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Abstract

The problem of spectral estimation on the basis of observations from a finite stretch of
a stationary time series is considered, in connection with knowledge of a prior estimate of
the spectral density. In general, the data are not exactly compatible with the prior. For
example, the first p sample autocovariances might be significantly different from the the
first p Fourier coefficients of the prior spectral density.

A reasonable ‘posterior’ spectral density estimate would be the density that is closest to
the prior according to some measure of divergence, while at the same time being compatible
with the data. The cross entropy (relative entropy, Kullback-Leibler number) has often been
proposed in the past to serve as such a measure of divergence.

A connection of the original Minimum Cross Entropy Spectral Analysis method to
traditional prewhitening techniques and to ARMA models is pointed out. In view of this
connection, a fast approximate solution of the Minimum Cross Entropy problem is also
proposed. The solution is in a standard multiplicative form, that is, the posterior is equal

to the prior multiplied by a ‘correction’ factor.



I. Introduction

Suppose {X,,n € Z} is a Gaussian stationary stochastic process with mean zero, and
autocovariances Y(k) = EX: Xiyx = [7, f(w) cos(wk)dw, for k € Z, where f(w) is the spectral

density function. The entropy rate of the process {X,,n € Z} is given by (cf. [20])

H(f) = ylog(2re) + 5 [ log f(w)dw (1)

It is well known (cf. Burg [4]) that the process with maximum entropy rate among Gaussian
stationary processes satisfying the constraints y(¢) = ¢;,¢ = 0,1,...,p is the mean zero autore-
gressive AR(p) Gaussian process that satisfies these constraints. Actually, the same AR(p)
Gaussian process is found to possess maximum entropy rate among all processes satisfying the
same constraints [10].

The maximum entropy property of the AR(p) Gaussian process gave rise to Burg’s Max-
imum Entropy Method (MEM) for spectral estimation which goes as follows. Observations
Xi,...,Xn are recorded, and reliable estimates of the first p autocovariances (p << N) are
formed by the standard formula

| Nk
¥(k) =« D XiXigk (2)
=1

for k = 0,1,...,p; the unbiased version of (2) could also be used. The MEM spectral density

estimate f(w) is then given by
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where ag, a1, - . ., ap are the autoregressive coefficients of the Gaussian AR(p) process that has

up to order p, autocovariances equal to the measured ones obtained in equation (2). The success
of Burg’s MEM method in practical applications is to a great extent owed to the existence of a
fast algorithm for the computation of f (w), which is basically a variant of the Durbin-Levinson
algorithm (cf. [2], [20]).

Related to the Maximum Entropy Method is Shore’s [23] Minimum Cross Entropy method
of Spectral Analysis (MCESA), which was proposed in order to be able to incorporate a prior
estimate ¢(w) of f(w) into the analysis. Shore’s method hinges on the fact that (cf. [21])



the cross entropy rate (relative entropy, Kullback-Leibler divergence, Itakura-Saito distortion)
between two stationary Gaussian processes {X,,n € Z} and {Y,,n € Z}, with respective

spectral densities f(w) and ¢(w) such that the ratio f(w)/¢(w) is bounded above, is equal to

) S
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The practical application of MCESA parallels that of MEM, except that the additional
prior estimate ¢(w) is considered known. Again observations Xi,..., Xy are recorded, and
estimates of the first p autocovariances are calculated using (2). Then the MCESA ‘posterior’
estimate of f(w) is the function that minimizes the cross entropy rate D(f||¢), subject to
satisfying [ f(w) cos(wk)dw = %(k), for k = 0,1,...,p. The MCESA estimate is given by

(ct. [23)) sw)
7 u(w) (@) 2

where u(w) = YP_, A\; coswt, and the constants A;,t = 0,1,...,p should be chosen such that
t=0

Flw) =

[T F(w) cos(wk)dw = 4(k), for & = 0,1,...,p. The actual computation of the A; is rather
difficult, involving some kind of iterative nonlinear numerical procedure (cf. [7], [23]).

It is worth noting that if the prior ¢(w) is flat, or if it is of the form ¢(w) = 1/| T°7_, bie™*|?,
with ¢ < p, then the MCESA solution coincides with the MEM solution. In other words, the
MCESA procedure ‘sees’ a low order AR prior spectrum as flat.

More recently [24] another form of Minimum Cross Entropy Spectral Estimation (MCE2)

was also proposed (see also [16]), based on minimizing directly the Kullback-Leibler divergence

f(w)
()™

between the normalized (to have total area equal to one) spectral densities f(w) and ¢(w).

K(fl8) = [ fw)log ©)

The minimization is carried out subject to the constraints [”_ f(w)cos(wk)dw = p(k), for
k=0,1,...,p, where p(k) = %(k)/4(0) are the sample autocorrelations. The MCE2 estimate
is given by (cf. [24])

FA(w) = ¢(w) exp{~1 — XP: A¢ cos wi} (7)

t=0
where the constants A¢,t = 0, 1,. .., pshould be chosen such that ["_ f(Q)(w) cos(wk)dw = %(k),
fork=0,1,...,p.



Although the MCE2 original solution involved an iterative nonlinear algorithm, a different
approach without nonlinear equations was suggested [6] that makes use of the cepstral rep-
resentation. In addition, a resemblance of MCE2 with traditional prewhitening methods is
apparent from the multiplicative form of equation (7), (see also [5]).

A closely related variant of MCE2 was suggested in [8]. The variant (which will be denoted

as MCES3) involves finding the spectrum f(w) that minimizes the functional

™ $(w)
K* = / w)log ——=dw 8
(£16)= | etwytog £ ®)
subject to the same autocorrelation constraints. The solution of MCE3 is given by [§]
FOw) = o Q

| 2 ot=0 Are™ |2
where the constants \;,z = 0,1,...,pshould be chosen such that [™_ ) (w) cos(wk)dw = p(k),
for k=0,1,...,p.

Note that although K*(f||¢) = K(¢||f), the MCE2 and MCE3 solutions are in general
different. In classical statistical applications however (cf. [17]) the minimization of K (f||¢)
was prefered, because of its immediate connection with the original maximum entropy method
of Jaynes [15] (when the prior ¢ is flat), and the theory of maximum likelihood estimation.

In view of equation (9), the connection of MCE3 to traditional prewhitening methods, as
well as to ARMA processes [8], is apparent. Cases where the MEM method yields a solution
of ARMA type due to additional constraints (e.g. constraints on the cepstral coefficients,
constraints on the impulse response coefficients, etc.) have also been presented [12], [14], [18],
[22].

It is the purpose of this report to show the connection of MCESA to prewhitening methods
and to ARMA processes. Having a spectral estimate of ARMA type is desirable because it
additionally specifies a time-domain representation of the estimated process. In addition, a
representation of MCESA using prewhitening yields a solution in a standard multiplicative
form, that is, the posterior is equal to the prior multiplied by a ‘correction’ factor. This
representation provides a formal analogy to Bayesian posteriors, and is intuitively appealing
in view of the interpretation of certain minimum relative entropy solutions as the limits of

conditional probabilities (cf. [9], [11], [25]).



As a by-product, a fast approximate solution of MCESA (the Prewhitened MCESA) will
be proposed as an alternative to the nonlinear exact procedure. Some numerical examples will

be given in order to illustrate the applicability of the methodology.



II. Minimum Cross Entropy Spectral Analysis and Prewhitening

The MCE2 and MCE3 solutions in equations (7) and (9) have the prior ¢(w) entering in
a simple multiplicative form as it happens in classical prewhitening procedures [3]. However,
the MCESA solution as given in equation (5) does not possess this property. Shore [23] gave
the following linear filtering interpretation of equation (5). A Gaussian process with spectral
density ¢(w) is passed through a linear filter with magnitude-squared transfer function equal
to ﬁu—(m; the resulting output is the process with minimum cross entropy rate relative to
the input.

Nevertheless, a connection of MCESA to traditional prewhitening methods can be estab-
lished in view of equation (4). Note that D(f||¢) = D(g||1), where g(w) = f(w)/¢(w); in other
words, the cross entropy rate between the two stationary Gaussian processes {X,,n € Z} and
{Y,.,n € Z}, with respective spectral densities f(w) and ¢(w), is equal to the cross entropy
rate between a process {Z,,n € Z} with spectral density g(w) and a white noise process.

Based. on this observation, the following prewhitening procedure is suggested. Suppose we
are given ¢(w) as a prior estimate of f(w). Also suppose that ¢(w) is a smooth function of w
(with continuous first derivative) in order to be able to factor it as ¢(w) = Pp(w)p(—w), (cf.
[19]). Then pass the process {X,,n € Z} through a linear filter with transfer function 1/%(w).
The output of the filter will be the process {Z,,n € Z} with spectral density g(w) = f(w)/¢(w),
i.e. a ‘whitened’ version of {X,}. In practical applications, the prior ¢(w) would likely be of
the rational (ARMA) type, i.e. of the form ¢(w) = | Sor_q c:™|2/| o0, bie™?|2. In that case,
a factorization such that the whitening linear filter is causal can also be found.

Since D(f||¢) = D(g||1), the minimization of D( f}|¢) is exactly equivalent to the minimiza-
tion of the cross entropy rate between {Z,} and white noise. However, the original MCESA
problem involves the minimization of D(f||¢) subject to constraints on the autocovariance of
the {X,} process. This can not be immediately incorporated in the prewhitened MCESA
procedure, and we propose to substitute the constraints on the autocovariance of the {X,}
process with the corresponding constraints on the autocovariance of the ‘whitened’ {Z,}. The

solution to the proposed prewhitened MCESA procedure will then be an approximation to



the solution of the original MCESA method. In the next section, it will be apparent that the
prewhitened MCESA procedure possesses the additional advantage of being implementable by

a fast algorithm, which in fact is identical to Burg’s maximum entropy algorithm.



ITI. The Prewhitened Minimum Cross Entropy Spectral Analysis Procedure,
Maximum Entropy, and ARMA Models

In the practical spectral estimation problem observations X4, ..., Xy are recorded, and the
prior spectrum ¢(w) = ¢(w)y(—w) is given. The observations X;,..., Xy are then passed
through the filter with transfer function 1/%(w), and the ‘new’ data Zi, ..., Zn are obtained.
Due to transients, the first few of the Z;’s can be thought as not representative of the true {Z,}
process, which would be the result of passing the whole doubly-infinite sequence {X,,n € Z}
through the linear filter with transfer function 1/4(w).

To make this precise, suppose that the prior can be put in the moving average (MA) form,
i.e. for some positive integer r, ¢(w) = |3 o hee?|%. Then it is easy to see that Z; can
be expressed as Z; = Y ;_o hxXi—k; hence the observations Zy, ..., Z, are not representative
of the true {Z,} process, since for their exact calculation, the values of X; for negative ¢’s
are required. So the first r of the Z;’s can be dropped, and the remaining Z, 1, Zr42,...,ZN
observations are kept.

Even in the case the prior can not be put exactly in the moving average (MA) form, a
trigonometric polynomial approximation is readily available. For example, it suffices that ¢(w)
is continuous in order to be able to find (cf. [2]) a positive integer r, and constants kg, h1,..., A,

such that
sup |p(w) — | Y hee™ ]’ < €
we[—m,m) t=0

for any given € > 0. In this case too, observations Z, 1, Zy42,..., ZN are considered represen-
tative of the true {Z,} process and kept for further analysis.

Estimates of the first p autocovariances (p << N) of the {Z,} process can be computed as

1 N—k

Bk) = ¥ > ZiZigk (10)
1=r+1

for k =0,1,...,p, where (k) = EZ;Z14+. The prewhitened MCESA estimate of f(w) is then
f(w) = ¢(w)j(w) (11)

where §(w) is the minimizer of D(g||1) subject to the constraints [™_ g(w) cos(wk)dw = B(k),
fork=0,1,...,p.



Observe however that the constraint for £ = 0 reads ["_g(w)dw = B(0), i.e. the total
area under g is fixed in the minimization. But from equations (1) and (4) it is obvious that
D(gl|1) = —H(9)+2 /7, 9(w)dw+constant. Hence, because [” g(w)dw is fixed, minimization
of D(g||1) subject to the constraints is equivalent to maximization of the entropy H(g).

In other words, §(w) is just the maximum entropy (MEM) autoregressive spectrum of
the {Z,} process subject to the usual autocovariance constraints [™_§(w) cos(wk)dw = B(k),
for £k = 0,1,...,p. Consequently, the prewhitened MCESA estimate f('w) can be obtained
immediately after the MEM spectrum §(w) is computed using Burg’s algorithm (or any other
fast algorithm for autoregressive model fitting).

It is apparent that if the prior ¢(w) is of rational (ARMA) type, the prewhitened MCESA
estimate f(w) is also of ARMA type, since §(w) is the spectral density of an AR(p) process.
Hence the prewhitened MCESA procedure can be used for updating an originally estimated
ARMA model in view of further data. It can also be used as a simple and fast way of fitting an
ARMA model to the data. To do that, one can start by fitting a moving average (MA) model
(a fast algorithm for MA model fitting can be found in [2]). The spectral density of the fitted
MA model can then be used as the prior ¢(w), and the prewhitened MCESA procedure can be
applied to give a spectral density estimate f (w) of ARMA type.

An additional feature of the estimator f (w) is its strong consistency and asymptotic nor-
mality as the sample size N goes to infinity. This is the subject of the following theorem which
is true under the common assumption that {X,} is a linear time series. The assumption is
satisfied in many interesting cases, including the case where f(w) is the spectral density of an
ARMA process.

Theorem. Suppose that {X,,n € Z} is a (not necessarily Gaussian) strictly stationary
stochastic process with mean zero, and autocovariances y(k) = EX; X1k = [T f(w) cos(wk)dw,
for k € Z, where f(w) is the spectral density function.

Also suppose that
(i) {Xn,n € Z} is a linear time series, i.e. it satisfies Xy = Y joq dx Wik, where {Wy,,n € Z}
is an i.1.d. sequence of random variables with finite fourth moments, and do,d1,... is a se-

quence satisfying do = 1 and Y 52, |d¢| < oo;



(ii) the prior ¢(w) is of moving average (MA) form, i.e. for some positive integer r,
Bw) = | oo hee
(iii) both f(w) and ¢(w) are bounded away from zero, uniformly in w;
(iv) the order p = py — oo as the sample size N — oo, but py = O(N'/3/[log N (loglog N )1*]),
for some é > 0;
then it is true that as N — oo,
W |f(w) = f(w)| — 0
with probability one.
If in addition it is assumed that
(v) as N — oo, NY25°2  |di| — 0;

then it is also true that the joint asymptotic distribution of

VN[N (F(0)=F(0)),\/N/pn(F(wi)=f(w1)), -, o/ N/pn(F(wn)~ f(wn)), /N[ pn(F(m)— f(m))

is independent, normal, mean zero, with respective variances

4£2(0),2%(w1), - .-, 2f*(wn), 41 (x)

for any points satisfying 0 < w1 < - < wy, < 7.

The proof amounts to verifying that the conditions of Theorem 5 in [13] and Theorem
6 in [1] are true as applied to the ‘whitened’ sequence {Z,41,Zr42,...}. This however is
immediate, since under conditions (i) and (ii), we can write Z; = 3 j_qhxX¢—k, fort = r 4
1,7+2,..., N. Hence the sequence {Z, 41, Zyy2,- - .} is strictly stationary with spectral density
equal to f(w)/¢(w), and is also a linear time series, since it is obvious that Z;, for ¢ > r, can
be expressed as Z; = ) joq 9k Wik, where the sequence go, g1, . .. is absolutely summable.

It is interesting to note that the asymptotic distribution of f(w) is identical to the asymp-
totic distribution of the standard (MEM) autoregressive estimate f(w). In other words, the
availability or not of the prior ¢(w) makes a difference in the spectral density estimator only

in finite samples.
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IV. Some numerical examples

A small simulation experiment was conducted in order to illustrate the applicability of the
proposed prewhitened MCESA method. For the examples, two short time series (each of length
120) were generated through two parametric Gaussian ARMA models. The general ARMA

model is of the form:
Xt + a]_Xt_l + ...+ apXt_p = Wt + b1Wt..1 + ...+ qut—-q (12)

where the sequence {W,} is a sequence of i.i.d. normal random variables.

Example a. For the first example, time series X;,t = 1,...,120, was generated using
by = —0.9 and by = 0.81 , (and the other b’s zero), and a; = —1.352,a, = 1.338,a3 = —0.662,
and a4 = 0.240, (and the other a’s zero). The true spectral density of {X,} is then given by

2 swt |2

) = [

(with ag = 1 = bg), and is shown in Figure 0. In this and all subsequent spectral density plots,

the interval (0, 27| was discretized; for example, Figure 0 actually shows a plot of the sequence

fa(w;),7=1,2,...,100, where w; = 275 /100. Note that due to symmetry f,(0) = f,(2x).
Three different prior estimates of the spectral density were considered. All three are of the

form | 322, b;e™*|?, i.e. they represent spectral densities of moving average (MA) processes.

More specifically, the three priors were
$1(w) = [1 - 0.9¢™ + 0.81**|?
$a(w) = |1 — & + P
¢3(w) = |1 — 0.5¢™ 4 0.2¢%*|?

and are pictured in Figures 1, 2, and 3 respectively. Note that ¢1(w) is the ‘best’ prior, since
it exactly identifies the numerator of the true spectral density f,(w). Accordingly, ¢o(w) is a
‘good’ prior, and ¢s(w) is a ‘bad’ prior.

The observed time series Xy, = 1,...,120, was prewhitened using each of the three priors.

In each case the first 20 observations of the ‘whitened’ process were discarded to avoid the

11



effects of transients. From the remaining 100 ‘whitened’ observations, autocovariance estimates
were calculated and an autoregressive (AR) model of order p was fit using the first p sample
autocovariances. The choice of the order p was made using the AIC criterion [2], that is,
autoregressive models of order 1,...,10 were fit to the data, and the order p was chosen to
minimize the AIC information criterion. In all cases considered, minimization of AIC also
turned out to minimize the related BIC criterion.

The ‘posterior’ estimates of f,(w) corresponding to the three priors were found to be
1 ) ) .
F(w) = 3=1(w)/11 - 1.3016™ + 1.077¢2% — 03836

P (w) = 517;¢2(w)/ |1 —1.390€™ 4 1.313¢** — 0.410>%|?
FP(w) = %d@(w)/ |1 —0.715¢"™?

The three posteriors are pictured in Figures 4, 5, and 6. It is apparent that posteriors fél)(w)
and fég)(w) are relatively good estimates of f,(w), while féa)(w) is not, missing both the
troughs around the points w = 0 and w = 1.07 (that is, for w;, with j = 0 and 5 = 17).

Example b. For the second example, time series X;,t = 1,...,120, was generated using
the same b coefficients in equation (12),1i.e. by = —0.9 and b = 0.81, (and the other b’s zero),
but with a; = —2.760,a; = 3.809, a3 = —2.654, and a4 = 0.924, (and the other a’s zero). The
true spectral density of {X,} is again given by

1|30 beetvt|?
C2m |k agett|?

Jo(w)

(with ag = 1 = bg), and is shown in Figure 7.
Since the numerator of f,(w) is the same as that of f,(w), the same three priors ¢; (w), $o(w),
¢3(w) are used for this example too. The prewhitened procedure was performed in the same

manner as in the first example, and the ‘posterior’ estimates of f,(w) were found to be
1 . : : :
FOw) = 5= 01(w)/|1 — 2.344¢™ + 2.7736*" — 1.6206* + 0.504¢4

£ (w) = %@,(w)/u — 1.253¢" 4 0.91862 2

1 . . .
B (w) = 5=93(w)/|1 — 1.980™ + 1.697¢™ — 047136

12



The three posteriors are pictured in Figures 8, 9, and 10. Posterior fb(l)(w) is a relatively
accurate estimate of fy(w), although it does not have the resolution required to identify the
two peaks in the graph of fy(w). Posterior f£2) (w) suffers from the same lack of resolution,
with the added disadvantage that it puts more spectral ‘mass’ at the location of the smaller of
the two peaks of fy(w). Lastly, posterior fb(3)(w) completely misses the presence of the smaller
of the two peaks of fy(w).

As a final note, some discussion on the use of the AIC (or BIC) criterion for the choice of p
is in order. The minimization of AIC is proposed based on the principle of parsimony. In other
words, to justify an increase of the order of the model (and the number of parameters to be
estimated from the data), a significant improvement in the fit must ensue. In the autoregressive
case, this means a significant reduction in the prediction error.

However, suppose one is not willing to abide by this principle. For our two examples,
posterior estimates of the spectral density were also calculated using the ‘good’ prior ¢o(w),
and a pre-chosen order of p = 8. The two posteriors are pictured in Figures 11 and 12. It
is obvious that they are not patently any better than the posteriors calculated using the AIC
criterion minimization. In particular, the posterior in Figure 11 shows some ‘spurious’ details
not existing in the true spectrum, and the posterior in Figure 12 is almost identical to the

posterior of Figure 10, where the ‘bad’ prior was used. O

13
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V. Conclusions

A new method of updating a prior estimate of the spectral density of a stationary time series
in light of further data was proposed. The method is termed the Prewhitened Minimum Cross
Entropy Spectral Analysis (MCESA), and yields an approximate solution to the problem of
finding a spectral density estimate that is closest (in the cross entropy measure of divergence) to
the prior, while at the same time being compatible with the data. The Prewhitened MCESA
method is an asymptotically consistent estimation method, and its implementation can be

carried out by a fast algorithm, which is a variant of the Durbin-Levinson algorithm.
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Figure 0. True spectral density in the first example
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Figure 1. ‘Best’ prior spectral density
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Figure 4. ‘Posterior’ estimate using the ‘best’ prior in the first example
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Figure 5. ‘Posterior’ estimate using the ‘good’ prior in the first example
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Figure 6. ‘Posterior’ estimate using the ‘bad’ prior in the first example
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Figure 7. True spectral density in the second example
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Figure 8. ‘Posterior’ estimate using the 'best’ prior in the second example
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Figure 9. ‘Posterior’ estimate using the ‘good’ prior in the second example
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Figure 10. ‘Posterior’ estimate using the ‘bad' prior in the second example
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Figure 11. ‘Posterior’ estimate in the first example, using p=8, and the ‘good’ prior
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Figure 12, ‘Posterior’ estimate in the second example, using p=8, and the ‘good’ prior
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