
for any z above the line y = ¢ — 2. As above, K = [, 3] x [%,3]. (Notice, however, that

the constant given in Davis [13] gets worse and worse as ¢ decreases. Later in this paper

we give an alternative proof of (3.33)).

Next, suppose z is below the line of height ¢ — 2. Let L be the Lj; in Lemma 3.6

corresponding to z.

If u(w,t) = Pu{Tp > t} then by the parabolic Harnack inequality (see [2]) for all

t < s and wq,wy € L we have

- 2 4
uon, ) < € exp (o (Lm0l Rs)>u(w2,3)

where R = min(1,1,d?),d = dist(L, 8D). Since d? ~ £2(L) ~ |T'| = 6, we have for t > Cy8,

PW{TD > t} < CPw{TD >t 075}
for all w € L. By this, (3.33) and the strong Markov property applied at time 77,

P.{Biyc,s € K;1p > t + C16}
(3.34) > Cyc inf Py{rp >t}P,{B., € L,71, < C+6}.
weL
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where the C;. here may be taken to be the minimum of the C, . from (3.33) for C76 <
s < C76 + t, assuming, as we may, that we have chosen the constants C, . from (3.33)

continuous on compact s intervals. On the other hand, we have

(3.35) P {rp >t+ C76} = P,{rp >t + C76, 7, < C76}
+ PZ{TD >t+ C75,TL > C75}

Again, the strong Markov property and Lemma 3.3 give

(3.36) P {tp > t+ C76,7 > C76} < Cysup Py{rp > t}P. {1 > C76}
w€L

< Cy inf P, {rp > t}P,{rr > C76}
wEL
and in the same way that

(337) PZ{TD >t+ 076, T < 075}
< Cy inf Py{mp > t}P,{B,, € L, < C75}.
weEL

From (3.34)—(3.37) and Lemma 3.6, we obtain,
PA{Biyc,s € K,7p >t + C76} > C¢ P, {mp >t + C76}.

Since § = |I'| < ¢, we have proved IU, by Lemma 1.4 and the remark following its proof,
for any t > Ce. Since by our assumption on f, € can be taken arbitrarily small, we have

IU for all t > 0 and Theorem 1 is completely proved. 0

Proof of Theorem 2. An easy modification of the proof of Theorem 1 shows that
a sup |A| < oo, then D is IU for ¢t > ¢(a) and this gives one direction of Theorem 2. On
thfeleof’:her hand, in the proof of Theorem 1 we also showed that if sup |A4]| = oo, (case (i)),
then the lifetime estimate does not hold. Thus we also have comﬁle?ely proved Theorem

2.

§4. Domains with Boundaries Given by Graphs of Functions

First, we rephrase the definition of §1 of a domain with boundary given by functions.

Our definition is from Bass and Burdzy [7]. A domain D C R? is said to have boundary
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given by a graph of a function if there exist a finite number of orthonormal coordinate
systems CSy,CS,,CSs,...,CS,, real numbers ry,r2,...,7r,, and uppersemicontinuous
functions fi:(0,r%) — [—0,0), 1 < k < n, such that fi is not everywhere —co and if
D = UL,V; where

(4.1) Vi={(z,y):0<z<r; fi(lz)<y<riin CS;}.

Theorem 3. Let the domain D = U™, V;, V; as in (4.1). D is IU if and only if each V;

satisfies the obvious analog of the condition of Theorem 1.
Theorem 4. Let the domain D = U2, V;, V; asin (4.1). Then

sup EM(rp) < o0
z€D
h€H(D)

if and only if each V; satisfies the obvious analog of the condition of Theorem 2.

The proof of the necessity is almost a carbon copy of the proof of Theorem 1, and
is omitted. The proof of the sufficiency requires new arguments, which we now describe,

leaving some of the details to the reader.

We let LF,r < 1, stand for the intersection of Vi with the line parallel to the line
y = 1in CSy and a distance —r + 1 below (in CS%) this line, and let BF be that part of
Vi below L¥. Clearly, if C'S; and CS have a different orientation (that is, if the rotations
involved to transform to the usual coordinate systems are different) then for small enough

r, B} and B¥ are disjoint.

Assume without loss of generality that 1 = mg < m; < my < ... <mj, =n+1
mj41—1

are such that V;, m; < ¢ < mj4; have the same orientation and that [(J Vi = D;
k=m;

is connected, and that V,,; and Vi, ,—1 contain respectively the smallest and largest z

values, in terms of C'Sy,; (or equivalently, in terms of any of the C'Sy, m; < k < mjyq1). We

m-+1—1
also insist that the jo sets ( JU B,’f) , 0 <5 < jo, are disjoint for small enough r. We
k=m;
ma+1_1 7n'¢:vz+1_2
let, for0<a<jo, Ka= U R;U U A; where R; =[r;/4,3r;/4] x [r;/4, 3r;/4]
J=ma J=ma

(in coordinate C'S;), and A; is a curve lying in D, and connecting R; and Rj41. Let
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P! denote the line parallel to the ‘top’ line (in C'Sm,) of Vi, m; < k < mj41, and such
that the maximum distance of PJ from these m 41 — m; ‘top’ lines is . Pick ¢; so small
that G, 0 < j < jo, are disjoint, where G; is that part of D; ‘below’ Pt’J We observe
that any curve in D; which lies between Pt];. and sztj and which starts in PtJ;, and ends in
P2jt,- , upon reflection about Pt];, , either connects Py; to K; before leaving D, or else, before
leaving D; intersects from below either the line segment parallel to the ‘top’ of R.,; which
connects this ‘top’ to the ‘left’ boundary of D, , or the line segment parallel to the ‘top’
of Ry, ,,~1 which connects this ‘top’ to the ‘right’ boundary of Dy, —1.

Now let D;-l' be that part of D; which lies ‘above’ Pgtj, and let Dt = (j D;-". Then

=1
D% is a (connected) bounded domain, and it is easily shown that D7 is IU, using either

results of Bafiuelos [4] or Bass—Burdzy [7] to the effect that a domain with boundary given
Jo
by the graphs of bounded functions 1s IU. Let K = U K;.

J=1

To prove sufficiency we will show
(42) Pz(TK <7D, Tk < t) > CtPZ(TD > t)

and apply Lemma 1.4, together with the strong Markov property at 7x together with the
fact that P,(rp > ¢, By € K) > C; if z € K, which holds since K is compact and has
positive area.

Jo

Let D; be those parts of D; lying above Py; and let D' = |J Dj. We first prove (4.2)

for z € D'. We have =
(4.3) P.(tp >t) = P,(tp+ > t)+ P.(tp+ <t, 7p > 1).
Now since DV is IU,

(4.4) P,(tp+ >t) K C¢Py(tk <t, Tk < Tp+)-

Thus to complete the proof of (4.2) for z € D' it suffices to show

(4.5) P.(tp+ <t, 10 >t) < CyP:(tk < 7D, Tk < t), 2 € D',

which follows, using the fact that B,,, € UPy; on {7py < 7p}, from

(4.6) Py(7py, <t, 7D > 1) < CiPy(7k; < D, Tk; <1), 2 € D¥, 0 < j < jo.
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To prove (4.6), reflect By about Py, after the last time, after hitting Py;, that it hits
Py; before hitting Pa¢; ., UPy. We see that the probability that this reflected motion, which
is still standard Brownian motion, exhibits the behavior described in connection with the
reflection discussion above, is at least the probability that the original motion hit Py

before leaving Dt. An argument identical to one used in [13] to prove (3.1), now proves

(4.6).

Finally, we complete the proof of (4.2). Suppose z € Vj. Since V; is IU by Theorem

1, we have
P,(tx <t, Tk < Tp) > PZ(TK <7y, Tk < t/2)

> CiP,(1v; > t/2)

> CtPZ(TD >t, Ty, > t/2).
Thus, to finish the proof of (4.2) it suffices to show
(4.7) PZ(TK <t, g < TD) > Cth(TD >t, Ty, < t/2),

= Cth(TD >t, Ty, < t/2, BTV,- € D'),z %
the last equality since that part of the boundary of V; which is not in D' is also part of the
boundary of D. Let C; = ming/p<s<t Cy, Where Cj is the constant which works in (4.2)
for all z € D’. We can and do choose these constants bounded below on compact time
intervals of (0,00). We have on {B,-VJ, €D, ry, <t/2} = F,
P,(tg <t, Tk < 7'D|BTVJ,) > PB"'VJ- (Tk <t—17v;, Tk < TD)

> étPBTVJ. (tp >t —7v;),

which, upon integration over F; gives
P,(rx <t, 7k < TD) = éth(TD >t, Fy),
which is (4.7). O
We now present our characterization of intrinsic supercontractivity. First, as we said

earlier, IU has been proved for a wide class of domains in R?, d > 2. In particular, in
Baiiuelos [4] IU is proved for what are called “uniformly Hélder domains.” More precisely,

a domain D in R?, d > 2, is said to be in UH(«) for 0 < a < oo if

C

dD(Z)"
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where pp(z) = pp(z0,2), z0 € D is fixed and dp(z) is the euclidean distance from z to

8D, and if D satisfies capacity condition
(4.8) Cap(B(Q,R) N D) > C'R*?

for all Q € 8D and all R > 0 with a similar definition relative to balls in the plane. Here,
Cap denotes the Newtonian capacity. For simply connected planar domains the condition
(4.8) is automatically satisfied. In Bafiuelos [4], it is proved that if D € UH(«) for any
0 < a < 2, then D is IU and that for every o > 2 there exists D € UH(«) which is
not IU and for which even the weaker result of the expected lifetime does not hold. For
0 < a < 2, the UH(a) class includes the uniformly twisted L? domains, p > d — 1, of Bass
and Burdzy [7]. In the plane they include any domain which is of the form U Vi, V; as
in (4.1) and f; € L? for p > 1 for every ¢. The results for UH(a) motivate the following
question: Under the assumption (4.8), is d2 (z)pD(z) — 0 as dp(z) — 0, a necessary and
sufficient condition for IU? First, if (z) = zlogz

the domain Dy = {(z,y):z > 0, —0(z) < y < 6(z)} is not IU and in fact, even the

forz >eand §(z) =1/efor 0 < z < e,

lifetime estimate does not hold by Theorem 4. On the other hand, it is easy to see that
dp,(z,0)pp, (z,0) ~ lo;z and thus the condition d%(z)pp(z) — 0 as dp,(z) — 0 does

not imply IU. In the other direction we do have an affirmative result and even a stronger

result.

Theorem 5. Under the assumption (4.8) D is ISC if and only if d5(2)pp(z) — 0 as
dD(z) — 0.

We also have the following result for IU. Part (a) is a corollary of Theorem 5, (b)
follows from the example Dy discussed above. Part (c) follows exactly as the proof of
Theorem 1 in Baituelos [4] with minor changes and part (d) follows from Theorem 1 in

Davis [13] or our Theorem 1 above.

Theorem 6. (a) Suppose D satisfies (4.8). If D is IU then d%,(2)pp(z) — 0 as d%(z) — 0.
(b) There exists a D satisfying (4.8) such that d%(2)pp(z) — 0 but D is not IU.

(c) Suppose D satisfies (4.2) and in addition

en(dp(z))
dh(2)
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with n(r) | 0 as r | 0 and such that

(4.9) /01 mdr < oo.

r

Then D is IU.

(d) Let {a,} be any sequence of positive real numbers such that a, — 0 as n — oo.
There exists a domain D satisfying (4.8) which is IU and with points z, € D such that

can < d%(zn)pp(2n) < Cayn, where ¢ and C are constants independent of n.

Thus under the assumption (4.8), IU implies d%,(z)pp(2z) — 0 but the converse is
false. However, if we assume something about the rate, namely (4.9), we do have IU. In
general, however, we cannot conclude anything about the rate at which d%,(2)pp(z) — 0
from IU. It is also interesting to note that for Dy as above with any 6 | 0 as z 1 oo, (4.9)

is equivalent to |Dy| < co which in turn in equivalent to IU by Theorem 1.

Proof of Theorem 5. The argument in Bafiuelos [4] shows that if d%,(2)pp(z) — 0 as
d%(z) — 0, then for all € > 0 there exists a g(€) such that

(4.10) /Dlu(z)|2log lz)dz56/D]Vu(z)]zdz—l—g(a)/Dlu(z)lzdz

(
for all v € C§°(D), (the C*° functions with compact support in D). By (4.10) and
Theorem 5.2(d) in Davies and Simon [10], (p. 357), D is intrinsically supercontractive and

the sufficient part of Theorem 5 follows. It remains to prove that ISC implies d?(z)p(z) — 0
as dp(z) — 0.

Assume for the rest of this section that, in addition to (4.8), D satisfies

(4.11) lim dp(z) =0.

jz|—o0

We note that by Theorem A.4 in Davies and Simon [10], (p. 380), and Theorem 1.6.8 in
Davies [9], (p. 39), (4.11) is always satisfied under the assumption of ISC. Under (4.8) and
(4.11) we have

Lemma 4.1. There is a positive constant C such that
(4.12) / €CP2 ()| 2)[2dz < oo,
D
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Proof: We shall apply Theorem 3.1 of Evans, Harris and Kauffman [15]. First we recall
that the distance function pp is equivalent to the quasi-hyperbolic distance defined by

(4.13) pp(2) =/217)%’

where the infimum is taken over all rectifiable curves joining z to zp in D. It is easy to

show that gp is Lipschitz continuous with

(414) Vin()l? <
(see Agmon [1], Theorem 1.4). Thus if we set
w(z) = &P (2)

we find that

1

Vuw(z) Sd T
p(z

w(2)

(4.15) {

By our assumption (4.8), there exists a constant C such that

|u(z)|2 2
(4.16) [ Bexc /D Vu(2)[2dz

for all u € C§°(D); (this is a result of A. Ancona and we refer the reader to Bafiuelos [4]

for the exact reference to his paper). By our assumption (4.11) S, = {2 € D: dz#(z) <C}
D

is compact in D for any positive constant C. With this, (4.15) and (4.16) we may apply
Theorem 3.1 of [15] to conclude that there is a positive constant C such that

/ eCPr(|p(2)|2dz < o
D

and hence our Lemma is proved. O

We are now ready to prove the “only if” part of Theorem 5. Since D is ISC, P; maps
L*(p%dz) into L*(p?dz) for all ¢ > 0 and by (0.2),

/D Q1 (2)¢*(2)dz = em/D
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for all ¢ > 0. Therefore

/ e%PD(z)PtD(z, z)dz
D

<([ eCPv<z>|so(z)|2dz)1/2 ( /|

(4.17) <C-Ci< oo

PtD(za Z)

¢(z)

5 N\ 1/2
dz)

forallt > 0.

Next, let @; € W(D), a Whitney cube for D. By the properties of the Whitney
decomposition there exists a universal constant C' such that CQ; = Qj C D where by
CQ we mean the cube concentric with @; and £(CQ;) = C4(Q;). Let PtQj (z,w) be the
Dirichlet heat kernel for Q j» Then

Qj 2. 2 —-CI exp | — ct
(4.18) P, (2, )2 e(Qj)d p( ﬁ(QJ.))

for all z € @;. This follows by first proving (4.18) for the unit cube and then scaling. From
(4.17), (4.18) and the fact that PP(z,w) > P (z,w) we have that

C C't C o2 O
(419) Z exp (-2—pD(Z]) — W) S C Z / egPD( )PtQJ (z,z)dz
Q;j eW(D) J Q; ew(D) 7 Qi
< C/ e%pD(Z)PtD(z,z)dz
D

<Ct<00

for every ¢ > 0. Here z; is the center of ();. From the convergence of the sum in the left
hand side of (4.19) we conclude that £2(Q;)pp(z;) — 0 and the result follows from the
properties of the Whitney decomposition and the definition of pp(z). O

Remark: Notice that in the above argument we only used that P;: L2(p%dz) — L4(p?%dz)
for all £ > 0. It is easy to show directly that this implies ISC.
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