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Abstract

We provide a Bayesian derivation of the maximum likelihood estimators in exponential
families through a method called prior feedback. In this case, the maximum likelihood
estimator can be argued to be a noninformative answer. In addition to this theoretical
justification of the maximum likelihood estimator, we consider some extensions which are
of more practical interest. In particular, prior feedback can provide an efficient alternative
algorithm for the estimation of the parameters of a mixture.
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1. Introduction

1.1. Maximum likelihood estimation. It is rather curious to consider that, despite
the extensive use of maximum likelihood estimation in statistical inference, this method
has no deep justification for small samples. Actually, apart from various asymptotic op-
timality arguments, the main reason for maximum likelihood estimation seems to rely on
the heuristic argument of a “reasonable” criterion, which furthermore complies with the
likelihood principle. Obviously, in many particular cases, the mle has been shown to be
optimal in some sense (admissibility, minimaxity, ...) but other cases have been exhibited

where the mle is not to be used (see, e.g., LeCam (1990)).

In this paper, we show that the mle can also be considered as a Bayesian noninfor-
mative answer, in a weak sense to be precised below. Apart from justifying any further
maximum likelihood estimation, this result has two other implications: first, it shows that
mle’s can be considered as noninformative Bayes estimates when regular noninformative
priors (e.g., reference priors) cannot be used. The second (and more practical) implication
is that Bayesian techniques may also be used to compute mle’s and come as competitors
of more traditional techniques such as the EM algorithm (Dempster, Laird and Rubin
(1977)), especially in the light of the recent progresses of Gibbs sampling (Gelfand and
Smith (1990), Casella and George (1991)). Therefore, the connection exhibited here may
be of interest to both Bayesians and likelihoodists.

The method through which we obtain the results stated above is called prior feedback
because it uses repeatedly the observed data to update the prior in order to remove the
influence of the prior input. Although this provides the mle as a formal Bayes estimator
at the end of the updating process, further uses of the posterior distribution are rather
limited, because it still depends on some prior parameters. However, a similar procedure

can be enhanced for other parameters of interest.

1.2. Noninformative deadends. Even when they are well defined, noninformative

priors are not always “foolproof” and may lead to answers that are definitely suboptimal.
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Example 1. Consider z ~ N(8,1) when the parameter of interest is e, to be estimated
under squared error loss. The noninformative prior is the Jeffreys prior, 7(8) = 1, which
leads to the Bayes estimator 6™(z) = exp(z + 1/2); 6™ is inadmissible and dominated by
the mle, €. A

Example 2. Consider z ~ N,(0,I,) and ||6]|? is to be estimated under squared error loss.

The Bayes estimator is §™(z) = ||z||? + p, dominated by the mle, ||z]|2. A

There are also cases when noninformative priors (or more generally improper priors)
cannot be defined, because the structure of the problem is somehow too weak to withstand
vague priors. In such cases, noninformative substitutes have to be provided when no prior

information is available.

Example 3. A mixture of two distributions,

T1y:--5%n pr(mlel) + (1 _p)f($|02)7

is typically a setup where improper priors cannot be used since, whatever n is, the likelihood

can be decomposed into a sum of n terms, the first one being
p" [ [ #(zilbr)
i=1

and thus providing no information about 6,. Note that the same reason implies the absence

of a mle when f(z|f) is unbounded (in 6). A

Example 4. Consider z ~ N(6,1) and the null hypothesis Hy: 6 = 0 is to be tested. If we
use a noninformative prior 7(f) = ¢ on H;:6 # 0 and the weight 7y for Hy, the posterior

probability depends on c:

-1
P’r(9=0|$)={1+c 1= \/27rez2/2} .

o

Even though ¢ = 1 may appear as the most “natural” choice (since # = 0 has the same
weight under the two hypotheses), there is still no indication in the usual noninformative

approaches about which value of ¢ should be used. A

3



1.3. The limitations of limits. In such cases where noninformative priors cannot be
defined directly, sequences of conjugate priors may sometimes provide a substitute since,
actually, many noninformative priors can be written as limits of conjugate priors. However,

this substitute is not necessarily of interest!

Example 3. Consider the particular mixture
L1y sy ~ 0.4 N(Hl, 1) 4 0.6 N(oz, 1),

for which a mle, although not explicit, does exist. If we use the conjugate prior A(0, n)

on both 6; and 6;, the Bayes estimator of 6; can be written:

. S N S
E™[01]e1,...,2m] =Y > wh(ic) Ftijn Z1(1¢)
k=0 (i)

where the second sum is taken upon all partitions of {z1,...,z,} into two subsamples
{in""xik} and {xik+17"‘)$im}7
1< T &
(1.1) B =
k m
si(ie) = ) (wie —F1(0)?, () = Y (wip — Ta(in))?
and
) o Q0SO850 + 10} 200 § (160 s + P60 e
wi(ie) o<
V4 L)m —k+ 1)
so that
S St -1
k=0 (it)

Therefore, it follows immediately from (1.1) that the limit (in n) of the Bayes estimators
is not defined since wg and wy, go to infinity with n. A sequence of conjugate priors is

thus of no use in this setting. A

Example 4. The use of a sequence of conjugate priors for testing Hy leads to what is

known as the Jeffreys-Lindley paradox, namely the fact that the posterior probability
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P™ (0 = 0|z) goes to 1 for every value of z when m, is M (0,n) and n goes to infinity.
It is often argued that this phenomenon indicates that a noninformative approach is not
appropriate in a point null testing setting. (For a recent discussion of Jeffreys—Lindley

paradox, see Aitkin (1991).) A

2. The Prior Feedback Alternative

2.1. Definition and motivations. We consider a setting where conjugate priors are
available for f(z|d). This is typically the case of exponential families or of mixtures of

exponential families and we will denote these conjugate priors by 7(|zo, \) since, if

f(z]8) = c(z) exp(8 - = — 9(6)),

the conjugate priors are of the form

7(8|zo, A) x exp(6 - zo — AY(6)).

Obviously, conjugate priors are of little use in a noninformative situation since the
hyperparameters zo and A cannot be determined. However, if we start from an arbitrary
conjugate prior m(f|z¢,A) and estimate h(§), is seems reasonable to assume that the pos-
terior expectation E™[h(f)|z] is a better estimator than E™[A(6)] since it is making use
of the information contained in z, while E™[h(6)] is essentially arbitrary. In this sense, a
conjugate prior which would give E™[h(0)|z] as a prior ezpectation for h(#) would be better

than the original prior. (Lemma 2 below gives a more precise meaning to this statement.)

Following this heuristic reasoning, we assume that the quantity of interest, h(6), is
such that E™[h(0)] is in one—to—one correspondence with z¢. Actually, we assume in the
sequel that h is strictly monotonic. (In order to avoid confusion, we denote the prior
expectation as E™[h(f)|zo, A] to stress the dependence on the hyperparameters.) Then,
the new prior 7(6|z1, A), defined by the relation

(2.1) E"[1(0)|21, A] = E™[R(0)|2, 20, Al

should improve the estimation of h(f). Naturally, the new estimator E™[h(6)|z,z1, )] is

still arbitrary and we can argue the same way in favor of a new prior m(f|z2,)) defined
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as in (2.1) with z replacing z; and z; replacing zo. This leads to the following iterative

scheme: the prior distribution w(6|z,,\) is defined by the implicit equation in z,
(2.2) E™[h(0)|zn, A] = E™[R(6)|z, Tn—-1, A].

The prior feedback distribution w(6|z*, ) is then defined as the limit of this process, i.e.

z* satisfies the fixed point equation
(2.3) E™[1(6)]z*, A] = E™[A(6)|z, 2", A].

Note one interesting feature of (2.3): the prior feedback distribution is such that the prior
expectation of h(f) is equal to the posterior expectation of h(f), i.e. the observation
does not modify the prior information or, conversely, the prior information contained in
m(0|z*, A) perfectly agrees with the information brought by z. In this sense, m(6|z*,))

represents a neutral prior, since it somehow coincides with the sample information.

The estimator of h(6) derived by this method, namely (2.3), has undoubtedly some
undesirable properties. First, since the “prior” m(6|z*,)) depends on z, the correspond-
ing estimator is no longer Bayes and, therefore, while corresponding formally to a Bayes
estimator for every z, it is likely to be suboptimal from a decision-theoretic point of view.
Moreover, this approach cannot be called noninformative since the resulting prior still
depends on the scale parameter A. In most cases, a robustness study will therefore be nec-
essary for assessing the sensitivity of (2.3) with respect to \. However, we will see below
that this aﬁalysis will not consider the variance going to infinity but, in the contrary, to
zero. While being surprising, this phenomenon is consistent with the examples given in

1.2, where a totally noninformative approach is impossible or, at least, unsatisfactory.

Example 5. Consider again £ ~ A(6,1) when 6 is the parameter of interest. Since the

conjugate priors are of the form N (zg/), 1/)), the recurrence relation (2.2) can be written

Tn  Tp-1 +z
A A+1
and leads to the limit
z* = Az,



which gives §*(z) = z as a prior feedback estimator, whatever ) is. A
Example 1. For the estimation of e?, if § ~ N(xo/), 1/)), we have

1
E™[e®|20, ] = exp {?)TO + 2—)\-}

and (2.2) is then

:c_n+i_ _ a:n_1+3:+ 1
FPAN TS TP AT TS

which leads to the limit #* = Az — £ and the prior feedback estimator §*(z) = exp(z), for

every value of . A

2.2 Convergence results. In the two previous examples, the estimator derived by
the prior feedback method happens to be the maximum likelihood estimator, for every
value of the hyperparameter A\. This independence, however, does not hold in every case
and A usually has to be large enough for the prior feedback estimator to be close to the
- maximum likelihood estimator. This result is rather surprising since we have to take the
variance small enough to obtain convergence to the mle, but we can relate it to the more
straightforward statement that an iterative replacement of the prior distribution by the

corresponding posterior leads to a Dirac mass at the mle, since
Tn(0lz) o< £(0]z)mn—1(6)
o £™(8|z) 7o (6).
The convergence of the prior feedback algorithm to the maximum likelihood estimator is

somehow more subtle since we keep the structure of the prior fixed (as well as the scale

parameter).

First, it is possible to extend the result of Example 5 to every exponential family

exp(# - z — V4)(6)) when the parameter of interest is the mean of z, V)(6). In this case,

T+ xg
A+1°

E"[VY(0)|zo,A] = zo/X and E™[Vi(0)|z,z0,\] =

The recurrence relation being identical to the one in Example 5, we deduce
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Lemma 1. For every value of A, the prior feedback estimator of the mean of an ezponential

famaly s the mazimum Likelthood estimator, x.

Therefore, the estimation of the mean in exponential families does not involve some
“minimal information input” in the sense that the algorithm converges for every value of
A, i.e. even for large prior variances. This is obviously related to the special nature of
the mean, which is also the mode of the distribution, and of the conjugate prior, which is

similar to the likelihood.

In a more general context, the following result hints at a similar behavior of the prior
feedback method and supports the heuristic argument that the passage from the prior to

the posterior quantity improves the estimation of h(6).

Lemma 2. If f(z|0) is unimodal in 6,

E™ [(h(G) — W(0))?|zn, z, /\] <E" [(h(é’) — h(9))”

:cn,/\] ,

where 0 is the mle of 0.

Proof. For 8 < 8 (resp. 8 > 0), f(x|6) is increasing (resp. decreasing) while (h(6) — h(6))?
is decreasing (resp. increasing). The result then follows from a general inequality, namely

that
E[£1(8)f2(0)] < E[f1(0)E[f2(0)]

when f; and f, are of opposite variations. 00

However, despite this improvement on the average, the prior feedback method is not

necessarily converging to h(é) for every A, as the following examples show.

Example 6. Let ¢ ~ Ga(a,6). A conjugate prior distribution on 8 is Ga(B,zy). If we

want to estimate 6%, the prior expectation is

T kII} _F(/B+k)$—k
E [9 I 07/3] = 1-\(’3) 0
and the recurrence relation (2.3) is then
-« DB+E) _ —k D(a+B+k)
e T e



which gives

vy ([FatB+Rr@ 1 \ r@+k) _
%) = ([P(ﬂ+k)1‘(a+ﬂ)] ‘1) O

as a fixed point. As Figure 1 shows, this estimaﬁor is converging to the mle (2)* only
when £ is going to infinity. A

384

361

a4

e

+ ’ ' ¥
20 40 60 80 100

Figure 1 — Fixed point 6; fora=3, k=5and z = 1.5.

Example 7. Consider again z ~ Ga(a,6) and 6 ~ Ga(B,z¢) when the parameter of

interest is e 7%%. The prior expectation is then
B
)

E™[e*®|zo, 8] = (@t o0’

which leads to the following recurrence relation

B a+f8
(2.4) ( Tn ) _ (M) .
a+t+zy, G+ Tp-1+<z

Obviously, the fixed point of (2.4) cannot be written analytically but, as Figure 2 shows,

it is converging to e~**/% only when 8 goes to infinity. A



0.0984

0.0964

0.0944

Figure 2 — Fixed point for (2.4) and @« = 3, a =2 and z = 2.5.

The convergence of the prior feedback method to the mle is formalized in the following

lemma:

Lemma 3. The prior feedback estimator of h(6), 6%(z), is converging to the mle h(f) as
A goes to infinity.

Proof. For the conjugate prior m(8|xzo, ), if £(6) = Vi(8) is the mean parameterization,
the mode is equal to the mean, namely £~*(5¢). When A goes to infinity, this distribution

converges to a Dirac point mass at 0 or at Alirf zo/A when zo depends on M.
—-1 00

Therefore, the prior feedback estimator of ~(8) converges to \ lir_ir_l h (f “1(%)> . Since
—+00

E™[A(6)|z*, A] = E™[A(6)|z, z*, ], this implies, for A large enough, & (5—1(%) ~h (g—l(gif—l*)),
l.e.

z+z*

A+1

x*
—_— ~ g
A

and h (f‘l(é)) converges to h(f). 0O
3. Extensions and Conclusions

3.1. Further examples. The results obtained in the previous section stress the link

existing between maximum likelihood and conjugate priors; the mle can actually be written
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as a limit of a sequence of Bayes estimators. However, from a practical point of view, this
relation may appear to be rather limited since (a) it was only obtained for exponential
families, where mle’s are easy to compute, and (b) the function A had to be strictly

monotonic. We consider below some extensions of the phenomenon in both directions.

Example 8. Let z ~ N (6,1) and the hypothesis Hy:6 < 0 is to be tested. A conjugate
prior in this setup is 8 ~ M(z¢,0?), with

(8 < 0|0?) = &(—zo /o).

The prior feedback recurrence relation is then

azx—i—mn_l)
B(—zn/o) =& [T EL In1 )
(—2n/0) ( Lt

which leads to the fixed point

v (z) = <____V02+1+1$) .

When o goes to 0, y*(z) goes to 0 if z > 0, 1 otherwise. This answer is also the mle,

ﬂ[_oo,()]((li). A

Example 9. In the more complicated case of the point null hypothesis, we consider the
prior distributions

m(B|mo, o) = molo(8) + (1 — mo )N (0, o2).

Then .
1— e:1:20'2/2(0'2-}-1) -

7(9:0|7TO70'2’$): [1+ T 241
0 g

If we actualize Ty according to the prior feedback algorithm, the derived recurrence relation
18

-1
1—m, 2202 /2(c%+1)
(3.1) o= |14 ——2nLE
: MTn—1 o2 -+ 1

and it is straightforward to deduce from (3.1) that m, is converging to 1 if

(3.2) er /NI (o2 ]
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and to 0 if €°7 /2(e*+1) 5 \/zT 11, Note that (3.2) is always satisfied for |z| < 1. This

2 is, the prior feedback answer is to accept the null hypothesis

implies that, whatever o
when |z| < 1. This result can be related to Berger and Sellke (1987), where the authors

established that the lower bound on the Bayes factors is 1 for |z| < 1.

Another implication of the prior feedback result is that the answer depends on o?
when |z| > 1. If we let 0® go to infinity, we are back to the Jeffreys-Lindley paradox,
namely that we always accept Hy. If, in the contrary, we let o2 go to 0, it is easily seen
that (3.2) is not satisfied for any given |z| > 1. Therefore, the prior feedback method leads
to reject the null hypothesis when |z| > 1 if we start with o small enough. A possible
interpretation of this opposition between the two limits is that noninformative approaches
lead to paradoxes in point null testing because noninformative modellings should not be
undertaken in these settings. That is, for instance, the point of view of DeGroot (1972). In
Caron and Robert (1991), we consider that an opposite view can be held: prior feedback
indirectly provides a noninformative answer for point null tests. Actually, (3.1) is a fixed

point equation if
(3.3) e® 712047 = \fo2 41,

which is a null event in terms of z but determines a value of 02 such that prior and
posterior probabilities agree. This choice of ¢%(= 02(z)) is then neutral in the sense

mentioned above. (See Caron and Robert (1991) for more details.) A

Example 3. Mixtures of exponential families provide an extension where Lemma 3 does
not necessarily hold and where studies of convergence are much more intricated. In Robert
and Soubiran (1991), we established an equivalent of Lemma 3 when only the weights of the
mixture distribution are unknown. In the more general case of a mixture of two bivariate
normal distributions, we were only able to show through examples that the prior feedback

method was also leading to the mle when the variance parameters were decreasing.

However, this setup provides an important field of applications for the prior feedback
method, if not a true noninformative alternative. Actually, available maximum likelihood

algorithms, such as the EM algorithm, are generally performing satisfactorily except in
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most difficult cases (see Robert (1991)). With the apparition of new simulations meth-
ods such as Gibbs sampling, it is now possible to implement very easily conjugate priors
Bayesian estimation in mixture and other missing data models (see Gelfand and Smith
(1990) and Diebolt and Robert (1990)) and thus propose prior feedback as a reasonable
alternative for maximum likelihood estimation, especially for small samples or imbricated

models where the Bayesian paradigm seems to bring a stability the other methods lack.A

3.2. The limitations of the prior feedback method. As we mentioned before, this
method cannot claim to be fully Bayesian since the limiting distribution is determined with
respect to the observation. At best, it can be classified as a more elaborate empirical Bayes
method. Moreover, the fact that the limiting distribution and the associated estimator still
depend on the scale parameter A is also a major drawback since, if we let A go to infinity,
the resulting distribution cannot be used for other inferential purposes and, for a fixed A,

the approach cannot be called noninformative.

Obviously, some extensions could be proposed in order to provide an acceptable value
of A\. For instance, one could look for a stabilization of the prior feedback estimator as
A goes to infinity. But the values thus obtained may be too large to be of any use; this

occurs for instance for tests.

Another drawback is that this method heavily relies on the use of conjugate pri-
ors. Therefore, it excludes models where no conjugate prior exists, like t-distributions.
However, an extension is possible when the distribution is a continuous mixture of an
exponential family, since a conjugate prior exists for the mixed distribution (see Robert
(1990)). For example, the normal distribution is again a “conjugate” prior in the case of

the t—distribution.

Despite these negative aspects, the prior feedback method has some compelling fea-
tures. On the theoretical side, it formalizes a link between the maximum likelihood estima-
tors and the Bayesian paradigm and therefore justifies the mle on a more decision—theoretic
ground. On the practical side, it may provide an alternative algorithm for the computation

of the mle, even though it has no practical use for exponential families.
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