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Abstract

In a smooth finite dimensional parametric family of densities equipped with a
prior, the expected Kullback-Leibler distance between the standardized posterior and the
Normal (0, 1) is determined by the Shannon mutual information between the parameter
and the data. This mutual information, (®; X™), can be recognized as the cumulative
Bayes risk of the sequence of Bayes estimators under an entropy loss criterion. We
give an asymptotic expansion for I(®; X"). As a result, it is seen that the asymptotics
of the cumulative Bayes risk are equivalent to a strengthened Bayesian central limit
theorem. Consequences are given for parameter estimation and investment theory. '
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1. Introduction. We examine large sample properﬁes associated with the relative entropy
or Kullback-Leibler distance between probability density functions for independent and identi-
cally distributed random variables in smooth finite dimensional parametric families. We derive
an asymptotic expression for the Bayes risk. The convergence of this Bayes risk is shown to
be equivalent to a strengthened Bayesian central limit theorem. Indeed, it is shown that the
standardized posterior density converges to the normal density in the relative entropy sense.

Assume we have a parametric family {pg: 6 € Q}, Q C R?, of probability density func-
tions pg(x) =p (x| ©) with respect to a fixed dominating measure A(dx) on a measurable space

X, and we have a prior distribution for © that has a probability density function w(6) with
respect to d-dimensional Lebesgue measure. Given 0, random variables X,,..., X,, are

n
assumed to be conditionally independent with density function pe(x™) = Hl pelx;), for
i=

x" € X". Averaging out 6 gives the marginal density function my(x") = fw@pe:x™)de
associated with the joint density w(8)pg (x") on Q X X",

We denote the relative entropy or Kullback-Leibler distance by D (p || q)= j plogplq,
where it is assumed that p and ¢ are probability densities with respect to the same dominating

measure. The quantity of interest to us is the average relative entropy distance between pg and
m)’, which we denote by

R,w)= | D@511 m?) w(®)de. (1.1)
Q .

This is the Bayes risk associated with the decision theory problem in which nature chooses the
density pp and the statistician chooses a density g,. In this case, the Bayes strategy is to
choose the density g, =m) because it achieves the minimal average loss
R,(w) = min,, iD @311 g,) w(0)de, see Aitchison (1975). As is shown in Clarke and Bar-
ron (1990), there is also an interpretation of R,(w) as the cumulative Bayes risk of the
- sequence of Bayes estimators py (X;) = m (X | X*-1) of the density function pg(X;) based on
the data X ,....X;_; for k = 1,2,.,n. Thus R, (w)n = (Un)¥;_Eex:D gl Py) assesses the
accuracy of Bayes estimators in a predictive context.

It is seen that this Bayes risk is also Shannon’s mutual information between the parameter
0 and the sample X ;,...,X,,. Thatis,

R,(w) =1(0; X"),

where, by definition, Shannon’s mutual information /(®; X™) is the relative entropy distance
between the joint density w(8)pg(X™) and the product of marginals w (8)m, (X").

-
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The primary purpose of this paper is to derive an asymptotic expression for the Bayes risk
I1(®; X™) that leads to an information-theoretic Bayesian central limit theorem. The asymptot-
ics for 1(®; X™) also has direct implications for several applications in statistics and informa-
tion theory.

In Theorem 2.1, we give, under suitable conditions, an asymptotic formula for the Bayes
risk, expression (1.1). The asymptotic formula we obtain is
R (w)= ilog 24 1 j w(0) log det I1(0) d6 + H(w) + 0 (1), (1.2)
" 2 2ne 2
where H(w) = | w(0)log ( 1/w(0)) dO is the entropy of the prior density w, and o(1) — 0 as
n — o, Thus R, (w)/n converges to zero at rate ((d/2)(log n)+ ¢ + o0(1))/n and the con-
stant ¢ is identified.

Theorem 2.2 is a new Bayesian central limit theorem that shows the posterior distribution
is asymptotically normal in expected Kullback-Leibler distance, to wit,

E,Dw(ClI X"l ¢,)—>0, (1.3)

where ¢, is a normal density with mean E(®! X") and variance COV(®I| X"), and
w(@l X*)=w(@®)pgX")myX") is the posterior density for © given X”. Equivalently, the
posterior distribution for the standardized parameter T = COV(®! X "y 12 (@ - E@®I X™))
converges to the standard normal distribution in expected Kullback-Leibler distance. Asymp-
totic normality of the posterior in the L, sense is a well known classical result due to LeCam;
see LeCam (1958, 1986), and most recently LeCam and Yang (1990). We prove an extension
of the classical result for use in proving (1.3).

Theorem 2.2 demonstrates that, under reasonable conditions, the information-theoretic
convergence in the Bayes CLT (1.3) is equivalent to the validity of the asymptotic expansion
(1.2) for the Bayes risk 1(®; X™).

It is our goal that (1.1) and its associated expansion (1.2) be of interest to statisticians
who concern themselves with Bayesian estimation and Bayesian central limit theory; as well as
information theorists who concern themselves with universal data compression and channel

capacity. The implications for the latter two topics will be discussed in detail elsewhere. Next
we discuss how our work relates to some statistical literature.

First we note that the mutual information I (®; X™) can be interpreted as the expected log-
arithm of the Bayes factor between a Bayesian who observes (®, X") and a Bayesian who
observes only X". The logarithm of the Bayes factor occurs in model selection problems
involving a Bayes criterion. Schwarz (1978), Leonard (1982) and Haughton (1988) have
developed expansions similar to (1.2) for model selection problems. It is seen that
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(d/2) log n + c is the penalty which must be paid for lack of knowledge of the parameters. A
higher penalty is paid for higher dimensional families.

For a portfolio selection problem, X; is interpreted as the vector of stock market returns
for days i = 1,...,n and © is a random variable representing side information that determines
the distribution of the returns. It is shown in Barron and Cover (1988) that 7(®; X”) bounds
the average difference in the logarithm of wealth gained over n days between an investor who
knows © and invests optimally for the distribution Pg and an investor who does not know ©
and invests instead according to the Bayes optimal strategy which is M,,. In this context, the
asymptotics for 7(®; X") shows that knowledge of @ contributes only a polynomial growth
factor to the wealth, which is already growing at an exponential rate.

Bemnardo (1979) conjectured the form of the asymptotic expression for 7 (®; X") in order
to identify the prior which maximized it. This is seen to be Jeffreys’ prior, Jeffreys (1962),
which is proportional to the square root of the determinant of the Fisher information matrix.

Ibragimov and Hasminskii (1973) interpreted 1(®; X") as the information in a sample
about a parameter. They established the same asymptotic formula for it under somewhat dif-
ferent hypotheses, stated only in the one-dimensional parameter case. One of their conditions
A.IV (expression 4.1) requires that pairs of densities pg and pg, ¢ asymptotically concentrate
on disjoint sets for large s in the sense that the affinity | \[pg(x)pg , s x)M(dx) tends to zero as
s — oo, uniformly in 6. This rules out many common families such as the Normal (0, 8) and
the Poisson (8). Also, Ibragimov and Hasminskii require ( in Condition A.IIl ) that the Fisher
information be bounded and bounded away from zero. The approach developed for Theorem
2.1 below avoids these restrictions.

In the information theory context of universal data compression the quantities
R,0Ow)=D (@} m,) and R,(w) = [ w(6)D (@§ || m,) dO can be interpreted as the redun-
dancy and average redundancy of universal codés, see Davisson (1973). Krichevsky and
Trofimov (1981) studied minimax redundancy in the multinomial case, obtaining
R, =(d/2)log n + O(1) as its asymptotic expression. Rissanen (1986, 1987) showed that the
redundancy R, (9, w) equals (d/2)log n + o (log n) for smooth parametric families. The more
exact asymptotics for R, (0, w) derived in Clarke and Barron (1990) in an information theory
setting are here extended to give the asymptotics for the average redundancies R, (w).

The characterization of R,(w) as a special case of Shannon’s mutual information
I1(®; X") leads to implications for channel coding with one sender and many receivers. The
applications in this context will be examined in later work. '

To obtain (1.2) we prove upper and lower bounds which are asymptotically identical.
These two bounds require different techniques. “
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For the upper bound we set up an application of the dominated convergence theorem. To
obtain the pointwise behavior we improve an earlier asymptotic formula due to Clarke and
Barron (1990) by obtaining it under weaker hypotheses. The domination requires that we deal
with points on or close to the boundary of the support of the prior. Our technique is to ensure
that integrals about such points can be bounded by integrals about points within the interior.

For the lower bound we use a maximum entropy argument and assume that
n COV(®I X™) - 1()! (1.4)

in Pgq probability, for each 0 in Q. In a different result we give conditions which ensure (1.4)
and are readily verifiable for many examples. It is apparent that (1.4) is an extension of the
asymptotic normality of the posterior in the L, sense.

The outline for the remainder of this paper is as follows. In Section 2 we define our nota-
tion and state the main results. Then we show that the hypotheses of Theorem 2.1 are satisfied
in two examples: the normal with a normal prior, in which is easy to evaluate 71(®; X")
directly, and the Poisson(0) for 6 21 with any member of a class of priors, in which is
difficult to evaluate I(®; X™) without recourse to an asymptotic approximation. The proofs of
the main results are subsequently given in sections 3, 4, and 5. Finally, in Section 6 we give
some implications for parametric density estimation, and an application to stock market port-
folio selection.

2. Conditions and Main Results. We adopt the notation that E means expectation with
respect to pg unless denoted otherwise, E,, denotes expectation with respect to the mixture dis-
tribution with density m, = m), and E e, x» 1s the expectation with respect to the joint distribu-
tion of ® and X". A technicality is that X is a separable metric space, so that the set of proba-
bility measures on X is endowed with the topology of weak convergence. Also, we assume
that the parameter space €2 has a nonvoid interior, and its boundary has d—dimensional Lebes-
gue measure zero. The prior probability density w () is assumed to be given for 6 in Q and
extended to R¢ by setting it to be zero outside of Q, it is assumed to be continuous except for
8 in a set of measure zero, and we let Q,, denote the set of points of positivity and continuity
of w.

So as to facilitate the statements of hypotheses we give two conditions to which it will be
convenient to refer. Let 6, be a point in the interior of Q..

Condition 1: The parametric family is sound at ,, in the sense that the convergence of

parameter values (in the Euclidean sense) is equivalent to the weak convergence of the distri-
butions they index. That is, ]
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8 — 6, if and only if Pg — Py,.

We say that the whole parametric family is sound if and only if it is sound for each value of
the parameter.

Condition 2: pé’z is differentiable in L*)\) at 0= 6,; the set
{x:Vp é:z x)=0, pé: 2(x) = 0} has A measure zero, and the Fisher information matrix,

18,)=Eg SX)SX),
is positive definite, where
SX) =2(Vp? X))pg? X)

is the score function.

For a discussion of the soundness condition, see Clarke and Barron (1990a). Soundness is
used there, in Proposition 6.2, to obtain the existence of a uniformly exponentially consistent
test of the hypothesis 6 = 0, versus {6: | 6 — 0,1 > 8 }, for d positive.

We note that differentiability in L2(A) of pé’z is generally regarded as the natural smooth-
ness assumption so as to invoke the theory of locally asymptotically normal experiments, see
Ibragimov and Hasminskii (1981, Chapter 2) and LeCam (1986, Chapter 17). The requirement
that M({ Vpd’2 %0, p4/2 =0 }) = 0 is a technicality which implies that

Po(f x: po(x) > 0,pg x)=0})=0(l 66,1,

as O — 0,, as required for the Hajek-LeCam theory. Furthermore, it ensures that (Vpéo’2 x)),

the mean square derivative of pem in Lo(A), and (Vpéﬂ’2 &) (p éjz (x))), the mean square deriva-

tive of pg'2/pg”? in Ly(Pg,), yield the same value for the Fisher information, i.e., the two

expressions 4 ] (Vp 91: 2 (x N(Vp 91:2 & ))T AMdx) and 4 , J; . (Vp é: 2 N (Vp 91: 2 (64 ))T Adx)

fra(x)>
are identical.

If pg(x) is pointwise differentiable in © with gradient Vpg(x) then the score function is
more directly expressed as

SX) = (Vpe,(X))pe,X) =V log pg,(X).
We denote the posterior density for 0 given data X" = (X;,....X,,) by

W (6) = w(@l x7) = 2P
mX")
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and the posterior mean by 8" = E(81 X"). Also, we will have occasion to use the pseudo-
estimator

0’ =0, + @ (®,)7's,
=0, + ([ ®,) 1z,

where S, = z'::l S(X;) is the total score and Z, = (n/(8,))"2S, is the standardized score.
Note that by the central limit theorem Z, converges in distribution to a standard normal on R?
and | Z, 12 converges in distribution to a Chi-square with d degrees of freedom, when
X1, Xy are iid. pg,.

Let ¢, 5(0) denote the normal density on R? with mean I and covariance Z. For vectors
6 in RY, we let | 61, denote the norm defined by the positive definite matrix M. When the
Euclidean norm is meant we omit the subscript matrix. We choose to use the alternate norms
because they arise in the second order Taylor expansion of D(6!1 8") =D (Pg!! Pg), which
must be controlled in order to prove (1.2). For densities on R? we let
| w—vl=]Ilw®) -v(0) d6 denote the L distance.

In our proof of the lower bound part of Theorem 2.1, we use the fact that the Bayes risk
R,(w), is the Shannon mutual information between the parameter and the data, which we
denote by 7(©;X"). To derive the asymptotic lower bound for 7 (©;X") we make assumptions
on the posterior mean 0" =E (®1 X™) and the posterior covariance COV(®! X"). Our
assumptions on the posterior covariance hold under conditions given in Proposition 2.1.

Proposition 2.1 states asymptotic normality of the posterior in an L; mode of convergence
and yields n COV(®! X") — I(8)"! in P4 probability, as is required in Theorem 2.1, expres-
sion (2.2). Similar results are in LeCam (1958, 1986, Theorem 17.7.1, p. 619), LeCam and
Yang (1990), Walker (1967), Bickel and Yahav (1969), Ibragimov and Hasminskii (1981),
Hartigan (1983), and Lehmann (1983).

Proposition 2.1. Asymptotics associated with the posterior distribution.

Part A. Assume that Conditions 1 and 2 are satisfied by the family of densities at a point
8, € Q,. When X, X,,... are independent with distribution Pg,, we have the following con-
clusions.

(1) Asymptotics of the likelihood ratio:

: mX™)  an -1Z, %2 w(6,)(2m)?"?
lim ———n (4 = —
n e pg (X") det 1(8,)12

in Pg probability.
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(2) Asymprotic normality of the posterior in L:

lim lw,, - ¢ef‘ (nl(eo))-ll - 0,

n — oo
in P g probability.
(3) Asymptotics of posterior moments: Forr > 0,

J1e1”w®de
Q

implies

Lm [ 1Vn 0-0)1" Iw®] X") - Oy, (ue,) ) d6=0,

n—e0Q
in Pg_ probability. Consequently, for r = 1, we obtain \n 8" -6)—0,in probability, and
Vn (E@®1 X™")-86,) -»N(0,1(6, YY) in distribution. Forr = 2, we obtain

n COV@®I| X™) - 1(6,)~.

Part B. Assume that Conditions 1 and 2 are satisfied by the family of densities at every point
in Q,,, and that fQ | ©1 w(B) db is finite. For X,X,,... governed by the Bayesian distribution
M, , we have the following conclusion. Here the normal approximation is centered at the pos-
terior mean, and scaled with the posterior variance.

(4) Bayesian central limit theorem with convergence in L :

Hm | w, - 0@ x*), covier xm! =0
n — oo

The key step in the proof of the upper bound part of Theorem 2.1 requires that we iden-
tify an upper bound for the pointwise behavior in probability of the quantity D(Pg, |1 M,).
This is done in Proposition 2.2. It is similar Theorem 2.1 in Clarke and Barron (1990), but

here it is obtained under the Conditions stated above which are weaker than those used in the
earlier result.

Proposition 2.2. Assume that conditions 1, and 2 are satisfied by the family of densities
at a point 0, € Q. Assume also that

D(Po,11 P =2168-8,17,+0(1 66,17 @.1)
as® — 0,.
Then,

| pe,X™) 4 , 1 Z, 12
og ——— — —logn+
g mxry 2 o8 3

+log [ w(8,)2n)?2det 18,2 1<0(1) (2.2)

-
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where o(1) tends to zero in Ly(Pq ). Consequently,

limsup (D (P§ |1 M,) - -(-I-log n ) <log [w(8,)(2me ) %det 1(8,) V2 1. (2.3)

n—o

Now we state formally a set of conditions under which the asymptotic formula from (1.2)
holds.

 Theorem 2.1: a)Assume that the Bayes risk for the estimation of O under squared error .
loss, is of order O (1/n), that is,

limsup n Eg ynl 6= 0" 12 < oo, (2.4)

n— e

where the expectation is taken with respect to the joint distribution for ® and X", and that for
each©in Q,,

n COV(@®I| X™) = I"}(9), (2.5)

in P g probability. Then, we have the lower bound

liminf [ 1(®, X™*) — ilog n)

n —eco

> L10g L+ L [ 1(8) log det 1(8) 46 + H(w). 2.6)
2% 2me T2,

Consequently, the limit inferior of the minimax value, R, = inf, supg D(pg!! g,), satisfies
the bound,

liminf [ R, — —‘21- logn 12 1 log 21 +log J\/detl(e de . Q.7

n — oo

b)Assume the hypotheses of Proposition 2.2 hold. Suppose that there is an € > O such that, for
each 0 in Q,, there is a matrix I (8) which satisfies

D@ &)< %(e _ &I, (6)6 - 0), 2.8)
on the set {0e Q, :D@OII ©) < 2¢}, so that

[ 11og det I,(8) | w(B) d6 < . 2.9)

Assume also that for each 0 in Q,, there is a 8" in Q,, with | 6 — 0" 12:(9) < € so that

{6:10 —-6"17g <&} cInterior(Q,). (2.10)

Finally, assume that the prior w is locally lower bounded in the sense that
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J w(®) log —— 1 —g5 40 <= @.11)

16— 9”',2,(9) <E

Then, we have the upper bound

limsup [ 1(@; X™) — il-log nl< log L + = jlog det 71(0) d6 + H(w). (2.12)

n— e 2re

Together, (2.6) and (2.12) determine the limit of I(®; X") — g-log n. This verifies the

expansion (1.2) of the Bayes risk.

The two restrictive hypotheses for the upper bound admit the following interpretation.
The first, expressions (2.8) and (2.9), means that D (611 ) is locally upper bounded by its
second order Taylor expansion. The second, (2.10), is a generalization of convexity. It
requires only that, in the position dependent norm defined by 7.(6), each point 6 is contained in
a neighborhood of radius V& which is in the interior of Q,,. This condition enables us to get
bounds near boundary points. For points away from the boundary, we can take 6” to be ©
itself. The hypothesis (2.11) is only slightly stronger than the finiteness of the prior entropy.
In the one dimensional setting, cases where (2.11) is strictly stronger than finite entropy
include those where the boundary of the support of the prior has infinitely many cluster points
in a bounded set.

We note that if there is any estimator which has Bayes risk of order O (1/n) then the
Bayes estimator also has Bayes risk of order O (1/n) since, by definition, the Bayes estimator
has minimal Bayes risk. A standard approach for identifying O (1/n) consistent estimators is
based on the method of moments. In particular, let g and 4 be functions such that
0= h(E,, g (X)). If the variance of g(X) is integrable with respect to the prior (that is, if
Eg x | gX)—-E, gX) 12 is finite) and if h is a Lipschitz continuous function, then
hypothesis (2.4) is satisfied by using the estimator &=hn(n e 8 X))

The assumption (2.4), which is formulated in terms of a second moment, can be replaced
- with the weaker moment assumption that E g y» Wn | 9—9!)" is bounded for some o >0, in the
lower bound part of Theorem 2.1. However, in the end there is nothing to be gained from such
a weakening. Indeed, the convergence of second moments of vn (€-8) is necessary for the
information-theoretic Bayesian central limit theorem in Theorem 2.2.

The other key hypothesis for the lower bound is (2.5). It is formulated as convergence in
P g probability for each 0, since this is what is verified in Proposition 2.1, as a consequence of
the asymptotic normality of the posterior. A Bayesian reformulation can be used in place of
(2.5), requiring the convergence of n COV(®1| X ")—I'I(S-D) to zero in probability with respect
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to the joint distribution of © and X".

In Bernardo (1979) the minimax properties associated with relative entropy risk were con-
sidered. Our result gives the lower bound part, (2.7), rigorously which we state because the
lower bound depends on the average with respect to the prior and so is easy. A formal
verification for the upper bound part can be given but is a bit more difficult since it requires
pointwise uniformity. This will be done in a subsequent paper.

Next we state an information-theoretic formulation of the Bayesian central limit theorem.
Conditions are given such that the relative entropy distance between the posterior density and a
normal density converges to zero. In the proof maximum entropy arguments with constraints
on the first and second moment reveal the role of the normal distribution. In this way the con-
nection between the Bayes risk problems formulated in terms of the information-theoretic
framework and the more classical squared-error loss framework is revealed.

Under a subset of the conditions, the asymptotics for the mutual information 7 (@;X") and
the relative entropy D (w(:1X")11 ¢g @/ x*)covei x*)) are shown to be equivalent. It is not
surprising that the asymptotic normality has implications for the mutual information 7 (©;X"):
indeed, the asymptotic normality is the basis of the proof of Ibragimov and Hasminskii (1973)
and the conjecture of Bernardo (1979). It is the reverse implication that is somewhat surpris-
ing: Knowledge of the asymptotic Bayes risk /(®;X") for the estimation of the density of X"
given 6, determines the Gaussian shape of the posterior density of 6 given X".

Theorem 2.2: Assume that the conditions for the upper bound and lower bound in
Theorem 2.1 are satisfied. Then, we have that

lim E,D(w( | X") 11§50 xryncovel x+y ) = 0. (2.13)

n— oo

If only (24) and the conditions of the upper bound are satisfied then the following are
equivalent:

i) The limit in (2.13) exists and is zero;
i) The following limit holds:

E,, log det nCOV(®} X") — [ w(8) log det/ (8)! d6; (2.14)
and

iii) The asymptotic expansion for the mutual information, (1.2) holds, i.e.,

1(®; X") = % log 5% + -% fw(®) log det 1(8) + H(w) + o (1).

We illustrate Theorem 2.1 for two parametric families. The first is the Normal (0, ¢2)
with a Normal (0, 0'1,2) prior where ¢ and G, are assumed known; the second is the Poisson (0)
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with any prior positive on [1, eo) and satisfying certain tail conditions.
In the first case, we know that (®, X") is jointly normally distributed, and X is sufficient.
Thus,

1(©;X™)=1(8; X) = Llog (1 + —ni’%)

’ - ] 2 g 02 .

This is asymptotically the same as the formula from Theorem 2.1 which we find is
(1/2) log n 0'3/0‘2, since the Fisher information is 1/02, and the entropy of the Normal (0, sz) is

2
(1/2)log 2me o,

The hypotheses of Theorem 2.1 are easily satisfied. Conditions 1 and 2 are obviously
satisfied. Hypothesis (2.4) is satisfied by the mean and so by the Bayes estimator. So, the
lower bound part of Theorem 2.1 applies. The upper bound part is similarly easy. We may
choose I(6) =1(0) = 1, so that (2.8) and (2.9) are obviously satisfied. There are no boundary
points for the support of the normal prior so (2.10) is vacuous. Finally, (2.11) is satisfied for
any positive €. | '

The Poisson (0) is a nontrivial example. The theorem due to Ibragimov and Hasminskii
does not apply. This is so because the hypothesis that the Hellinger distance between two dis-
tributions does not go to zero when the Euclidean distance between their parameters is
bounded away from zero is not satisfied. We see this by noting that Hellinger distance is dom-
inated by the Kullback-Leibler distance, and for the Poisson, D (8, | | 6°,) goes to zero for the
choice of sequences 6, = n and 6", = n + 1 whose difference is always unity.

Our hypotheses are satisfied. It is easy to show D (011 6") <60 — 6')? for 6= 1 and
8" = 1/2: both sides agree when 0’ = 0, for 0" > 6 the derivative of the right side is greater than
the derivative of the left, and for 8’ < 8 the derivative of the right side is less than the deriva-
tive of the left. This means that hypotheses (2.8) is satisfied for any 7.(6) less than or equal to
20. Note that 1 (9) is necessarily greater than or equal to 1/6, the Fisher information.

We assume that the prior is positive on [1, ). The left hand endpoint is the only boun-
dary point, and away from it (2.10) is satisfied. As 6 tends to one, the point 6”, as a function
of 6, may be chosen to be the right hand endpoint of the interval {6”: 16 — 8”| ,25(9) < €}, 50

that (2.10) remains satisfied.

Now we impose two conditions on the prior. The first is that w(6) be bounded away
from zero at the boundary point. The other is that for 6 large enough the prior density is dom-
inated by a function which is O (1/6'* ™) for some positive 1. The second condition ensuies
(2.9). Together the two conditions imply (2.11).



-13-

Now, from Theorem 2.1, we have that

1(®; X™) = % log ?7;? - -%— { w () log 8 d6 + H(w) + o(1),

which is difficult to derive any other way.

3. Asymptotics of I (®; X"). We start with the lower bound. It is here that we use the
maximum entropy argument. Following Chow and Teicher (1978) we say that a sequence of
random variables Y,, is uniformly integrable from above if and only if its positive part is uni-
formly integrable. Equivalent to uniform integrability from above is the condition

lim Sl.lpE Yn 1[Y,>r}=0'

r e n

If Y, is uniformly integrable from above and converges in probability to a random variable Z,
then

limsupE Y, <E Z

n-— o

We only use uniform integrability from above since obtaining a lower bound on 1(©, X™) will
require us to upper bound the conditional entropy term which arises in its definition.

The lemma below gives sufficient conditions which we will use to show that
log det nCOV(®! X") is uniformly integrable from above. It is modeled on the proof in Bil-
lingsley (1986), pg. 348.

Lemma 3.1: If a sequence of positive random variables Y, satisfies

SupE Y, < oo,
n

then Z, = log Y, is uniformly integrable from above.

Proof: Letg(r)=e". Then, for r > 1, the function re™ is decreasing and consequently
we have the inequalities

Zn l{Z, >r}

O0<supE Z 1 =sup E g(Z
up nl{z, >ry = SUP gZ,) 2 Z)

r
< supE g(Z,).
g(r) np g ( n)
By assumption the expectation on the right is finite and r/g (r) converges to zero as r — oo, SO
the lemma is proved. O
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Now we give a proof of part a) of Theorem 2.1.

Proof of Theorem 2.1, lower bound part: The Bayes risk R, (w) = fg D@pgl!l m,)w(B) do is
equal to Shannon’s mutual information which we expand as the difference between the entropy
of the prior H(w) = H(®) and its conditional entropy

Hw! X" = | [ w®!l x*) log ——— 46 mx™) dx™,
X Q w(9| x")

which we also denote by H (@1 X™). Therefore the Bayes risk is

I1(©X"Y=H(@®)-H(@®I| X")

=H®) - [H® X" = x")m " W\dx")
xﬂ

=H@®)- [H@® -0"1 X" = x")m @™ )Mdx")
XII
> H(®) - % | m@™) log [(2me)? det E i ,»n@-0)@-06") I Mx") (3.1
Xll

d n
—H(®)+>210g2ne

- %IX, m(x") log det E,, ., ;¥ (@ ~ 6" Wit (© — 6" A(dx™), (3.2)

where the inequality comes from the fact that the normal achieves the maximal entropy under a
covariance constraint.

We will show that log det nCOV(@1 X") is uniformly integrable from above with
respect to the mixture by bounding it with a sum of functions each of which is uniformly
integrable from above. By Hadamard’s inequality we have the following bounds:

log det [ n COV(@®I X") ] < f‘, log[n Var(®;1 X™) ] (3.3)

i=1
By assumption,
iulx) E, Eg, x» n(©; — 0,)% < oo,
so, by Lemma 3.1 we have that each
log Eg, x»n(®; - 6;') (3.4

is uniformly integrable from above. Thus, the right hand member of (3.3) is uniformly integr-
able from above. This implies that

log det [ n COV(BI X*) ] (3.5
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is uniformly integrable from above, and therefore so is
log det [ n COV(B! X™") ]+ log det 1(0). (3.6)
By assumption we have that
log det n [ COV(OI X") 1+ log det I(6) = 0, (3.7

in Pyx| g probability, for each 6 in the support of w, and therefore in the joint probability of
(®, X*™). Now, by uniform integrability from above we have

n —eoo

limsup E,, [ log det nCOV(©I X")]<- J log det I"1(0)w (0) d®. (3.9)
Q

Finally, from inequality (3.2), we have that

liminf [ 1(®; X") — H(®) — d

n— e 2

log = ] 2 - limsup E,, [ log det nCOV(®I X*) ]
27158 n - oo
= [ w(®) log det 1(0) 4,
Q

which proves part (2.6) of the theorem. To finish, we examine the minimax value

R_=inf s R , 0
" Q,GIGJI;Z n@n, 6)

in which Q,, is a subprobability used to estimate of the density Pg, and
R,(Q,.09)=DPgll Q,).

Since an average lower bounds a supremum, we have that the minimax value can be lower
bounded by the Bayes risk of the Bayes estimator, which is R,(w)=1(®; X"). Now (2.6)
implies (2.7), finishing the proof of part a) of the theorem.

Before embarking on the proof of the upper bound part, we give the proof of Proposition
2.2.

Proof of Proposition 22: Let
R =1 pe,X™) d, 1Z,12
=log ——— - —logn +

Our task is to upper bound R, by a quantity that goes to zero in L,(Pg,). By conclusion (1) of

+log [ w(8,)(2m)*2det/ (6,) 2 ].  (3.9)

Proposition 2.1, we have that R, goes to zero in probability. Therefore we must show that it is
uniformly integrable from above. Since | Z, 12 is convergent in distribution and has constant

o Po,X")
expectation, it is uniformly integrable. It remains to upper bound log _(_X")— - izi- log n by
. m

a uniformly integrable sequence of random variables. First, note that
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mx") 2 {} w (0)pe(X™) d.

So,
o Pe&D a4 o [gw(e)Pe(X")/pea(X")de]
o % oen <—
o8 mX") 7 BT g n-dr2
[ po(X™) Ipo,(X™) O
<-log[ = Vol B) ] + log V:ﬁi) — log w(8,),(3.10)

where B ={0:16-6, II(GD)SK/\/F}, w(0,) =infg . p w(6) which goes to w(B,) as

n — oo, and Vol (B )/n"”“2 =Vol{u:lul £K} det 1(9,,)1’2-is constant. Now we use Jensen’s

inequality to get
{;Pe(X") Ipe,X™) dO
log Vol (B) Vol B) 1!; og w(8)pa,X™) IpX™)
1
) : ")PouyX™) du, (3.1
VOI(C) IulIsK ogpeo(X ) O(u)( ) U ( )

where O(u) =6, + (nl (6, YW VY2 and € = {u: 1l ul <K}. This is the upper bound which we
show to be uniformly integrable. Since [, ,| < x ¥ du =0, it is equivalent to show that

L Tlogpo, X™)ipeu)&™) —u Z, 1 du (3.12)

is  uniformly integrable. Now Condition 2 implies that the integrdnd
log pe, X" )P gguyX™) — uTZn converges to (1/2)! u 12 in P, probability for each fixed u in
C. This follows from LeCam’s asymptotic normality of experiments, see LeCam (1986). Con-
sequently, by application of Fubini’s theorem, the convergence also holds in probability with
respect to v X P where v(du) is the uniform distribution for # in C. Then,

, 1
lim Epa.é | log po, X™"VPeu)X™) —uTZ, — =1 ul1?l du =0, (3.13)

n - e 2
provided that log pg (X")/p g, X™) = u?Z, is uniformly integrable in Li(v x Pg).

To show that log pg (X" )/pew)X™) - u?Z, is uniformly integrable we note that it is the
sum of a positive quantity (3.14) and a uniformly integrable quantity (3.15). Namely:

log po, (X" )pew)X™) — u’ Z,
=2(~log [ Pou)X")pe,X™) 1V + [ PouyX™)po,X™) 1¥2 - 1) (3.14)

+2(1-poo X" Vpo, X" 112~ ulz,. - (3.15)
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Here (3.14) is positive ( since log p < p — 1 for p 2 0 ) and (3.15) is uniformly integrable in
Ly(v X Pg ). Indeed, because they have bounded expected square, (pg,)(X")/pg, (X 2 -1
and uTZ, are uniformly integrable. Thus, to show that log Po,X"VpouyX") — uTZ,, is uni-
formly integrable in L,(v X Pg ) it is enough to show that the sequence of expected values

converges to the expected value of the limit. Using expression (2.1), the limit of the expected
values of (3.14) plus (3.15) with respect to L(v X Pg ) is

Lim E,, 1 X" "Y—-uTZ, du
n —eo VOl(C) J ogpeo( )pe(u)(X )

D(P’eln 1 Pg(u))du

= S Vol (C) !
]
C

. n 2
Hm 2 ew)-0, 12, . d
e Vol(C 7 | 80 =8, 11, du

2 .1
Vol(C) I | ul?du, (3.16)

which is the expected value of the limit in v X Pg , as desired.

From (3.13) we conclude that

lim E, | g(logpea(X")/pg(u)(X")—uTZ,, ) du — %é lut?du 1=0. (3.17)

n —» oo
So, the integral in (3.12), or equivalently (3.11), is uniformly integrable in L (P g,)- This com-
pletes the proof of Proposition 2.2. 0

Proof of Theorem 2.1, upper bound part: We set up an application of the dominated con-
vergence theorem. Let

v,©0)=D@gll m,) - -(21 log n,

An upper bound for the pointwise behavior of y,, is given by Proposition 2.2, as being

d 1 1 1
— —+ =1 1)+ 1 .
) log e + 5 og det 1(6) ogw ©

To set up the domination, note that by an inequality due to Barron (1987) we have that

Y, (6) <2en - izl- logn —logW{0 . D@®II 0) < 2¢}, (3.18)

where W is the prior probability, which we must lower bound. By assumptions (2.8) and
(2.10) we have that

’ 1 72
Il < = -
D@1 §)s o | 6-01fg)
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< e-e"l,{(e)+ | e'-e"|,’i(e,

<e+ 16 - 9"|122(9). (319)

Now we have that
W{6:D@I 8) <2} 2W{0": | 6 - 0”115 < ¢}
> inf  w(®) | de

10 -0"14y <E {6716 —0"12 <€}
1.(0)
= inf w(6) det(——':'—)‘l’2 Vol(B (0, 1)), (3.20)
16— 0”14 <€ €
where the volume of the unit ball in d dimensions is a constant that does not affect the calcula-
tions. We choose € = g,= 1/n and obtain the upper bound

Y, (0) < inf w(0) + ?lz- log det 1,(0) + ¢, (3.21)

| 6’—9"|,2,(9) <E

where ¢ is a constant. Since there is an € > 0 so that the integral of both terms is finite, we
can apply the dominated convergence theorem to the sequence W, for n > 1/¢’. Now the
upper bound part of Theorem 2.1 follows. &

4. Asymptotic normality of the posterior in information. In this section we prove Theorem
2.2. This amounts to noting that when moments match, a Kullback-Leibler number can be
written as a difference of conditional entropies.

Proof of Theorem 2.2: let Z =Zg, y» denote a random variable for which the condi-
tional distribution of Z given X" is normal with mean E(®| X") and variance matrix COV
(®1 X™). Such a random variable can be defined by Bayes rule: use m, as the marginal for

X" and choose the conditional density for 6 to be N(E(®I X™"), COV(®I X")). By the
definition of the mutual information

I(@; X")=Hw)-Hw! X")
=Hw)-HEZIX")+[HEZ!X")-HwI X™)]
=H(w) - %Em log (2me)? det COV(®I X™)
+E,Dw(IX") Il N(E@I X™), COV(®I X™))), (4.1)

since (Z | X™) and (®! X™) have the same first two moments. By rearranging the expression
we find that
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=I(6; X") - H(w) - % log 7’;-6; - -%— [ 10g det 1(8) w(@) a® 4.2)
Q

+ % (E,, log det nCOV(@| X™) = | log det 1(6)! w(8) d6). (4.3)
Q

Expression (4.2) is controlled by the assumed upper bound on I(®; X"). In view of (3.8),
(4.3) tends to zero also. Thus, we obtain (2.13).

Next, we prove the equivalence of i), ii) and iii). First, i) implies ii): The assumed
upper bound deals with (4.2), and the existence of the limit from i) gives that expression (4.3)
tends to zero, which is the same as (2.14) in ii).

We have that ii) implies iii): All we require is a tight lower bound on I(®; X"). Since
the Kullback-Leibler number is positive, use of ii’) in (4.3) gives that

10; X™) — Hw) - 121- log E:c_e— - % [ 1og det 1(8) w(®) d© = 0. (4.4)
Q

Last, iii) implies i): To control (2.13) note that, by iii), (4.2) goes to zero, and the
assumption (2.4) allows the argument in the proof of the lower bound part of Theorem 2.1 to
hold so that (3.3) is valid. This gives an upper bound of zero for the positive quantity in the
limit of (2.13).0

5. L; Asymptotic normality of the posterior. In this section we prove Proposition 2.1
so that we can replace the assumption (2.5) in Theorem 2.1 with better hypotheses.

Proof of Proposition 2.1 We first demonstrate the conclusions (1) and (2). In place of
w, (0) we deal with w,(8) = C,, w,(8) given by

w(O)poX™)

%
" w (0, )P, X" )det(nl (8,)) 2(2m)? %e 1 Z, 172
which has the advantage of agreeing with the normal approximation at 6 = 6,. Here,
n

w(0,)p 8, X™)det(nl 8, ))_1/2(27t)d /2e_| AL X

and we note that conclusion (1) is equivalent to C,, — 1 in probability.

Letting ¢, (8) = Og, (ur(a,)(6), we have that

1C, —1l=1fw,—o)1 <1 w, —¢,1, (5.3)
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and
[ Wy — 0,1 =] 1 w, -C,w, +C,w, — ¢, |
SI1C, =11 +[ 1w —¢,!
<2[ 1wy —¢,l. (5;4)
Consequently, to demonstrate conclusions (1) and (2), it is enough to show that
[ 1 w; = ¢,1 —0, in probability.
We decompose the L, distance | | w,: — ¢, | into three pieces, each of which is shown to

have asymptotically negligible contributions in Pg, probability. Let
B = {9: | - 90 lI(e,) SK/W}. We have

[1w(8)~6,0)!d0<] I w,~0,1d0+ | w:do + [¢, d6. (5.5)
B B B* B¢

First we handle the last term in (5.5). The event B¢ is contained in the event
B ={0:10~0"l;gy2KNn —1Z,INn }, and a change of variables to
t = (nl(8,))"VA(8 — 0" yields [p 6,(0) d0 =i, 5 _ 7| 0(t) dr where ¢ is the standard
normal density on R?, which is negligible for large K, as can be seen by two applications of

Chebyshev’s inequality. One gives that | Z, | < K/2 except on a set of probability 4d/K?2; the
other gives that when | Z, | < K/2, we have that ch 6, <4dIK>

Next we handle the middle term on the right in (5.5). Conditions (1) and (2) imply that
there exists a test of 8, versus B with acceptance region A, such that Pg (A) < e-a°K2,
Po(A,) <e™ ' O~ % 2 for KNm <10-0,1 <e, and Pg(d,)<e™* uniformly for
1 8-06,1 >¢€ and all n, where a, a,, a, are positive constants. This follows from LeCam

(1986, pp. 619-621), see also LeCam and Yang (1990), page 155 and 161, steps 4,5, and 6.
Then, by Markov’s inequality and Fubini’s theorem,

Pen(ch w, d0 2 1/K ) <Py (4, N BI w, d8 2 1/K) + Pg (A,)
< [ Eq, 1,w,0)d0 + P (5.6)

.. * -1 Z, 152
Now, by definition (5.1) of w,,(8) and e <1 we have

w(B)Eq, 14, (peX™)ipg, (X))
w(6,)2m)?2 det(nl (8, )12

Eg, 1, w,(8) <

w(0)Pg(4,)

< .
w (8,)2m)""? dex(nl 0,))2

6.7
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By the continuity of the prior at 6,, we may choose € > 0 such that w(0) < 2w (0,) for
| -0, < € and integrate the bounds to get

BIC w(B)Pg(4,) do< o e_e{’l e w(O)Pg(A,) dO + | ] e w(O)Pg(A,) dO

o

—_ - 2 _ 2
<2w(8,) | el 0=0.172 yq | prak
£>10-6,1 2Knn

2w (8,)
<

T ond2  uisk

< 2w(0,)2n)?? 4

-na 282

2
J‘ e-a;lul/2du+e

2
—nast
e %,

5.8)
(@n)??  aK? (
Combining (5.6), (5.7), and (5.8) yields
‘ - - 24
Po (J w:do>1K)<e™ + ke™* 4 . 5.9
0, (. W ) a4k detl (9,12 62

Letting n — oo, we see that the contribution from the term ch w'(6) d6 is negligible for large
K.

To complete the proof of parts (1) and (2), it remains to show that the integral over B is
negligible. By the continuity and positivity of w at 6, we remove the dependence on the
prior. The triangle inequality gives

*6) — — [ 26 _
g | wp(8) — ¢,(0)] de—lfil w(e,,)v”(e) 6,0 do
s£| ) 11 v,,(O)d9+If2 | v, (8) —,(0)! do

< pl{ v, (6) d8 +£ | v,(8) — ¢,(0)! 4O

<p+(Q +p)1£ | v,(8) —,(0)! d6, (5.10)
where p = esupB | w(®©)w(0,) — 1! which tends to zero as n increases. Here we have let
€

poX")

vn (6) = 2 .
Po,X™)2m)? 2" 22 det(ni (9, )) 12

(5.11)

Now it is enough to show that the integral in (5.10) goes to zero in probability. Changing vari-
ables to u = (nl (0, NY2(6 — ©,) the integral simplifies to

_ 1 PowyX")  1u_zim
£|v,,(e) $,(0)1 de'__(zn)m mjsx' S e = e | du, (5.12)
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where O(u) =6, + (n/ (6, ) Y24. We show that the expected value with respect to Pg, con-

verges to zero, from which convergence in probability follows. By Fubini’s theorem the
expected value is

Eo, [ 1v,® - 0,®)1 a0

xX™) i
) 2 1)“”2 | II<KE6" | I:;‘(:;( FAC B (5.13)
T wE Ps, e " :

To show that the integral tends to zero, it follows from the bounded convergence theorem that
it is enough to show that for each fixed u the following expectation converges to zero,

PewX")  _ju-zm |
1 Z,.1%2 )
pe,X")e

Now, condition (2) implies that the quantity inside the expectation tends to zero in probability.
This is the Hajek-LeCam theorem for the local asymptotic normality of the family of experi-

Eq |

(4

(5.14)

ments Pg,), see Ibragimov and Hasminskii (1981).

To get the desired L1(Pg ) convergence, it remains to show that the quantity inside the
expectation is uniformly integrable in L;(Pg ). Since the two exponentials in (5.14) are
bounded by one, it suffices to show that pe(u)(X")/p o, X ") is uniformly integrable in L(Pg ).
Now, pgu)X")pe,(X") is a positive random variable that converges in distribution to
e"'Z~ 141”2 where Z is a standard normal random vector on RY, again by the Hajek-LeCam
theorem. So, for uniform integrability, it suffices to note that the expectations
Eg pou)X")pe, (X") are bounded by onme, which is the expectation of the limit,

E e¥Z2- 417221  This last calculation follows by recalling that the moment generating

function of Z is E (e "TZ) =e!“'”2 We have now completed the proof of conclusions (1) and
2).

To prove conclusion (3), let r > 0 be given. Assume fg | 817 d6, is finite and hence
that o 1 -9, |70,y 48 is finite also. Now, we let B’ ={6: | 6 - 6"l < KNn}. We

| bound the contributions in the following decomposition.

gj} | N (0= 0@,y | Wa(®) —0,(0)1 dO
<K' J | w,(8) — 9,(0)1 d6 + Bj’c | n' (6 - 6],y 9,(0)1 d6
+ Bfm | N (8 — 0) 1],y wa(6)! d8. (5.15)

The first term is less than K™ | | w, — ¢, | which tends4o zero in probability by conclusion 2.
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By change of variables the second term is J| ,, 5 ¢ | #1 ¢(z) dt where ¢ is the standard normal
density on R?. For fixed r > 0, it tends to zero as K increases. It remains to bound the last
term. When | Z, | < K/2, we have that on B,

K<Vn10-01l15,sVn106-6,l;9,+12Z,!
<Vn 10-9,l;,)+K/2 (5.16)
and consequently, K/2 <Vn | 6 -6, 1 18,) SO continuing the inequality in (5.16) we get
| 6-6"1;4,)< 2n 1 6-6, l1¢e, ) (5.17)
So, when | Z, | < K/2,the remaining term in (5.15) is bounded by
BIM | Nn (8 — 6) 1],y Wa(8)! d < BI 21 Vn 8 - 6,) {9,y W (0) | @6, (5.18)

where here B¢ ={2Vn | (8 —6,)!;4 )2 K}. Expression (5.18) equals
Liavre- 0,) 178,y Wa®) 1 d6. (5.19)
C, B* e

Here, C, is defined as in (5.2), and by conclusion (1) it converges to one in probability. Thus
it remains to control

BIC 21V (8- 6,)1f,) wa®) ! db. (5.20)

This can be done in the same manner as in (5.6), (5.7) and (5.8). The analogue of (5.6) and
(5.7) becomes

Py, {BI, 21 Vi (8= 8,) /g,y wa(®)| d6 = UK}

[ 210 (©-6,)1]p,) w®)PeA,) dO
<k & + ¢ 0K (5.21)
w (eo )n—d/2(2n)d/2dctl (eo )—1/2

The analogue of (5.8) becomes
ch 21 Vn (8 = 6,) {9,y w(O)Pg(A,)! dO

ZW(eo) J‘ 2| u lr e—all u|2/2 du

<
n?’2 21412k

+ 2" 2 [10-8,)1" w@)! de. (5.22)
By Markov’s inequality,

N leKzl ulr gl el g S(%)’”Iil y|rH gt w2 4 (5.23)
u
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Combining (5.22) with (5.21) yields
Pi{] 21 V0 (®=8,)l]q,,wa®! dO 2 UK}
° B¢ 4

< O(UKT) + 0 (Kn@+ 2=y 1 0 ek (5.24)

which tends to zero as n — oo and then K — oo, This completes the proof of convergence of

r™ moments in conclusion (3).

Using r = 1, we obtain
VR lE@®1X™) -6 1=1[vn (0 -0)w,®) - 0,(8) de |
<fNn18-01 1 w,0)—0,0) | do (5.25)
which goes to zero in probability. Thus, Vn (E@®I1X™*)-6,)-1 (90)‘1'22,, goes to zero in

probability. Since 1(8,) 22, converges in distribution to N (0, (8, YY), by the central limit
theorem, it follows that ¥n (E (@1 X™) — 6,) also converges in distribution to the same limit.

Taking » = 2 we find in the same manner that
| RE[ (8 —0)® -0 1 X"1-1(8,)I
=1[n (0-6%0—0) w(,(6) - ¢,(6) dol (5.26)
and the right hand side of (5.26) goes to zero in probability.
Finally,
nCOV(@®I X™*)=nE[ (®@ - 06)(@ - 06" | X*) - n(E@I X"*) - )E@®I X*) -0 (527)
and the last term tends to zero in probability by (5.25). Consequently, |
| nCOV(®I X*)~-1©,)1 - 0, (5.28)
in probability. This completes the proof of part A.
For part B, note that as a consequence of (5.25) and (5.28), if {1012w(®)do is finite,
we may replace 6" and (n/ (6,))~} in the normal density approximation to conclude that
J 1w, = g1 xm), cover x! = 0. (5.29)

in pg, probability, and hence also in Pg expectation since it is bounded by the constant 2.

Assuming that Conditions 1 and 2 are satisfied for every 0 in a set of prior probability one, it
follows by Fubini’s theorem and the bounded convergence theorem that

lim EpJ | wClX™) = bz x»), cove! x») |

n— oo

n — o
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This completes the proof of the theorem. O

6. Applications. In this section we give two applications of our results. The first is to
parametric density estimation. We show how the quantity we have examined lower bounds the
risk in parametric estimation. The second is to investment theory. We show that the wealth
achieved by the Bayes optimal strategy for investment differs by only a polynomial factor from
the wealth achieved by the strategy one would employ if one had full market knowledge.

Parameter estimation can be regarded as a special case of density estimation in which we
restrict the estimator of the density to be of the form p(x | 8(X")). In the present context we
have used the parametric family' as a tool to generate an estimator, relinquishing information
from the family about what the true value of the parameter is. By enlarging the class of estima-
tors we see that in terms of global optimality properties, the Bayes risk in parametric density
estimation lower-bounds the Bayes risk in parametric estimation:

inf £, Eq D11 8) 2 inf £, Eg D (Po | Q), | (6.1)

where 8 is an estimator of the parameter, Q is an estimator of the density and
D(®11 8)=D(Pgl| Py) is the relative entropy loss for parameter estimation. The quantity in
Theorem 2.1 gives an asymptotic lower bound on the Bayes risk of parameter estimation.

This lower bound is achieved by the predictive distribution 15\,,, which is the Bayes esti-
mator of p (x,,;! 6) based on X", as in Clarke and Barron (1990), see also Aitchison (1975).
Under the conditions of Theorem 2.1 in the former, the individual risk terms Eq, D (Pg |1 B))

also converge to zero as n — oo, This follows from noting that
Eg, D(Pg 11 P) =D(Pg, I M,) —D(Pga‘1 I M,_y), 6.2)

and applying Theorem 2.1 to each term on the right hand side. Thus, the predictive density is
consistent for the true density in expected Kullback- Leibler distance. In a similar fashion we
have that

[ EqD P11 Pyw®)d0 = 0 (1), (6.3)
Q

from Theorem 2.1 here.

In the investment theory context, we generalize a result due to Barron and Cover (1988).
Assume that each X; = (X; ;,....X; ;) represents the & multiplicative factors by which dollars
invested in stock j for j = 1,...,k, are increased or decreased during the i** investment period.
At the beginning of each investment period, stocks are bought or sold so as to result in a
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portfolio b; = (b; y.....b; ;) of stock proportions with each b; ; positive, and Z};I bj=1 If

one dollar is invested, at the end of n investment periods we have wealth

n ZH:IOS b.'TX.'
W, = I b/ X; =™
1=

The sequence of b;’s is our investment strategy.

If we knew 0, then the optimal strategy would be to choose b; = b (8) so as to achieve

Q(6) = sup E,, log b X,

with resulting wealth denoted W*. On average, this strategy performs better than any other
one.

We compare W"* to the wealth achieved by the Bayes strategy which is bpﬁmal, at each
time step, with respect to the predictive distribution, rather than the true distribution. That
means we choose b; = b(X i-1) 50 as to achieve

QB = Sl;p Em('l X log bT Xi,

with resulting wealth denoted Wp.

Both expressions for the wealth achieved, Wp and w*, grow at an exponential rate. The
following result shows that best strategy, based on information we can never have, outperforms
the Bayes strategy by a polynomial factor, at best.

Proposition 6.1: As n — e, W* and Wpg differ only by a polynomial factor, with high
joint (©, X™) probability.

Proof: Let C > 0 be large. We have that

*

W
- Eg x [log - T |
Pg y(lo > (®; X")) < £ 6.4
e Xx g W; ) CI©; X™) (6.4)
Next, by adding and subtracting the negative part, we note that
w* w* Wp
E[1 t=F 1 + +

[ log W, 1 og W, E [log - ] (6.5)

By Theorem 3 in Barron and Cover (1988), the first term on the right of (6.5) is bounded
above by 7(©; X"). The second term on the right of (6.5) is bounded above by unity. This
follows from the Kuhn-Tucker conditions for the optimality of 5(8), see Bell and Cover
(1980).
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- Using (6.5) in (6.4), and dividing through on the right by I (®; X") gives

*

w 1 1
L] 5 Xn S -+ ’ .
Pg x~(log W, > cl(©® )) c ¥ Clogn (6.6)
which implies that
Wp 2 W e~ C1EXT (6.7)

holds with high joint (®, X™) probability for large C. The expansion for /(@; X”) given in
Theorem 2.1 ensures that scaling up Wz by a polynomial factor makes the Bayes strategy per-
form at least as well as the optimal strategy. O
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