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SUMMARY

We conduct an asymptotic analysis of the penalized likelihood regression for the analysis of data
from exponential families. The asymptotic convergence rate in terms of the integrated symmetrized

Kullback-Leibler is obtained.
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1. INTRODUCTION

Let y be a random variable from an exponential family probability distribution with a log-
likelihood I(7, ¢|y), where 7 is the parameter of interest and ¢ is a nuisance parameter. It is
assumed that 7 depends on a covariate z. A regression analysis seeks to estimate the dependence
n(z) based on the observed data (z;,%;), ¢ = 1,---,n. The standard parametric approach models
n(z) in a low dimensional function space via a certain function form 7(z,3), where the function
is known up to a parameter 3. A generalized linear model results when there exists a monotone
transformation of 7, say 6(n), such that 6(n(z,)) is linear in 8. Note that a parametric model
implies rigid constraints on the form of the function 7(z). When knowledge is not sufficient to
justify a parametric model, the constraints may introduce bias, and consequently lead to inaccurate
conclusions. As an alternative, a nonparametric approach assumes less about the form of 7(z),
and hence is more bias-robust, though at the expense of inferential efficiency were an adequate
parametric model available.

The least assumption that most nonparametric methods make about n(z), be it quantitative
or qualitative, explicit or implicit, is'that it is smooth. The penalized likelihood method quantifies

the smoothness of functions and makes explicit use of smoothness in estimation. Specifically, the



method estimates 7 by the minimizer of

- S n(elan) + A (o) "

where the first term is the minus log-likelihood of the data with the nuisance parameter omitted,
and the second term is a functional index of smoothness/roughness. The first term dictates a good
fit to the data, the J dictates a smooth estimate, and the smoothing parameter A controls the
tradeoff.

A recent review of penalty smoothing, or smoothing splines, can be found in Wahba (1990). The
specific formulation (1) for the analysis of data from exponential families is proposed and studied by
O’Sullivan, Yandell & Raynor (1986). See also Green & Yandell (1985). A generic algorithm with
automatic smoothing parameter selection is proposed by Gu (1990a). More discussion concerning
the empirical choices of A can be found in Cox & Chang (1990) and Gu (1990b). An asymptotic
analysis of penalized likelihood estimation, of which (1) is a special case, is conducted by Cox &
O’Sullivan (1990).

In this article, we conduct a somewhat different asymptotic analysis of (1). The main difference
between the Cox-O’Sullivan analysis and ours is in the form of the results: Cox & O’Sullivan
(1990) work on certain functional space norms, which is a necessary choice for conceiving theorems
applicable to both regression and density estimation, but is not necessarily the most natural choice
for each of the individual problems; we work on the symmetrized Kullback-Leibler averaged over the
covariate space, which is among the most natural scores for assessing the precision of the estimation
of probability distributions. Besides, our approach is simpler. We do, however, draw heavily on the
techniques used by Gu & Qiu (1991) in an asymptotic analysis of the penalized likelihood density
estimation, where the target criterion is the symmetrized Kullback-Leibler for estimating a single
probability distribution as appropriate in the context.

The remaining of the article is organized as follows. In Section 2, we formally formulate the
model and discuss the smoothness assumptions which play a central role in the analysis. In Sec-
tion 3, we outline the approach, present the convergence rate in n, A, and the smoothness of the
model space, and sketch the proofs. The analysis is conducted in a generic setup. An example of

cubic spline logistic regression is presented as an illustration.



2. PENALIZED LIKELIHOOD REGRESSION

2.1. Formulation and preliminaries

Consider independent observations (zi,9i),i=1,---,n, where y|z follows an exponential family
distribution with density exp{(yn(z) — b(n(z)))/a(¢$)} and z has a density f(z) > 0 on a generic
domain X. The a(¢), possibly known or otherwise considered as a nuisance, is assumed common
to all the observations. Of interest is the estimation of the function 7(z). The penalized likelihood
method estimates 7(z) by the minimizer of the functional

1 n
= =2 _{win(z:) — b(n(z))} + (A/2)J (), (2)
=1
in a function space H in which J(7) is defined and finite. Compared with (1), the a(¢) is absorbed
into A in (2) and a divisor 2 of A is introduced for notational simplicity in later analysis.

By the standard exponential family theory (McCullagh & Nelder, 1989, §2.2.2),

b(n(z)) = p(z)
b(n(z))a(¢) = v(z)a(e).

E(yl|z)

var(y|z)

We shall denote the true functions 7, 4 and v by a subscript 0, and the estimates by a hat on
the top. The symmetrized Kullback-Leibler between two probability densities f and ¢ is defined
by Eylog(f/g) + E4log(g/f), which is always positive for f # g. When a(®) is know, it is easy
to verify that the symmetrized Kullback-Leibler between the true conditional distribution and the
estimate at z, parameterized by no(z) and #i(z), is {(§ — m0)(z)(& — po)(z)}/a($). The weighted

average
/X (41— 10)(fs — po) f /a($) (3)

defines an apprbpriate measure for the precision of the estimation of 79 by 7, where the weight
function f(z) is the proportion of data allocated to the neighborhood of z. When a(¢) is un-
known, (3) is the average symmetrized Kullback-Leibler between the distributions parameterized
by {#(z),a(¢)} and {no(x),a(¢)}. Since a(¢) is a nuisance parameter, (3) remains an appropriate
measure for the discrepancy between 7 and 7o. Note that (f—n)(fi — po) is approximately equal to
(A — po)?vy ! the mean square error in the mean space of y; adjusted by its variance, and that this
approximation is exact for a Gaussian likelihood. For notational simplicity, we shall set a(¢) = 1

in (3) and elsewhere in later analysis, and this will not impair the generality of the development.
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We now specify further details about J and H in (2). It is assumed that H is a Hilbert space in
which J is a square norm or a square seminorm with a finite dimensional null space, where a finite
dimensional null space prevents interpolation. It is also assumed that evaluation [z](-) = (-)(z) is
continuous in H, which ensures the continuity of (2) in its argument 7. Under these assumptions,
noting that b(n) > 0 so (2) is strictly convex in 7, the minimizer of (2) exists whenever the maximum
likelihood estimate exists in the null space of J; see Gu & Qiu (1991, Theorem 3.1).

As an example, let us consider the cubic spline logistic regression on a domain X = [0,1].
Binary responses y; are observed with covariates z;, where y|z is Bernoulli with P(y = 1|z) =
p(e) = e’/(e"+1). n=log{u/(1 —w}, v=p(l-p)=e"/(e"+1)? and a(¢) = 1. J(n) = [) i
and H = {n : J(n) < oo}. The null space of J is the space of linear polynomials. It can be
shown that evaluation is continuous in H. The penalized likelihood estimate exists whenever the

maximum likelihood estimate of the linear logistic model exists.

2.2. Smoothness assumptions

We now analyze the notion of smoothness defined by J. First define a distance to measure
the deviation of # from 79. Note that (3) is not a distance. Nevertheless, the quadratic form
V(n) = fy n*vof defines a distance V(f — 7o) which approximates (3), noting that i(n) = v. V()
is an ordinary quadratic norm, and the smoothness defined by J shall be characterized by an
eigenvalue analysis of J with respect to V.

A bilinear form B is said to be completely continuous with respect to another bilinear form
A, if for any € > 0, there exist finite number of linear functionals 1, - -, such that Li(n) =0,
J = 1,---,k, implies that B(n) < €A(n); see Weinberger (1974, §3.3). To avoid interpolation,
AJ in (2) has to restrict the estimate to an effectively finite dimensional space, and to obtain the
sought-after flexibility, the effective model space dimension has to be increased via reducing A as
the sample size n increases. These considerations make the following assumption necessary for a

sensible (2).
Assumption A.1. V is completely continuous with respect to (V + J).

Under A.1, using Theorem 3.1 of Weinberger (1974, p.52), it can be shown that there exist ¢, € H
and 0 < p, T o0, v =1,2,---, such that V(d,,¢,) = 6,,, and J(d,,¢,) = POy, Where §, ,, is the



Kronecker delta; see Gu & Qiu (1991, §4). The notion of smoothness is characterized by the rate

of growth of p,,.
Assumption A.2. p, = ¢,v", where r > 1, ¢, € (01, 52), and 0 < £ < B2 < 0.

For the cubic spline logistic regression, A.1 and A.2 are satisfied when log(vo f) is bounded from

both above and below on [0,1], and r = 4 in A.2; see, e.g., Silverman (1982, p.802).

3. ASYMPTOTIC ANALYSIS

We first introduce a quadratic approximation to (2), whose minimizer is an approximation of #
linear in y;. The convergence rate of such a linear approximation is obtained via a Fourier analysis
with ¢, in §2.2 as basis. We then calculate a bound for the distance between % and the linear
approximation under two extra assumptions. The main convergence results in V() — 70) and in (3)

follow simply by combining the results obtained in the two steps.

3.1. Linear approzimation

Assume g € H. Let V(g,h) be the inner product associated with the quadratic norm V. Let
71 be the minimizer of the quadratic functional
1 n
= =~ 2 {win(zd) — po(z)n(z)} + (1/2)V (1~ 10) + (A/2)J (). (4)
1=1
Write n = >, n,¢, and 1m0 = >, n0¢,, Where 7, = V(1, ¢,) are the Fourier coefficients of n with
basis ¢,. Substituting these into (4) and solving for 7, one obtains 7,1 = (8, + 7,0)/(1 + Ap,),
where 8, = (1/n) > 0 (v — po(zi))du(z:). It is easy to verify that EB, = 0 and ES% = n~1. It
then follows that

EV(TIl - 770)

EY (1 — myo)? = O(n A7V 1))

=1

EXI(m = 10) = EAY.pu(ma — M) = O(nA71" 4 ),
=1
as n — oo and A — 0; see Gu & Qiu (1991, Theorem 4.1). See also Silverman (1982, §6).

Theorem 1 Under A.1 and A.2, asn — o0 and A — 0, V(1 — no) = Op(n~1A"Y" 4 )} and
A (m = 10) = Op(n™AH7 4 X).



3.2. Main result

We need two more assumptions in further analysis.

Assumption A.3. For 7 in a convex set By around 7y containing 7 and 7y,

Jeq, ¢g € (0, 00) such that ¢;vo(z) < v(z) < eavp(z) uniformly on X'

Since (% — 11)(& — p1) = (7 — 1)*Vas+(1—a)n, Where a € [0,1], A.3 leads to the equivalence of the
V distance and the symmetrized Kullback-Leibler in By. It is also worth noting that A.3 is trivial

in penalized least squares regression for Gaussian data where v = 1.
Assumption A.4. Jc3 < co such that [, ¢,2,¢zv§f < es, Yy, .

Note that [, ¢2vof = 1. A.4 will follow when (¢,,vé/2)(x) have bounded kurtosis under the density

f, especially when ¢l,vé/ 2 are uniformly bounded on X.
Theorem 2 Under A.1 - A.4, as A — 0 and nA¥™ — co, V(i — m) = Op(n~ A7 4 X).
The proof of the theorem is given in §3.3.

Theorem 3 Under A.1 — A4, as A — 0 and nA¥™ — oo, V(1 — m0) = Op(n™A"Y" + )} and
Ja (= po)(7 = m0)f = Op(n™*ATHT + 4).

Proof. Use Theorems 1, 2, and Assumption A.3. O

For the cubic spline logistic regression, A.3 is satisfied when u(z) is uniformly bounded away
from both 0 and 1 on [0, 1] for members of By. A direct verification of A.4 is rather inconvenient
if not impossible, since explicit formulas of ¢, are in general not available. A suggestive special
case does exist, however, when vof = 1 and when H is reduced to the periodic restriction of
{n: J(n) < oo}, which has sin(27pz) and cos(2ruz) as the basis ¢, and hence grants A.4 when

vg is bounded.

3.3. Proof of Theorem 2

Write (2) as L(n) + (A/2)J(n) and define A, r(a) = L(n+ ah) + (A/2)J(n+ ah). It can be
shown that

A (0) = =2 3 uih(a:) ~ zh(z:)} + M (0, ),



where J(g,h) is the semi inner product associated with the quadratic seminorm J. Setting n = 9
and h = # — 11, one obtains
. 13 N . R .
0= A n (0) = == > {57 = m)(@:) — ww)(7 — m)(w:)} + AT (1 7 = ma). (5)
=1
Similarly, denote (4) by Li(n) + (A/2)J(n) and define B, x(e) = Li(n + ah) + (A/2)J(n + ah). 1t
follows that
. 1>
Byp(0) = —— D {wih(z:) — po(z:)h(z:)} + V(1 — no, h) + AJ (n, h).
=1
Hence,
. 1 & . ) . .
0= By p-ms (0) = == 3 _{0i(—m)(2:)— o () (A= ) (@) 1+ V (=10, A=) +AJ (m1, =) (6)
=1
Equating (5) and (6), some algebra yields
1, . ) , 1< ,
- > (a—p) (@) (A -m) (@) + AT (H—m) = V(= no, H—m) — p > (11 = ko) (@) (A —m) (=) (7)
=1 =1
By A.3,
1, 1 N, R
1~ > (7= m)*(z)vo(=:) < m > (8 — ) (@) () = m)(=). (8)

Via the Fourier expansion of # — 7y,

123200 - m)Pmi)wolas) V(- m)
i=1

|ZZ(ﬁu — 1 ) — 7714,1){;1; Zn: b (2:)Pu(@i)vo(zi) — /¢u¢u”0f}|
v ou =1

IA

3300+ 2) (14 ) 3 bulegu(uo(z:) - [ sy
[72) =1

[Z Z(l + Apu) (1 + Apy)(hy — nu,l)z(ﬁu - 77#,1)2]1/2

= Op(n /AATYTY(V + AT)(7 - m)

op(L)(V + AJ)(H — m), (9)

where Cauchy-Schwartz, A.4, and the fact that 3" (1 + Av")™* = O(A~Y") (Gu & Qiu, 1991,
Lemma 4.2) are used. Combining (8) and (9), a lower bound for the left-hand-side of (7) is given
by

(erV 4+ AT)(# — m)(1 + 0p(1)). (10)
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On the right hand side of (7), A.3 leads to
1& . 1< .
- D (1 — po)(e:)(h — m)(z:) = e > (m = mo)(z:)(7 — m)(m:i)vo(2:), (11)

where ¢ € [c1, ¢o]. Similar to (9), it can be shown that

123 =m0 (@) (=m) (a3 vola:)—V (=10, =10)] = 05 (DY(VAATV 2oy (V-AT) i)
= (12)

Combining (11) and (12), an upper bound is given by
|1 = e[V = o)V 2(0 = m) + op()(V + M) 2(my = mo)(V + AV (7 —my). (13)

Joining (10) and (13) and applying Theorem 1 yield the theorem. O

4. REMARKS

In the foregoing development, the smoothness assumptions are made of the canonical parameter
7 of the exponential family likelihood. Since smoothness assumptions are much less restrictive than
parametric assumptions, the choice of modeling parameter, or link as known in the generalized
linear models literature, has much less impact on the penalized likelihood regression than on the
parametric regression. The choice of the canonical parameter as modeling parameter has several
advantages: First, there is in general no numerically awkward constraint on the possible values
that n can take; second, (2) is guaranteed to be convex; third, a convenient and effective empirical
choice of A is available and theoretically justifiable (Gu, 1990a, b); and fourth, a simple generic
asymptotic analysis is possible as in this article. If circumstance demands a modeling parameter
¢ other than the canonical parameter 5, however, the techniques used in this article may still be
applicable in a similar analysis with a V() defined by [, 62(dn/d8)3vof, but the conditions and

proofs could become much messier.
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