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Abstract

For various applications, one wants to know the asymptotic behavior of the posterior
density of a finite dimensional real parameter given the mean of the data rather than the full
data set. Such a result is only nontrivial when the mean is not sufficient and examples are
easy to construct. Here we show that for lattice valued random variables Xi,...,X,,...,
assumed independently and identically distributed, that the posterior density w(6]X) -
where X is the mean - is asymptotically normal in an L! sense, and we identify the

location and the asymptotic variance as a function of the unknown parameter 6.



§1 Introduction

For ease of exposition suppose we have data from a standardized test, and the data
is believed to be from a known finite dimensional parametric family. The parameters of
interest, together with any parameters of secondary importance, may represent latent traits
in the sense of Holland and Rosenbaum (1986). We represent them as 6 = (6y,...,6;),
where the entries are real, distributed according to the bounded density w(61,...,80q) taken
with respect to Lebesgue measure. The goal is to estimate 6 for each examinee based on

the examinee’s answers to n multiple choice questions, termed test items.

The worth of an examinee’s answer to the 7** test item is represented as a random
variable X;, taking values in a regular k-dimensional minimal lattice L, with common step

length £. Now the joint distribution of the two stage experiment is

w(a)pe(Xl)’ v 7p0(Xn)7

where pg(X;) is the probability mass function for the i** test-item. We assume that the
probability mass functions pg ; are identical; this is very hard to ensure in practice but does
not invalidate the interpretation. For brevity we write X™ = (X1,...,X,), and denote the

parameter space by Q C R%.

Given that the number of test items is sufficiently large it is of interest to ask
whether estimation of § can be based on summary statistics such as the mean, X. In
this context estimation often means looking at highest posterior density (HPD) regions of
w(8]X). As a consequence the asymptotic behavior of the posterior density of the param-
eter given the mean is of interest. Aside from the convenience of such a procedure, it is
already virtually always used informally. Furthermore, it is desirable from a modelling

standpoint since X can be interpreted as the marking scheme.

It has already been conjectured that w(6|X) should be asymptotically normal. In-
deed, if X is sufficient then w(]X) = w(d|X™) by the factorization criterion so the usual
asymptotic normality results apply. In such cases w(#|X) converges to a normal with
location related to X, and standard error given by the second moments of the X;’s. In
some cases this may be derived from earlier work. Le Cam (1953) proves a version of the

desired result for the maximum likelihood estimator in place of the mean and Doksum
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and Lo (1990) establish a form of the result for location families. Their result allows for

estimators other than the mean.

It is easy to produce examples of probability mass functions which have identical
conditional distributions for (X;]#) but still do not admit X as a sufficient statistic. In the
simplest examples d = k = 1 and the random variables take one of three values, zero, one

and two. The probability mass function for n outcomes is

6n01((1.}?0'1+ﬂ)_(2)

(1 + 611'01 + 62,301)"’ ’

pg, (X") = (1.1)

in which o, # > 0, with a # f, are assumed known, and Xo; = XiX{x;=0,1}> X, =
i=1

> Xix{x;=2)- This family of mass functions is of exponential form so (a/n) X, 1+(8/n) X
i=1

is sufficient for 6;, but different from X.

One can force an educational testing interpretation on (2): Each item is worth two
points, and partial credit is awarded for one of the wrong answers. The « and f are slope
parameters indicating how the probability of giving a wrong answer, say that corresponding
to the zero or 1 or the right answer, say that corresponding to two, changes with increasing
61. The test items are identical in terms of the demand placed on the examinee and X is

the examinees score.

When X is not sufficient conventional Bernstein-von Mises results (see Le Cam (1958),
Bickel and Yahav (1969), Walker (1969); there are many others) do not apply, however,
we still expect some form of normality to be achieved asymptotically, with larger standard
error since X represents less information than the full data set. The consequence is that
the standard error of the limiting normal of w(8|X) should be different from the standard
error of w(f|X™) and the discrepancy between them tracks the degree to which X fails to

be sufficient.

The result in Section 2 applies to the mass function in (1.1). In general, denote
expectation under p;‘{, by Epg; so that the mean of any X is the k-dimensional vector u(8)
and its variance is the k X k matrix ¥(6;). In this case k =1 and it is easy to find u(6;)
and 3(61). So the asymptotic variance which is nu'(6;)*Z71(6;)u'(61) can be evaluated
explicitly. The location of the limiting normal is p~1(X). Since the derivative u'(8) is
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obviously not identically zero =" can be well defined on a neighborhood of almost every

value of the parameter. As the other hypotheses of Theorem 2.1 are satisfied we have that

w(61X) — n(6; 60, 8) "7 o

where 6, is a fixed value of 8y, 6 is a variable of integration, § = x~'(X) and the limiting

normal is

/1 (80 )25 1(p e~ (/20 (80) "2 (80) (6-)

N i
Thus HPD confidence regions for (6|X) can be approximately determined from the
N(6,%(60)/ 14! (80)?) distribution.

In addition to such applications in estimation it has been shown that an appropriate
form of asymptotic normality of w(#|X) has applications to testing independence of test
itemns, see Junker (1991). Also, Ackerman (1991) assumes such a result for the purpose of
evaluating the influence of dimensionality of a parameter on test item bias. The limitation
to the k = d case is consistent with the psychometric orthodoxy which strongly favors a

unidimensional parameter and test items which take values in a unidimensional lattice.

The latter application brings out a methodological implication. In general the asymp-
totic variance is nJ,(65)Z"2(6p)Ju(60) where J,(6) is the k x d Jacobian matrix of ()
regarded as a function g : @ — L. It is seen that the resulting normal is nondegenerate
only when d < k. The consequence is that if the data is strongly multidimensional then
test items must be combined if normality is to hold asymptotically. That is, if all d pa-
rameters are essential to the modelling procedure then test items, commonly taking values
in a one-dimensional lattice with finitely many points having positive probability, must be
grouped together in sets of at least d items so that the dimension of the lattice is also at

least d.

The structure of the paper is as follows. In Section 2 we state and prove our results
for the case of independent and identical lattice valued random variables with a compact
parameter space. There are two main results: The first guarantees the uniformity of a local
limit theorem so that mixtures of distributions can be approximated; the second gives the
desired result assuming that the number of parameters equals the dimension of the lattice.

In section 3 we give a generalization to noncompact parameter spaces by controlling tail
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behavior of the posterior, and consider the case that the number of parameters is strictly

less than the dimension of the lattice.

§2 Compact parameter space

Recall that by Bayes rule we can write the joint density for (0, X) as
w(0)ps(X) = w(8|X)m(X) (2.1)
where w(6|X) is the posterior density for © given X and m(X) is the mixture of densities
m(X) = [ w(Ows(X)de. (22)

We show that w(0]|X) is asymptotically normal in an L! sense, and identify the location

and scale of the asymptotic normal. Qur main assumptions are on moments, and on the

characteristic function f(6,t) = Egexpi(t, X1).

The intuition behind the proof is to approximate pg(X) by a normal density uniformly
in . This implies that m(X) can be well approximated by a mixture of normals. Since
convergence 1s assessed under a fixed member pg, of the parametric family, the posterior
density for 8 concentrates on a shrinking neighborhood located at 8, which converges to

6o, allowing identification of the asymptotic variance.

Central to the proof is a three term upper bound on the L' distance between w(8|X)
and the target normal denoted n(6; 6, é) The three terms result from using three normal

approximations. The first is the target normal itself

~

n(6; 6, 6)

\/|nJﬁ(90)2_1 (QO)J’L(QO)Ie—(%)(B—@)’ J,.(86)7"(80) Ju(60)(6—0)

L . (23)

where | - | denotes the determinant, and § = x~1(X ), which need only be defined near
fo. Note that 6 is not the estimate obtained by maximizing the likelihood of X but a

! will only make

convenient approximation which suffices for our purpose. Typically u~
sense when k and d are equal since the image of u : Q — R* is a d dimensional surface.
Although we require in this section that k¥ = d, we distinguish between the dimension of the

parameter space and the lattice for the sake of generality. Note that in (2.3) the variance
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is no longer ¥(6,), but a modification depending on the parametrization. In places where
the slope of 4 changes rapidly as a function of the true value the variance increases, where

@ is relatively constant the variance in fact decreases.

The second normal approximation is obtained from a local limit theorem, proved to
hold uniformly over compact sets in the parameter space. It is well known that the density
of X can be approximated by a sum whose leading term is a normal density and successive
terms are normal densities multiplied by polynomials. The rate at which the distance in
supremum norm between pg(X) and its closest approximation of this type tends to zero
depends on the number of moments assumed to exist. One such result can be found in

Bhattacharya and Rao (1976, §22) henceforth referred to as BR. We write

doren(X) = =g 3 FEBOD o (X — (0)) (2.4)

for the r term approximation to pg(X), where f; is a polynomial of degree 3r in k variables

and @y (g) is the normal density with mean 0 and variance 3(6).

The third normal approximation is a variant on (2.4), to wit,

o rn(X) = o S FE O (R o)) 25)

in which the variance matrix is evaluated at §,. The approximations (2.4) and (2.5) are

used to define mixtures with respect to 8 are denoted

ma(X) = /Q w(6)gor (X)d8, (2.6)

and

i 00(X) = /Q w(8)g6,00,+(X)d6, (27)

respectively, where, for brevity we have omitted the n’s on densities.

Shrinking neighborhoods in the sample space and in the parameter space are essential

to the proof. We denote them

ky

= X — <
Un,po = {X™: || X u(GO)II_ﬁ

(2.8)



and

noo = 10+ [|u(0) — u(9o)ll<\/—} (2.9)

where k,,/+/n, k!,//n — 0 and || - || is @ norm on the lattice L, assumed to be embedded
in k-dimensional real space. The defining condition in (2.8) can be equivalently expressed
as ||u(6) — u(80)|| < kn/+/m. To permit upper bounds, Taylor expansions can be used to
obtain sets containing Uy g, and U}, 4 . The defining conditions become 16—66]| < kn/on/m
and [|§ — 6p|| < kl,/a/n where a = inf ||Vu(8')|| and the infimum is over &' in a ball of
radius ¢ centered at 6y. Again, we typically drop the subscript n’s on U and U’. The rates
of shrinkage of the neighborhood that are seen to be most useful are k, = ¢(¢n n)*/? and
kl, = c'(én n)'/2, where ¢', ¢ > 0 and ¢’ — ¢ > 0. It will be seen that choosing ¢’ — c large

enough gives the desired convergence.
First we state and prove a uniform version of Theorem 22.1 in BR.

Proposition 2.1: For r > 1 suppose that
Epl| X1 — p(6)|™+*

is continuous as a function of § € K compact. Assume also that the function
f(6,t) = Ege’X1)

for ¢+ € R is jointly continuous in its two arguments. Then provided that %(0) is positive

definite on K

—np(0) g1y, Q@ 1
glellgzup(lﬂl T T lpe(3) — e () = O(-55573) (2.10)

Proof: For fixed 8 we have the desired rate: From BR we have that

a—nu(d),,, a o 1
sup(1+ | = ZE (S = 00r (D] = of i)

and

a—nu(d),, « o 1
sup(1 + [ E=ZEE I p0(2) - o (2] = ol i)
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By the triangle inequality we have

A+ IEZE2 I lp0() - ()
< QIR Dlp(E) - (2

P IS ey (2 - 0 (D)

T
< o) + (1 S ey B O o (R - o)

in which the last factor is the r+1 term in the normal expansion. The product f,41(v/n(X —
1(0))esey(vVr(X — u(6))) can be bounded above by a constant. (Indeed
e~PIX=rOI* || /a(X — u(8))|*" is maximized at \/n||X — u(8)]| = + +/3r/2 which gives
e=(3/D7 (37 /2)37/2 )

To finish the proof it remains to show that the BR result holds uniformly over compact
sets. Fix 6y € K. For a sufficiently small neighborhood Uy, of 6 the two t-sets in the proof
of BR’s result can be chosen so as to satisfy (i) the expansion for the characteristic function
holds with uniformly small remainder and (ii) on the second t-set f(8,t) for 6 € U,, is

uniformly bounded away from unity.

As a consequence of (i) and (ii) it is seen that I; and I in BR notation tend to zero
uniformly at rate o(1/n*¥4/2), Also, if Uy, is small enough that the first 7 + 2 moments

are bounded on Uy, then I3 also goes to zero uniformly.

Now for each 6 there is a Ug, so that the normal approximation is uniformly valid

there. By the Heine-Borel theorem the proof is complete. (I

We use the uniformity in Proposition 2.1 to prove the basic result for compact param-
eter spaces. It will be seen that later results follow by suitably modifying the hypotheses

or extending the technique of proof.

Theorem 2.1: Let Q@ C R? compact be the closure of an open set and suppose the X;
are all drawn from pg, where 6y € Q, taking values in the k dimensional regular lattice L,

with common step length £. Assume that on  VargX; = X(6) satisfies
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for some 71,72 > 0, where Id is the k x k identity matrix, and that the entries of %(6) are
continuously differentiable. Assume also that u(6) = E¢X; has two continuous derivatives,
is locally invertible at 6y, and its d x k derivative matrix J,(6) has rank d at 8 = 6y where

d = k. Then, if the hypotheses of Proposition 2.1 are satisfied with » > d we have that
Ej, / lw(8|X) — n(6;6,,8)|d6 — 0 (2.11)

as n — o0.

Remark 1) If d < k then the technique of proof breaks down and so must be modified,

see Section 3.

Remark 2) We use K to denote a positive constant for bounding purposes not in general

the same from occurrence to occurrence.

Proof: We proceed in four steps. The first step is to obtain lower bounds on m,.(X) and
Xy |m(X) — m.(X)|, and note a straightforward upper bound on (2.11) which has 3 terms.

The following 3 steps will deal with each term in turn.

Step 1, part 1: We show that there is a X > 0 so that
m.(X) > K/nk+d/2, (2.12)

First note that since products of the form fi(v/n(X — p(9)))es)(Vr(X — u(8))) are

bounded in absolute value by constants for ¢ > 2 (as in the proof of Proposition 2.1) we

can write
_ &= (n/2)(B(D)~(6))'S () (w(8) —(6))
me(X) > K/ -
Q n /2
> / o= (n/2)(u(6)— () B (0)(u(8) — (9)) g
n*/2 Jo-an<

K —(n/2)(8=8)" T, (B) T1(8) J,,(8)(9—6)
2 =7 | G do
n 16-6l1< &

by a Taylor expansion, where 8 lies on the straight line joining 6 and 6. Since J L(6)I=71(6)
J u(é) is positive definite, bounded above and bounded away from singularity the last

expression can be lower bounded by using the transformation ¢ = /n(8 — ) so as to give
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a positive probability from a normal and a factor 1/n%/2 from the Jacobian, thus proving

(2.12).

Step 1, Part 2: We show that
Xo [m(X) = me(X)| < Kxu(ky)? n*Hr0/2 (2.13)
where X, is the indicator function for U. The left hand side can be bounded above by
Xo [ o) = g0, (OO + o [ 19o(K) — g0, (X )o(0)c8

K _ _
< xo s 0(O)| Vol (0= + 30 [ 1poC) = g (COfu(6)6

%0 [ laoria(X) = ara()lu(9)d0

K (k)% K
= Xvpletatnfz T Xv L Gari /2
txo [ (O O e — uoas
< xo ity + xo [ 0@ Urss IO (R~ e

(2.14)

where U'¢ C V,, defined by

V=46 [11(6) — XI| 2 (¢ — ey )

using the triangle inequality since the inequalities in U and U'® go in opposite directions.

To show (2.13) it is enough to control the integral term in the last upper bound. First
note that it is bounded by

nK/ —e(»/ (=)t n/m) / w(O)|frr1 (VX — p(9))) e 120 (VR(X — p(6)))d6.

(2.15)

The product fry1¢ 15(0) is uniformly bounded by a constant as in Proposition 2.1 so

Xu

the integral factor can be absorbed into K. The exponential factor is 1/n(1/9(c'=0)* 54

choosing ¢’ large enough gives (2.13).
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Step 1, part 3: We upper bound the L! distance in (2.11) by the sum

Step 2, part 1:

provided r > d.

8 / lw(e)po()z) _ w(a)qer()—() |d9

m®)mx)
+E / |w(9):?&()X ) w(:z)ff("}c(;( ) \do
+ Es, / lw(e)fef(‘}()x L (6360, 0)las.

We use (2.12) and (2.13) to obtain a lower bound for x,m(X):

Xom(X) 2 Xy (mr(X) — [m(X) — mo(X)])

> xp K/n5t9/2,

Step 2, part 2: Expression (2.16) equals

oXUc / | w(e)pe ('X w(G)qgr(X') |d9

m(X) i m.(X) i
s [ 100 000,

(2.16)
(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

We show that expression (2.20) tends to zero by the CLT: For n large enough the first term

in the sum which gives gg-(X) dominates so that gg,(X) is positive everywhere (see the
proof of (2.12)). As a result (2.20) is upper bounded by Eg,x, c( [ w(8)ps(X)/m(X)d8 +
J w(8)gor(X)/m,(X)df) which is less than 2P, (U*¢) and so goes to zero. For expression
(2.21) we use (2.12) and (2.13) directly as well as the bound x,, [ |ps(X)—ge-(X)|w(8)d8 <

Xo K (k)2 /n(*F+r+1)/2 derivable from (2.14) and (2.15).
g6r(X)/m(X) we have

X [ w(®)

Po (X) QOT(X)

Ipe(X) — gor(X)|

2 e < xo [wey PR

ey [ 20000 0

mr(X) m(X)

() 2n(E+0)/2
n(k+r+1)/2
K (k. in(+0)/2
Xo = (eFri1)jz 0

Sxo K

11
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so that applying Es, to both sides gives an upper bound on (2.21) which tends to zero

since r > d.

Step 3, part 1: Next we show (2.17) tends to zero. We upper bound it by

T
+ Egy Xy / % (2.23)
+ Ego Xy /U . %da (2.24)
+ Egy Xy / |w(2f&(;z ) _ w(grqig((,;_(())f ) |as. (2.25)

Step 3, part 2: Three of the four terms in the last upper bound are easy to control. Term
(2.25) tends to zero by the same reasoning as was used for (2.20): the triangle inequality

allows us to use 2 as an upper bound for the integral and gives the convergence to zero.

Terms (2.23) and (2.24) are easy also. Note that by reasoning similar to that used to

prove (2.12) one can prove

Mg (X) > K/nF+D/2, (2.26)

By use of (2.26) and (2.12), to prove that (2.23) and (2.24) go to zero it is enough to show

— 1
Eooxy /U’c ‘I0r(X)d9 = O(W) (2.27)
and
— 1
Eo,xy /[‘]'c g09,r(X)d0 = O(W) (2.28)

we see that the absolute values of the left hand sides of (2.27) and (2.28) are upper bounded
by a sum of r terms of the form of the second term in (2.14). The same technique as was
used to control it can again be used. The result is that for ¢’ — ¢ large enough expressions

(2.27) and (2.28) can be forced to go to zero at any rate of the form o(1/n%) for a > 0.

Step 3, part 3: Expression (2.22) is the only problematic term left in dealing with (2.17).
Our technique will be similar to that used for (2.21).
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By adding and subtracting ggg,»(X)/m-(X) and using (2.12) we see that (2.22) is
upper bounded by

EeoXU /, w(g)lQOT(Xin—r(i%@)or(X)H

+ EOoXU /, w(:’?foie(o;z_(f) |mr()_(r)n:(;;90 (X)| 26

dé

< Kn(Hd)/Z[EooXU/ w(8)|g6r-(X) — qo6,+(X)|d8
UI
+ EgoXU ImT(X) - mreo(X)l]
< Kn(k+d)/2[2E00XU / w(e)IQOr(X) - qeeoT(X)lde
UI

+Bax [ 0 la0r(X) = gonr ()10

we note that the second term in brackets goes to zero by use of (2.27) and (2.28).

For the first term, it is enough to show

_ _ kn + k' 3r
X X 260 () = g000r (K] = 0(xy 1, Lot 20T (2.29)
for then the integration will give a factor of K (k! /1/n)? so that term will tend to zero also.
Since f; has degree 3(:—1) and on the intersection of U, and U’, ||v/n(X —pu(8))|| < kn+k,
so we have that the left hand side of (2.29) is bounded above by

KXy Xy Z |fi(v/r(X — u(9)))|
nk/2 s n(i-1)/2

|e—(%)(X—u(o))’ﬁ“l(0)()_(—#(9)) — e~ (n/2)(X—p())S™ (80)(X—pu(6)) |

Kxyxy

<
E

(kn + kL DDINX = p@IPIET(6) - 57 (0)I],

in which we have used the elementary inequality |e~~

—e7 ¥ < |z — y| to control the
difference of exponentials and used norm inequalities on the upper bound resulting from
that inequality. Using the restriction to U and U’ again we obtain the bound Ky, X, (kr +
k3= |8=1(8) — 71(6p)||/n*/%. Since all Euclidean norms are equivalent, we can
replace the matrix norm with any norm. We choose the norm which sums the absolute

values of the entries. Each term in that sum admits a Taylor expansion which can be

bounded from above by (kJ,/+/n) times a positive constant. There are only finitely many
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constants so taking the maximum gives an upper bound K(k/\/n) < K(k, + kb,)//n
which finishes the proof of (2.29).

Step 4, part 1: In this final step we show that (2.18) goes to zero. We start by bounding

(2.18) from above by a sum of 5 terms, two of which are easy. Our bound is

w(8)go6,r(X)  w(8)g9,1(X)

E — — dé 2.30
6o Xu U | Mger(X) mge1(X) | ( )
w(60)qo6,1 (X) A
E —22 2 n(8:6,.0)|do 31
+ 6o Xvu - l m001(X) ’I’L( 3 Y0, )l (2 3 )
w(6)qo0,+(X)
—_—— 0 .
+ Eg, Xy /'c o n(X) d (2.32)
+ Eg, Xy / n(8; 6o, 6)d6 (2.33)
w(e)qeoof‘(x) j
—n(6; )
-|—E90XUC/| —3) n(6;60,6)|d6 (2.34)

Step 4, part 2: The easy terms are (2.32) and (2.34). The first is the same as (2.24) the
other follows from the CLT since ggg,-(X) is positive for n large enough; this is the same
argument as for (2.25) and (2.20).

Step 4, part 3: The next easiest term is (2.33). Since u is invertible on a neighborhood
of 8y for any n > 0 there is an ¢ > 0 so that

|12(6) — pu(6o)l <= |0 — 6o <7

and also
|u(8) — 1(6o)| < &= |§ — 65| < 1.

For such a choice of € we write (2.33) as

Eb, Xy / n(6; 6o,80)do (2.35)
|2(8)—n(60)[>e

+ Eg, Xy / n(6; 6o,0)d6 (2.36)
>|u(6)~n(80) |2 k!, /7

For (2.36) restriction to U and to the domain of integration gives that |§ — 8| < 27 so we

can use a Taylor expansion and the triangle inequality to obtain

IV 1(8)]118 — 8] > |u(8) — u(6)]
> (K — kn)/v/ = (¢ - )y "
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for some 6 lying on the straight line joining 6 and 6. By the continuity of the derivative

we have that

A £
(6—6) > k(c — c)y/ —.
n
(Choose, for instance, K = sup ||[Vu(8')|]-)
0163(007")
Now (2.36) is bounded by
Ke~(W/OK(E = (tn n/m) g, o /e—(n/4)(9—é)tJ(Oo)tz_l(eo)1(9)(9-9)(10, (2.37)

which tends to zero.

For (2.35) we use a variant of the last argument. We note that local invertibility

implies that given € > 0 there is an > 0 so that
|1u(0) — p(bo0)| > € =16 — 60| > 7

By restriction to U we have that 8 and 6, are close so we Taylor expand to get that there
is a K > 0 so that
K| — 6| < kn/v/m

(Choose K = inf  ||Vpu(6')|].) Again by the triangle inequality
6'€B(6o,7m)

10— 6] > 1 — (Kka/v/m) > 1/2.

So, in this case we still get a bound much like (2.37). As a result (2.35) goes to zero.

Step 4, part 4: Write expression (2.30) as

. 1+ Y filv/A(X — p(8)))/nl=D/2
EGoXU / w(a)Q0001(X)|1 _ 1=2 |d9

+ Mo (X) 3 f HOLTESON 1y(0) g (R~ 1(8)))d0
1 + =2

J w(8)ppse)vVRI(X—u(8)))d6

It is enough to upper bound the factor in absolute value bars by a function which is o(1)

since by enlarging the domain of integration the rest is bounded by 1.

By the restriction to U and U’ each f; is bounded by K(k, + &.)3¢=1) which is of

lower order than n(*~1)/2 and so the summation in the numerator goes to zero.
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There are r — 1 terms in the summation in denominator. The i** one (i = 2,...,7)
can be bounded from above by breaking the integral into two pieces, one over U’ the other

over U IC, and using (2.26). Also, on the term with restriction to U and U’ we can bound

fi. The result is

K (kn + k>0 [ w(6)px(a,) (VR(X — p(6)))do
n(=1)/2 S w(6)pxo0) (VX — p(6)))db

n(k+d)/2 B )
T ]U w(OF(AX — W(O))pnion (VAX — (6))d6.

Obviously the first term tends to zero. The second term also tends to zero by the same

technique as used on the right hand term of (2.14). So, (2.30) tends to zero.
Step 4, final part: At last we deal with (2.31). We bound it by adding and subtracting

w(e)e—(n/Z)(X—p,(O))tE—l(90)()'(_”(0))
w(6o)(2m)4/2|nJ (80) =1 (60)J (60)|~1/2

and _ _
e~ (n/2)(X—u(8)) 7 (60) (X~ n(6))

(21)4/2|n.J (85)12~1(80)J (60)| /2

Our upper bound on (2.31) is now

f w(H)e‘("/z)(X—#(G))‘E‘I(00)(X—u(0))d9

o - 2.38
60 Xul (27)2/2w(8o)|nJt(80)S~1(80)J (6o)|~1/2 | ( )
w(®) e~ (7/2)(X=p(8))" 7 (6o X —u(6))
. do 2.39
+ 6o Xv - |'LU(90) (27r)d/2|th(00)2—1(90).](90)'_1/2 ( )
E o= (/XM GUE-4(O) — o—(n/O—D)' T GIZ G N8|
+ OOXU/, (27{)d/2|n]t(90)2 1(90)'](90)[ 12
(2.40)

For (2.39) we note that by Taylor expanding on the restricted domain there is a positive
definite matrix M so that (§ — ) J4(6)X~1(60)J(8)(8 — 6) > (6 — 6)*M( — 6) As a result
(2.39) is bounded from above by

K su
GEIIJD' |w(90)

1IEOOXU / nd/26_(n/2)(9—9)tM(G—é)de

in which the integral is finite and by the continuity of w the bound goes to zero.
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For expression (2.40) we use techniques similar to those used for (2.29). By the same

elementary inequality we obtain the upper bound
Kt Eayxy [ a0 = BIPITEIE(60)I() - I(60)27 (60) I (80)] 8
UI

after Taylor expansion of y, where 8 is on the straight line joint 6 and 4. By reasoning used
in the proof that (2.36) goes to zero we have that ||/7(8 — 8)|| < K(ky, + k.)2. Also since
we have restricted to U and U’ the norm of the difference of matrices can be controlled by

a Taylor expansion.

Let f(s) = J()'Z(60)J (), then
F() = F(60) = (% — 60)V £()

for some ¢ between 1 and 8. By continuity of the derivative we have that

sup 1) — £(00))] < FntFn)

K.
$EB(B0,(knt k) /) v

Using the last two inequalities in the last upper bound gives

'\3
Knd/zEeoXU/ Mdg
U N

which goes to zero.

Finally, we control (2.38), by a straight forward Laplace integration. Observe that the

integral in (2.38) is the same as
Yo / w(8)e=(n/2)(X=(8) 7 () (X-1(6)) gg
e / w(8)e= (/DX =n(E) B (B0} (X=n(60)) gg (2.41)
U'e
For a lower bound we drop the second term and Taylor expand in the first to obtain

Xo (w(6o) — 6)(/ _ )e—(1+e)(n/2)(0—é)tJ(oo)t2-1(90)J(90)(0—9)d9
R4 Ue

since J(0)t2(60)J(8) > (14¢)J4(60)Z(80)J (6o) for 8 between § and 6, given the restriction
to U and U’. The integration can be performed and bounded from below by a product of
a factor which tends to as € goes to zero and w(8y)(27)%/2 /|nJ*(60)S~2(60)J (60)]| /2.
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For an upper bound of the same form observe that the second term in (2.41) can
be bounded above by a function of the form k/n® where a > 0 is an increasing function
of ¢ — ¢, similar to the second term in (2.14). The first term in (2.41) admits an upper
bound similar in form to the lower bound just noted. In fact one again obtains a product
of w(8)(27w)4/2 [|nJ(6)t=~1(80)J(6)|~1/? with a function that goes to one as & goes to

Z€ro.

The result is that there are functions f; and f, such that fi(e), fa(e) > L ase — 0,

andon U

w(9)e— (/2 (X=p(6))Z7(60)(X—n(8)) gy

fule) < (w(60)(27)2/2)/[nTH(80) =1 (80) (80)1/2 —

Using the last pair of inequalities it is seen that (2.38) tends to zero also.
This finishes the proof. O

We remark that the asymptotic variance is based on ¥(8) not the Fisher information.
This is due to the fact that we are locating at § which is not the MLE based on the full
data. This is consistent with what one expects from uniformizing the local limit theorem

which gives ¥(6) is the variance.

Another remark is that for applications one typically requires the parametric family

defined for a parameter space {2 which contains the support of w as a proper subset.

Local limit theorems, and other types of asymptotic results usually give a series of
approximations which the errors decrease with the number of terms included increases.
The same is true here although we have confined the result to only giving the first term.
Higher order correction terms can be deduced from a more careful analysis. Indeed, it

term (2.30) which expresses the restriction to one term.

§3 Noncompact parameter spaces and the case d # k

Our next result gives an extension of Theorem 2.1 to noncompact parameter spaces.

Our technique of proof will be to reduce the result to the compact case. Thus we define
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two mixture, one over a compact set K, the other over its complement. They are

Mi(X) [ G Pu(R)d,

Mye(X) = Py(X)db,

where W is the prior probability with density w.

Again we use local invertibility of i at 6. Recall that this means there is an open set
O containing 6y so that the function plo : O — u(0) is invertible and that for § € O°,

p(0) € p(0)°. Our result for noncompact parameter spaces is the following.

Theorem 3.1: Assume the hypotheses of Theorem 2.1, including £ = d. In addition
assume that there is an > 0 so that for all § outside an open set around 6, the moment
generating function for Py is finite on an open neighborhood centered at zero of radius at

least n. Then,
Es, / lw(8|X) — n(8;60,8)|d6 — 0. (3.1)

Remark: Assuming that the moment generating function is finite is more than we actually
require for (3.1) to hold. However, for applications in educational testing, the random

variables assume finitely many values so such assumptions are easily satisfied.

Proof: Let K be a compact set, to be specified shortly. We use the normal density
restricted to K and denote the normalized restriction by nx Write Wi (0) = w(0)|x /W (K)
and observe that (3.1) is

w(8)p(X |6) o .
Fo. /K | Jie w()p(X16)d8 + [ w(8)p(X|0)d8 (6;60,0)|d8
+ oy [ [w(61X) = (6560, 08

<E00/ | wi(9)p(X]6) - - n(6; Go,é){de
f . w()p(X|6)d8
my(X)(1+ <&
f w(8)p(X|6)do

+ Eq, / w(8|1X) + n(6; 60, 0)d6

/ |wKS2€’)(§ o) _ n(6; 6o, 0)|d8 (3.2)
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9)p(X|6 1
+ 1y, [ 2RO, s (33)
x  mi(X) m Jroe w(6)p(X6)d8

fK w(8)p(X|6)do

+ Ep,W(K®|X) + Eo, N(K€; 8, 9). (3.4)

By Theorem 2.1, expression (3.2) tends to zero. Also, expression (3.3) equals Fg |1 —
1/(1 + [p. w(0)p(X|0)d8/ [ w(8)p(X|6)df)|. Since the quantity is absolute value bars is
bounded by zero from below and 1 from above, expression (3.3) will tend to zero if we

show that )
Sice w(8)p(X |6)d8 Py
Jx w()p(X16)dd

(3.5)

First we show that
37,7 > 0P, (mge(X)e™ > po, (X)) < e ™. (3.6)
So, we choose the compact set K to be

K ={0:|pu(8) — u(6o)| < 6},

for some small § > 0. Intersecting the event in (3.6) with {|X — u(6s)| > 6/2} and its
complement gives an upper bound on the probability in (3.6) as
Pyl X — u(60)| > 6/2
+ Po, (|X — p(60)] < 6/2, mp(X)e™ > Pp,o(X))

H

<e ™ + Z PGO(X)7

X —n(0)|<5/2
e"'mkc >P6»0

for some choice of r > 0. We apply one of the conditions on the summands and use the

fact that for 8 € K¢
| X — 1(0)] > |p(60) — u(8)] — |1(6) — X| > 6/2
to give the upper bound

—— / wi(6) Y. Py(X)df
Kc

| X —n(6o)|<6/2

< e + e'"/ wie(0)Pa(| X — pu(8)] > 6/2)d6.
Ke
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Since there are k components in X and u(6) which we denote X(;) and p(;)(6) the union

of events bound gives

k
—nr” nr v 6
e eSO /K wice(O)Po(1X ) — iy (6)] > 57)db
=1 ¢
Each of the &k terms in the summation is exponentially small since

_ ) ,
sup Po(| X5y — piny(8)] > =) <e™ ™"
Sup. o(IX@) — (O] > 57)

for some r' > 0, see Chernoff (1952). As a result (3.6) holds.

Now we can show (3.5). Let ¢ > 0 and intersect with the event in (3.6) and its

complement. We obtain

. ((f,{c Z%(;Zle) ) ( - wf;;;é)’ 57) )

Jice w(O)p(X16)d6 .
= Foo ( po,(X) ~ )
+ Ppy(po,(X) > ee™mi(X)).

We use (3.6) to control the first term. In the second term, intersect again with U and U*®

so as to apply (2.19). The resulting upper bound is
Pa,(U®) + Py, (po,(X) > ke [n(k+d)/2),

Since both terms go to zero (3.5) holds and (3.3) tends to zero.

Now the last two terms are easy. The first term in (3.4) is bounded between zero and

one, and dominated by the ratio in (3.5) which goes to zero.

For the other term we note it is bounded by

dj2 _—n(8—8)" J%(80)T 7} Ju(80)(6—0)
K Ego X {},u(8)- (60 1<5/2) /K” e Ve g
t K B0 X {]4(9) — u(00)[>4/2}

The second term goes to zero by consistency of X for y(6p). The first term is the same as

(2.35) and so goes to zero also. W]
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In the statement and proof of the theorem we have allowed k and d to be different.
One can observe that if d > k then the resulting normal will have a singular variance
matrix. On the other hand if d < k then p~! does not make sense and consequently

neither does 6 as it was defined.

The desired result can be proved by centering at the estimator
= arg Hg)i,nllf— #(8")12(60) (3.7)

which reduces to 4 ~1(X) when d = k. Our final result is the following.

Theorem 3.2: Assume the hypothesis of Theorem 2.1 and Theorem 3.1. Then for £ > d
there exists r so large that (3.1) continues to hold for the estimator § in (3.7).

Proof: We indicate how to modify the proof in the compact case for d = 1 and general

k > 1. Extension to larger values of d and noncompactness follows straightforwardly.

Step 1, part 1: Note that by adding and subtracting x(d) in the exponent we obtain

ma(X) > n% / &=/ 2NE=uB 3~/ - (O3~ F-p@B O WD -u6) gg (3.5)

where || - ||o indicates the inner product wrt £(6)~!. On U we have that || X — u(6)||g, <
k. /+/n and if we use the implicit function theorem we can assert the existence of a solution

h to the equation
L(0) = S(X: — ()15 (0)" (69) = 0

where § = h(X), 6 = h(u(6y)) and 0%(;) are the entries of £='(6). As a result
16 — 6] < KX — u(80)l|e, < K,/MT”. If we cut the domain of integration down to
10— 4| < \—k/% then by the triangle inequality |6 — 6p| < K+/¢n n/n. By Taylor expanding
we then obtain that

27O 2 (1 +en)Ziy, (3.9)

n n

where e, = O and = means the LHS is bounded above and below by expressions

of the form of the RHS.

Next we note that the third term in the exponent of (3.8) is negligible compared

to the other two, at least when restricted to U: From (3.9) it is enough to examine
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n(X — 1(6))2(60) " (u(f) — (6)). Taylor expanding p at § and using L(8) = 0 gives that
the third term is

K n(8 — 8)°|IX — u(8)ll6,
which is seen to be of order O(¢n n/+/n) for some a > 0. As a result we have on U that

K e~ (M2t X—u(®)]17,
n(k+d)/2

m.(X) >

Step 1, parts 2 and 3 are unchanged.

Step 2 part 1: We use the modified bound of Step 1, part 1 to obtain

n(k+d)/2

7 I{X —(n En -)?— 9 2
Xom(X) > ——22—¢ (n/2)(A+ea) || X —p(8)]l5, <1 mEr——y

(k‘l )de(n/2)(1—€n)||>?—l‘(9)ll§0 )
Since n||X — u(8)|]s, < c%n n, r can be chosen large enough to ensure the second term in

parentheses goes to zero.

Step 2, part 2: Expression (2.20) is no problem and it is seen that (2.21) goes to zero
by noting that

/w(enpe(‘f)_— 26:) g / w(8)gor(X) [m(X) = m(X)]

Y m(X) ) m(X) m(X)

kg n(k+d)/2 k;zd n(ktd)/2

+r+d)/2 e_(n/z)(1+e,,)||3('-,L(é)||go + n(k+r+1) e—(n/2)(1+€n)||—)_(-—u(9)||§0)

< I{Xu(n(k

which goes to zero for r large enough.
Step 3, part 1 remains unchanged.

Step 3, part 2: Showing that analogs of (2.23) and (2.24) go to zero can be readily done.
It is enough to show that

B n(k+d)/2
B /U qer(X)e—(n/Z)(1+en)||7—u(9)||§0 8 — 0 (3.10a)
a2
Egy X /U QOOOT(X)e_(n/z)”-f_“(é)”go dd — 0 (3.100)

= (n/ D)X - ()13

Since the analog to (2.26), m.g,(X) > & (ETE can be derived by the same

technique as in the modified step 1, part 1.
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Now, for both cases it is enough to note that on U n||X — ,u(é)”%o < ¢*4n n, and one
obtains from the other part of either of the integrands bounds of the form n=k=9" Tt

is enough to choose ¢’ — ¢ large enough.

Step 3, part 3: It is enough to show
Knt+D/12(2E, 5 / w(6)|q0r () 206, (T)|dBe ™/ A+ IX-u(D)II3,
UI
+ EoyXo / w(8) 190+ (X) — goage(X)|dhe /PO HeIX=rOly) (317
U'e

goes to zero. By the reasoning in part 2, (3.10a) and (3.10b) can be used to control the
2nd term in (3.11). For the first term we observe that the extra exponential factor is
bounded above by e(I+en)cen n < n(1+en)e? < n3¢*/2 < nl/% for n large enough and ¢
small enough. The proof of this part in §2 gave a bound of the form k(¢n n)3"/{/n and

even for r arbitrarily large the extra n'/* does not alter the convergence to zero.
Step 4, part 1 is unchanged.
Step 4, part 2: Use the result from the modified version of step 3, part 2.
Step 4, part 3 is unchanged.
Step 4, part 4: It is enough to show that for r > ¢ > 2

K(kn + k)01 y S w(8)ps(a,)(vVr(X — u(6)))dd
n(i=1)/2 7 [w(8)es(s,)(VR(X — u(8)))d8

Knk+d)/2 - = (n/2[ X —(8)|]
T Gz Xv /U w(0) fi (Vr(X — 1(8)))es(60)(VP(X — u(6)))d6 - e'™ #Eeo

goes to zero. This is obvious for the first term. Since n||X — x(9)||* < c¢%n n the second

term can be controlled by choosing ¢’ large enough as in the remarks after expression
(2.14).
Step 4, final part: To control the analog of (2.31) we add and subtract

w(e)e_(n/z)”‘)z_p(e)”go (PIDNX—p(®)]13,

w(6o)(2m)4/2|nJ (60) L2 (60)J (60)| /2

and — : - .
e~ (R/DNX—p(O)I5, (n/DX =B,

(2m)4/2|nJ(6,)t%~1(80)J (80)]~1/2
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so that we must control

e/ DIX=2@g [ o(g)e=m/DNX-®)II5, g
(2m)4/2w(8o)|nJ*(80) 22 (60) T (60)| /2
53 2 B ) 2
w(8) o= (/DX —(OI13, (n/DIIX—-n(d)]]3,
E -1 do 13
+ B Xo U lw(oo) l(27r)d/2|n]t(90)2—1(60)J(90)|-1/2 (313)
|e(n/z)||3?—u(é)||30e—(n/z)llf—u(é')llz0 — e~ (n/2)(6=0)" I (80)2 7 (60) J(60) (6—0)|
+ EGOXU/

EeoXU ll -

(3.12)

@r) 21T (B0) 5 (80) T (o)1 /2 “
(3.14)
the analogs of (2.38), (2.39) and (2.40). For (3.13) we use the fact that
— — R n In n)®
nlIX = w(B)I3, = nliX = u@IF +nllu@® - s®I, + oy 31s)

N

so as to obtain the upper bound
o(1)Eg, Xy / /2 = (n/2)|1u(8)— ()13,
UI

which goes to zero since the integral gives a constant. (The modulus of continuity gives
the o(1).) For (3.14) we use (3.15) so as to reduce it to the analog of (2.29), as in step 4
final part in §2. (Choose ¢ > 0 small enough.)

For the last term (3.12), Laplace integration gives the desired convergence to zero, by

use of (3.15) again.
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