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ABSTRACT. The Jefireys-Lindley paradox, namely the fact that a point
null hypothesis will always be accepted when the prior variance goes to
infinity, has often been argued to imply prohibiting the use of improper
priors in hypothesis testing. We reevaluate this paradox by considering
the role of the prior hypotheses probabilities and obtain a noninformative
answer which is equivalent decisionwise to the classical p-value.

1. Introduction

In hypothesis testing, it is well-known that Bayesian and frequentist answers
may differ drastically. For instance, Berger and Sellke (1987) and Berger and
Delampady (1987) have shown that the smallest posterior probability of a point
null hypothesis is usually much larger than the corresponding frequentist answer,
L.e. the p-value. Lindley (1957) shows that the disagreement may be dramatic, in
the following sense. Let z ~ A(#, 1) and the null hypothesis to test is Hg : 8 = 0.
If one uses conjugate priors, § ~ N(0,02), the posterior probability of Hy,
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goes to 1 as o2 goes to infinity, whatever 7y and z are.

This result is statistically paradoxical because, first, large 02 somehow cor-
respond to a noninformative setup and, therefore, noninformative answers seem
to be impossible to provide for this problem. Secondly, it is usually the case in
estimation settings that the limit of conjugate estimators is equivalent to a “clas-
sical” frequentist answer and this property does not seem to occur for hypothesis
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testing. Obviously, the fact that (1.1) goes to 1 is not a mathematical paradox
since the prior sequence is giving less and less mass to any neighborhood of 0 as
o? goes to infinity.

Many authors have commented on this paradox, either to criticize the Bayesian
approach (Shafer, 1982) or to dismiss the use of improper priors for testing (Jef-
freys, 1961 and DeGroot, 1982). Berger (1991) considers that it shows that a
noninformative answer is not possible in this context and moreover, that it is in
accordance with “Occam’s razor” rule, i.e. that between two equally likely ex-
planations, we should always choose the simplest one if no additional argument
supports the other one (Berger and Jeffreys, 1991).

However, recent decision-theoretic considerations of the testing problem in
Hwang et al. (1991) have shown that improper priors were definitely necessary.
For instance, in the Jeffreys-Lindley setup, the p-value p(z) = 2(1 — ®(|z])) is
inadmissible under squared-error loss,

(To(6) - p(2))?,

where I denotes the indicator function, but cannot be dominated by a proper
Bayes estimator, i.e. a true posterior probability. Furthermore, generalized Bayes
answers, 1.e. solutions of the form

1.2 mop(2)
42 mop(a) + (L—m0) [ p(z — O)m1(0)d8

where ¢ is the standard normal density, 71 is a o-finite measure and my a prior
weight, are also admissible under squared-error loss and form a minimal complete
class.

As pointed out in DeGroot (1982), the trouble with using improper priors
is that if one replaces the o-finite measure 71(6) by cm1(#), the constant ¢ can
be chosen to give any desired answer. We will show in the next section that
there exists a way to obtain the “proper” constant ¢ for the Jeffreys prior by
considering again a sequence of conjugate priors. The resulting noninformative
answer is then no more uniformly equal to 1 and, furthermore, provides an
estimator which is surprisingly close to the classical p-value (for most decision
purposes).

2. Reweighting the alternatives

The fundamental (and simple) argument underlying our reevaluation of the
Jeffreys-Lindley paradox is that the prior probability my of the null hypothesis
Hg should depend on the prior variance under the alternative hypothests Hy, o2.
Such a dependence may seem absurd but consider that, from a Bayesian point
of view, we are actually testing Ho : 6 = 0 versus Hy : 6 ~ N(0,0?). Therefore,
the prior probability of H; (and therefore of Hy) may vary with o2. Indeed, while
taking mo = 1/2 may appear as the fairest (or the most objective) choice, it does
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not take into account the fact that the alternative prior m; considers a larger
set of possible values of § as o2 increases, i.e. that the “effective support” of m;
(say, the 99% HPD region) is getting larger as o2 goes to infinity. Larger o2 do
not exclude smaller values of # but, in the contrary increase the range of values
of 6 compatible with H;. In this sense, an increasing sequence of o2 leads to a
sequence of émbedded alternative hypotheses. Therefore, the prior probability of
H, should increase with o2. Such a dependency is also justified if we look at it
the other way: a restriction of the range of possible values for # under H; can
result from some observations which are incompatible with the previous range of
w1 and which, therefore, partially argue against H;. It is thus coherent to lower
the prior probability of H; when the range of 7; is decreasing. It is because =g is
kept constant that the Jeffreys-Lindley paradox occurs; we have to prevent the
alternative prior mass from going to +oco too quickly. Casella and Berger (1987)
noticed that mo = 1/2 was “too large” but they did not pursue the reasoning up
to a prior dependent mg.

A natural requirement on the sequence of priors is that they should give
sufficient weight to the range of values of § which actually caused Hy to be
tested, i.e. the §’s in a neighborhood of 0 which generate z’s which could also
originate from a A(0, 1) distribution. Since, for o large enough and a arbitrary,
we have

([—a,0[U]0, a]) = (1 — m0)[®(a/0) — B(—a/0)]
2a
- (1 - WO)?‘P(O):
it seems reasonable to impose the following restriction on ,

1-—
mo(o) _,
[

K

where c is a constant to be determined.

However, this constraint is too strong to hold as ¢ goes to infinity, since the
prior probability of any fixed interval must go to 0. A more realistic requirement
is therefore to choose my(c) in such a way that the ratio of the prior proba-
bility of the null hypothesis to the prior probability of the “reasonable” range,
[—a, a]\{0}, remains constant as ¢ goes to infinity, i.e.

(2.1) (1 = mo(0))[®(a/o) — B(—a/0)] x mo(0).
For o large enough, this condition leads to the following equation

1- 7r0(a)

(2.2) i

o« mo(0).

In order to determine completely the dependency of my on o2, i.e. the propor-
tionality factor in the above relation, we consider that 0 should have the same
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weight under both alternatives, namely that the densities are equal at 0,

1
\/27ra"

This implies that 0 is “indifferent” under both alternatives, whatever o is. Note
that, under this constraint, mo(o) goes to 0 when o2 goes to infinity. Such a
behavior was also observed by Bernardo (1980) when implementing the reference
prior approach in this setting. The posterior probability associated with (2.1) is

then
-1
1+ \/ o o7 e =7 2(e7+1)
o2 +1 '
which converges to

(2.5) (14 V2mes 12)1

(2.3) w0 = (1 — mo)

(2.4)

when o2 goes to infinity. Note that (2.2) converges to 1 when o2 goes to 0, as it
should since Ho is then true a priori, while 7o = 1/2 leads to 1/2 in (1.1).

A most interesting feature of (2.3) is that it also corresponds to the generalized
Bayes answer associated with the Jeffreys prior 71(8) = 1 and my = 1/2 since
(1.2) leads to

e /2 /v 2x
e~ 122 + 1
in this case. Therefore, when the prior probability of Hy depends on the prior
variance o2, the Jeffreys estimator is the limit of the conjugate answers, as it is

in the point estimation case. Moreover, this result indicates that ¢ = 1 is the
proper constant in this case.

3. The resulting noninformative answer

The dependency of my on ¢? thus avoids the undesirable convergence to 1
and provides an estimator which can be considered as a noninformative answer,
Bayesian counterpart to the p-value. However, the validity of our derivation
may be questioned, since the limiting prior resulting from (2.1) has also some
undesirable features. Actually, for every ¢ > 0, one has

([~¢,€]) = mo(0) + (1 — mo(0))[®(e/0) — B(—¢/0)],
where @ is the standard normal cdf. Given (2.1), we get

W([—e,e])=[ﬁﬁuqe/a)_@(_q@] (1+ L )_1

= ﬁ; (1 + V2mo[®(e/a) — <I>(—5/0')]) ]
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which converges to 0 as o2 goes to infinity. Therefore, the limiting prior gives
no positive probability to any neighborhood of 0 and this behavior seems to be
quite unreasonable. But this is usually the case with improper priors: they
cannot be handled in the same way than subjective priors and, as pointed out
in DeGroot (1982), they should not be regarded as representing ignorance. This
feature of improper priors is present in most statistical problems and, therefore,
should not prevent us to consider (2.3) as a possible noninformative answer.
Let us turn now to the behavior of the estimator (2.3). First, it is strictly
smaller than the lower bound on the Bayesian estimators obtained by Berger

and Sellke (1987),
(3.1) (1+ e 12)1,

Again, it may seem paradoxical that the noninformative answer does not belong
to the range of the Bayesian answers but, contrary to point estimation, testing
settings allow for discontinuities between proper and improper priors. Moreover,
the bound (3.1) was obtained for 7o = 1/2, while my depends on o2 in our case.
The difference between (2.3) and (3.1) also shows that, although (3.1) appears
as the least favorable Bayesian answer, it still corresponds to an informative
setting and, therefore, that the use of an informative (i.e. proper) prior makes a
significant difference in the answer to a testing problem. This feature definitely
separates testing from usual estimation problems but does not necessarily imply
that improper priors should not be used.

Table 1 provides some numerical values of the noninformative estimator (2.3)
for some values of . In addition to the above mentioned discrepancy with the
least favorable answer, an interesting feature of Table 3.1 is the closeness of
(2.3) and the p-value, p(z). Namely, when the p-value is between 0.10 and 0.01,
(2.3) produces essentially the same numerical values. In other words, for the
range of z’s for which the exact value of p(x) really matters, the noninformative
approach leads to the same decision than the p-value. (Actually, Hy will be
usually accepted for an answer larger than 0.10 and rejected for an answer smaller
than 0.01.) Therefore, decisionwise, the two approaches are somehow equivalent.

TaBLE 1. Comparison of answers for the normal point null test.

z 0 1.68 1.96 2.58

Least favorable 0.5 0.196 0.128 0.035
Bayesian answer

Noninformative 0.285 0.089 0.055 0.014
answer

p-value 1 0.093 0.05 0.01
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Obviously, this equivalence does not “rehabilitate” the p-value since the nu-
merous undesirable features pointed out in the previously mentioned papers still
exist and the noninformative answer is not necessarily a “good” answer. In the
contrary, we could argue that the similarity we exhibited in this paper rather
points out the need for additional (prior) information. Moreover, the coincidence
between (2.3) and p(z) only occurs on a small (although crucial) range of values
of z and (2.3) is admissible under squared error loss, while p(z) is not (see Hwang
et al., 1991). However, it may also explain why the p-value has survived for such
a long period despite its multiple drawbacks. The coincidence of the classical
answer with a noninformative answer actually holds in other settings, as shown
in Caron and Robert (1991) (who also consider an alternative noninformative
approach leading to the same conclusions).
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