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Abstract

We consider heteroscedastic linear models in which the variance of a response is an
exponential or a power function of its mean. Such models have earlier been considered
in Bickel (1978), Carroll and Ruppert (1982) etc. Classical as well as Bayes optimal
experimental design is considered. We specifically address the problem of “compromise
designs” where the experimenter is simultaneously interested in many estimation prob-
lems and wants to find a design that has an efficiency of at least -1;1_; in each problem.
For specific models we work out the smallest ¢ for which such a design exists. This is
done for classical as well as Bayes problems. The effect of the variance function on the

value of the smallest ¢ is examined. The maximin efficient design is then compared to

the usual A-optimal design. Some general comments are made.
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1 Introduction

1.1 Overview.

One of the most widely used methodologies of contemporary statistics is linear regression.
One commonly assumes that a n-dimensional vector ¥ has mean X and variance o]
where X is the n X p matrix of design constants, § is the p-dimensional vector of regression
coefficients and o2 > 0 is the common unknown variance. This is the standard homoscedastic
model. In practice, however, one commonly encounters the situation where the variance of
a response depends on the corresponding values of the design variables. For example, if
one had a simple linear regression with F(y;|z;) = 6y + 61z;, then one often encounters the
situation where Var(y|z;) is a function of z;, say w(z;). An even more complex scenario,
not dealt with extensively in the literature, is the case when the variance of a response is a
function of its mean, or in general when it is a function V(z;,8) of both the design variable
and the regression coeflicients. Such models are of importance in multiple linear regression
also. These are known as the heteroscedastic linear models.

Heteroscedastic linear models and the problem of finding efficient estimates in such mod-
els were considered in Box and Hill (1974), Bickel (1978), Jobson and Fuller (1980), Carroll
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and Ruppert (1982) etc. The models considered in these articles assume o7

7, the variance

of y;, to be functions of the form (1 + |r;|)* or |%;|* (Box and Hill), e*™ (Bickel), 1 4+ Ar?
(Jobson and Fuller) etc. where 7; is the mean of y;. These models are typically called Power
or Exponential models. Carroll and Ruppert (1982) demonstrate efficient estimates of the
regression vector § in some of these models.

The emphasis in this article is on Bayesian estimation and design of experiments in
heteroscedastic linear models. The classical case would often be regarded as a limiting

Bayes case and the corresponding results will be presented. In comparison to the vast



existing literature on classical optimal designs, the area of Bayes designs is only beginning
to flourish. Part of the reason is the apparent difficulty in using convexity arguments; even
when convexity arguments can be used, the associated numerical optimization frequently
becomes difficult because of the introduction of a prior. For this and reasons of simplicity,
much of the results here are presented for the case of simple linear regression. It is possible
to prove some parallel results for, for example, polynomial regression but in many cases
closed form Bayesian results are simply not feasible. For general results on Bayes designs,
see Pilz (1979,1981,1984), Chaloner (1984), DasGupta and Studden (1991), Cook(1986) etc.
For general references, see Cheng (1987), Hoel (1958), Karlin and Studden (1966), Kiefer and
Studden (1976), Elfving (1952), Fedorov (1972), Kiefer (1974), Pukelsheim and Titterington
(1983) etc.

1.2 Goals.

The two main goals of the present article are the following:

a. consideration of the design aspects in linear models with heteroscedastic variance func-
tions; this includes the case where the response variable Y has E(Y) = X@ and the
variance-covariance matrix of Y is diagonal but is possibly a function of both X and §,
say, £(X, 8); The covariance matrix can be generalized to the form 6?%(X, ) where o
is an unknown scalar. All classical results in the article and the Bayesian results (with
a gamma, prior for o2, independent of the prior on §) remain valid with the introduction

of this unknown a2. We will thus assume ¢? = 1 and make no reference to it.

b. finding designs with a guaranteed minimum efficiency simultaneously for estimating
a number of coordinates of § : this is done in the context of specific heteroscedastic

models of the type mentioned above.



1.3 Discussions of goals

More specifically, our goal is the following: suppose Y ~ N(X§,%(X,§)) where £(X,9) is
diagonal and # has a suitable specified prior distribution G. We are interested in simulta-
neously estimating k coordinates of 8, say [§, 1 < i < k. The common approach is to let
L=(l,...,) and estimate L by using a quadratic loss. Examples abound, however, which
show that except in very special cases, an optimal design for the vector parameter L§ has
rather poor efficiency for estimating the components of L, or at least some components of
L. This phenomenon is well known in the context of, for example, Stein-estimation, where
James-Stein type estimates can estimate individual estimate very poorly. See Rao(1976),
Efron and Morris(1971,1972) etc. Our suggestion to instead look for designs which provide a
minimum efficiency for esimating each component is tantamount to operating under vector

risks, as for example in Cohen and Sackrowitz(1984).

1.4 Are the goals technically feasible?

In the generality that we have stated the problem, the answer seems to be ‘no’. If ¥ is
allowed to depend on both X and @, even if we assume a normal prior G, the structure is
simply too complicated for doing much more than isolated numerical calculations. However,
the following can be achieved: suppose we let ¥ have mean X8 and variance-covariance
matrix C. We only allow linear estimate for L, i.e., estimates of the form AyY, where Ay
is any fixed symmetric matrix. If we restrict to linear estimates, then we gain the generality
that neither Y nor § needs to be normally distributed. We thus do not make any specific
distributional assumptions on them. Theorem 2.1 says that in this case the optimal design for
estimating the entire vector L minimizes trL(X'B~'X +C‘1)Y'1L' where B = Eg(X(X,9)).
One immediately realizes that this is formally equivalent to finding an optimal design for

estimating L§ when one has the more specific structure Y ~ N(X§, B) and § ~ N(0,C) but



arbitrary estimates (not just the linear ones) for L§ are allowed. Notice that B depends only
on X but not on §. Thus, if linear extimates do not seem adequate, one can turn arround and
think of this as a normal problem with heteroscedastic variance function depending (only) on

X. There have been some recent interest in adequacy of linear estimates in various estimation

problems: see Donoho, Liu and MacGibbon(1990), Vidacovic and DasGupta(1991) etc.

1.5 Choice of variance function.

In view of the above discussion, we simply take the view that ¥ ~ N(X§, B) where B
depends on X, and § ~ N(0,C). To derive specific optimal designs, specific choice of B has
to be made. We must keep in mind, however, that B occurs as Eq(2(X,4)) in the more
general variance structure. We therefore make specific choices for B. Recall ¥ is always

assumed to be diagonal.

Asin Bickel(1978), Box and Hill(1974) and Carroll and Ruppert(1982), we consider the

following forms for ¥ = Diag(0?,02,...,02), where

(G) o? = B

(i) of = (E(y))".

Taking G to be a N(0,I) prior, for instance, this results in B = Diag(by, by, ..., b,), where
b = eXXIXi in case (z) and b; = X[X; in case (¢¢), where X7 is the ¢-th row of the design
matrix X. Taking G to be N(0Q, ) is just an artifact; the eventual derivations get only a bit
more cumbersome for a general spherically symmetric prior (see the statement of Theorem
2.2 .

Example : Consider the simple linear regression model with E(y|z) = 6y + 0;z. Then the
above choices are equivalent to Var(y|z) = ¥+ and Var(y|z) = 1+ 2 respectively. For

polynomial regression with E(y|z) = 6o+ 012 + ... + 0,27, they are respectively equivalent to

Var(ylz) = 6);_2(1+22+"'+”2p) and Var(y|z) =1+ 2>+ ... + 2.
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1.6 Notation, outline.

To keep the article more focused, we derive our results for polynomial regressions only. In
any case, polynomial models are clearly more used than other more general linear models.
Thus we let the normally distributed observation y have mean E(y|z) = o+ 61z + ... + 0,27,
where z is assumed to belong to the interval [0,1] and we let Var(y|z) = b(z) for specific

choices of b(z). The following two choices of b(z) are considered in this article

P a:|2'.

() h(z) =e¥Til

for some real A. and
(#3) bo(z) =14+ c|z|*fore>0,)>2,

Motivation for using such variance functions was given above. The standard homoscedastic
variance case is subsumed in our setup. The regression vector § is also assumed to be normal
and to have mean ( and covariance matrix C, where C is diagonal. The case of a nondiagonal
C is certainly practically important, but results in substantially more complexity. We would,
for this reason, usually recommend that if C was thought to be nondiagonal, one should
bound it by a diagonal Cj(i.e., Ci — C is nonnegative definite) use C instead. The results
for the classical case can be formally obtained from our results by letting C~' — 0(the null
matrix).

As mentioned in Section 1.2 and 1.3, the principal goal of this article is to derive compro-
mise designs with with a minimal guaranteed efficiency for estimating a number of coefficients
{6;}. If we let ¢ denote an arbitrary design and if v;(€) is the Bayes risk for estimating 6; by

using the design £, then the efficiency of ¢ for estimating 6; is defined as

ei(§) =
where v; = inf; v;(€).

Given € > 0, we define




For small € > 0, I'.(C) is usually empty. Of natural interest is the quantity

g0 = inf{e > 0:T.(C) is nonempty }.

o will be called the ‘maximin efficiency’ and if I',(C) is itself nonempty (which it is in
our examples), then any design in I';,(C) will be called a ‘maximin efficient’ design.

Notice that the quantities v; are needed for the analysis here. This amounts to deriving
the Bayes design for each 0; separately. Thus the subsequent sections contain the following
main type of results:

i derivation of optimal design for each 6;,

ii derivation of the maximin efliciency and a maximin efficient design,

iii discussion of the effect of (z) on the maximin efficiency and maximin efficient designs.
Point iii is in particular important, because it is not easy to specify the parameters of the
variance functions exactly. An alternative approach may be to treat them as unknowns and
either use another prior for them or use a more classical approach such as minimaxing over
them.

Section 2 treats the case b(:B)=eA2_2 2i=o 1o with illustrative emphasis on p = 2(quadratic
regression); Section 3 treats b(z) = 1 + c|z|* for p = 1(linear regression). The case p > 1
for this variance structure seems technically undoable. We assume z belong to [0,1]. The

case of compromise designs in the presence of many priors is discussed in Mukhopadhyay

and DasGupta(1991). For some related work in general, see Lee(1988).

1.7 An illustrative example.

Here we give a brief example to illustrate the main idea of this article. For polynomial
regression of arbitrary order on [—1,1], we describe a comprehensive method for deriving
the maximin efficiency and a maximum efficient design assuming a homoscedastic classical

setup.



Formally, consider the usual homoscedastic polynomial regression model
y = Og+0c+...+0,,2° " +e¢ -1<2z<1, (1)

where ¢’s are iid N(0,¢?), o?(> 0) is unknown.

Instead of using the usual moments, it is computationally convenient to get the solution
in terms of canonical moments. We first briefly describe some relevant theory of canonical
moments which will be useful to obtain the solutions. More detail and a,;;plications can be
found in Skibinsky(1967,1968,1969,1986), Studden(1980,1982,19822,1989), Lau(1983,1988)
and Dette(1991). For an arbitrary design £ on [~1,1] let ¢ = [, z¥d¢é(z) denote the k-th

" moment of ¢ (k=0,1,...). Then the canonical moments are defined as

ci— ¢

; = 7:=].2...
Di C;{-—C;-— < ?

where ¢} and ¢; denote respectively the maximum and the minimum values of the i-th
moment for a given set of moments co, ¢1, ..., ci—1. Note that 0 < p; < 1 and the canonical
moments are left undefined whenever ¢} = ¢;. If 1 is the first index for which equality holds
then 0 < pr < 1(k=1,...,1—2) and p;—; must be 0 or 1. The relationship between the two
types of moments can be expressed by the use of certain recursive relationships(see Stud-
den(1980) and Skibinsky(1968)). In the special cases when all the odd (ordinary) moments
are zero (such as for symmetric designs), the even moments can be expressed recursively in
terms of canonical moments. Note that for symmetric designs, all the odd canonical moments

are equal to -12-

Lemma 1.1 Let ¢ denote a symmetric probability measure on [~1,1]. Let 1 —py = So; = 1,

71=1,2,.... Take {; = (1 = pj—1)p;, § = 1,2,... and recursively define

j
Sii = Y, Ck-iti)Si-tky J=5Ht+1,,1=1,2,.;
k=1



then the following functional equality holds :

The support and the weights of probability measures corresponding to a terminating se-
quence of canonical moments can be found by standard techniques (see Studden(1982a)
or Lau(1983,1988)). The following result is useful for the special sequences with all odd

canonical moments equal to 7 (see Lau(1983)).

Lemma 1.2 Let¢ denote a probability measure on [—1, 1] with canonical moments p; € (0,1)
(2 < 2n —1), pai-1 = 2 (2 < n), pan = 1 and let the polynomials Qi(z,€) and Py(z,€) be

defined recursively by (Q_1(z,€) = P-1(z,§) =0, Qo(z,&) = Po(z,£) =1)

Qr+1(z,8) = zQi(z,&) — par(l — par+2)Qr-1(z,€) (k>1)

Pei1(z,8) = zP(z,&) — (1 — par)p2ksoPr—a(2,§) (E>1).

The design £ is supported at the zeros of the polynomial (1 — 22)Q,-1(z,&) and the weights

at the support points zg, ..., T, are given by

{({z;}) = L (22 —1)Qn-1(2, &) o=,

7=0,1,...,n.

Suppose we want to estimate {6;,...,0;, : 0 <4 < ... < i < p—1}. We compute the
maximin efficient designs in terms of canonical moments for different sets of 8; for p = 2,3, 4
and 5. It is not hard to see using standard invariance arguments that a symmetric maximin
efficient design necessarily exists. Thus we can use Lemma 1.1 to express M in terms of the

canonical moments. By using Mathematica, the exact solution can be obtained.
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After we find the design in terms of canonical moments we can get the support and
their weights by using Lemma 1.2. Table A provides the ‘maximin efficiencies’. It is very
interesting to note that in each case, the maximin efficiency for the set {6y, ..., 0,2} coincides
with that of the full set and that generally speaking, the maximin efficiencies are higher if

even and odd coeflicients are not grouped together.

2 Maximin efficient designs when b(z) = b;(x).

2.1 Two general theorems.

In this section we first consider the problem of finding optimal designs in general het-
eroscedastic linear models when attention is restricted to only linear estimates. Some of
the results in this section should be considered known but they motivate other results in the
latter sections. Throughout we assume squared error loss.

Notation: Z ~ (g, E) will mean E(Z) = p and the variance-covariance matrix of Z is X.

Theorem 2.1 Let Y,y ~ (X60,%(0)) and let 0,y; ~ (0,C). Let B = E(X(0)) (under
the prior; we assume B exists). For estimating L, where L is a k X p matriz, the best
linear estimate AgY has Ag = LCX'(B+ XCX')™! and the corresponding Bayes risk equals
tr LX'B7'X +C 1)L,
Proof:  Straightforward. &
Notice the formal equivalence of restricting to linear estimates and assuming that ¥ ~
N(X§,B)and 8 ~ N(0,C). IfY ~ N(X@, B) and @ is normally distributed with a covariance
matrix of C, then the posterior covariance matrix of § is (X'B~'X + C~')~! and hence the
Bayes risk for estimating L§ is tr L(X'B~'X + C~1)1L".

Suppose now B = Diag(b, ..., b,) with b,~=e'\2_2(1+”3?+"'+‘”‘?p), where A is arbitrary. Optimal

design theory for such B is simplfied for polynomial regression due to the following general
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theorem.

Theorem 2.2 Let E(yi|z;) = 0o+ b1z + ... + 0,2}, where 0 < z; < 1, and let Var(y;|z;) =
A EWle) | Let § = (8o,04,...,0,) have a spherically symmetric prior G(i.e., G(.) depends on
8 only through 0'0). Then the set D of designs with support on 0 and at most p other points
forms a complete class in the sense that given any design &, there exists a design &5 in D

such that M(&;) > M(&) where for any design, M denotes X'B~'X.

Proof:  First notice that using a standard argument, b(z) = F(z'z) for some suitable

F, where z = (1,z,...,27)'. Transforming to the new regression functions fi(z) = \/“’—

b(=)’
0 <7 < p, the Theorem follows on using a standard argument with Chebyshev-systems(see

Karlin and Studden(1966)). &

2.2 Applications.

2 i . . .
Example : The function b(z) = e Lio ol corresponds to taking special spherically sym-

metric N(Q,I) prior. For quadratic regression(i.e., p=2), Theorem 2.2 permits reduction of
the design problem to a four parameter optimization. Table 1 gives the value of the maximin
efficiency e and the maximin efficient design itself for various A and n. Notice that unlike
in classical design theory, Bayes optimal designs usually depend on n. In Table 1, the set
{0,z1,z2} consists the support of the maximin efficient design and p; is the mass assigned
to z;; also, r denotes %

Discussion of Table 1 : First of all, the maximin efficiencies are the lowest for the case
A = 0. Thus, in the usual homoscedastic case, one gets the worst maximin efficiencies.
Secondly, in fact, the larger the value of A, the better the maximin efficiency appears to be
for any fixed value of n. On the other hand, for any fixed A, the maximin efficiency decreases

as n increases. The worst case is the situation of a homoscedastic model with a large sample.
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Notice, however, that if X is reasonably large, say A > 1.5, then for moderate sample sizes
like 25, the maximin efficient design guarantees a very respectable minimum efficiency of
about 85% or more for estimating every coefficient ;.

As we stated in section 1.3, the common approach is to estimate the entire § vector by
using a collapsed quadratic loss. Therefore, a comparison of the minimum efficiency (over
the different coefficients 6;) achieved by using the optimal design for the entire § vector with
the maximin efficiencies of Table 1 seems in order. Table 2 gives the optimal designs for
the whole § vector and its minimum efficiency over the coordinates 6;. Again, {0, z1,z2}
constitute the support set, p; denotes the mass at z;, r = ;1: and e* is the minimum efficiency.
Discussion of Table 2 : In general, the phenomena evidenced in Table 1 seems present
in Table 2 too. The gain in the minimum efficiency by using the maximin efficient design
is substantial if A < 1.5 or even if A < 2.5 but only if n is large. For A = 3, irrespective of
the value of n, there seems to be practically nothing to gain by using the maximin efficient
design.

Combining Table 1 and Table 2, generally speaking, deriving the maximin efficient design
is worthwhile if A is moderate or if A is small and n not very large. In general, if A is large,
then deriving the maximin efficient design is not worthwhile because one may use the usual

optimal design for the entire § vector as well.

3 Maximin efficient design when b(x) = by(z).

3.1 Bayes designs for each 6;.

ind
For the following analysis we will assume yimNepN (6o +60:1z;, 1+czd), for some ¢ > 0, A > 2,
_ To 0
0<z,<1,and § = (6p,61) ~ N(Q,C) where %—1- = for rg, r; > 0 (the matrix
0 T9
with ro or ry equal to zero is not invertible but formally the classical optimal designs can be
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found by substituting the null matrix for C~!). We have the following Theorem.

Theorem 3.1 Let E(y;) = 0o + 612;, 0 < z; <1 and let Var(y;) =1+ cz}, ¢ >0, A > 2.

$)

To 0
Assume § has a N(0,C) prior where Q;L—l- = ( ) Then
0 T
a. The optimal Bayes design for estimating Oy is supported on x = 0.

b. The optimal design for estimating 0, is given as follows :

Define quantities xq,x1, po, p1 whenever they are well defined as follows :
(4 =1)\?
o= \edh=22)

n - ()

)\(1 + T‘o)
Po m and
o = (1+r0)\/1+c(\/1+c—1).

c
(i) For c(A —2) <2, the design is supported on {0,1} with mass p; at 1;

(it) For2 < c(A—2) < —(H'—“’l and ¢ < ‘(ﬁ/\’\—z)lzl, the design is supported on
(i1a) {0,1} with mass p1 at 1 if 755 <1 —
(iib) only {1} if 75z > 1 —r3;

(i17) For2 < ¢(A—2) < 2(%1 and ¢ > %(\i——z)l}, the design is supported on
(iiia) only {z,} if A(1 — o) < 2;
(11tb) {0,z0} with mass po at zo if A(1 —ro) > 2;

(iv) For c¢(A —2) > —(ﬂl and ¢ < %"\—2)1,}, the design is supported on
(iva) {0,1} with mass py at 1 if 75 < 1—rf;

(1wb) only {z:} if 75 > 1 —rg;
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(v) For ¢(A—2) > 2—(13'0"—"1 and ¢ > ‘(ﬁ,\f\__T;}, the design is supported on

(va) only {z1} if A(1 —ro) < 2;

(vb) {0,z0} with mass po at zo if A(1 —ro) > 2.

Proof: The proof of part (a) is trivial.

Part (b) follows on using the usual equivalence theorem arguments. In each case one has
to check (for 0 < & < 1) the inequality ((co + 7o)z — ¢1)® < (1 + cx) - Q, where Q =
(—c1, co+ 7o) (CO “ ) e ) , and co, ¢; are the values of Eb(—lx)- and Eb(_))((')' as given by

a 22/ \ c
the designs in the statements of the theorem. &

Remark : For a nondiagonal prior covariance matrix C, the optimal design for 6; cannot
in general be written down in a closed form. Also, as in Section 2, the the optimal Bayes
design (for 6,) depends on the sample size n.

Discussion of Theorem 3.1. Notice that the design for , is in general supported on 0. If

however, C is not diagonal, this may not be the case in general. The optimal design for
estimating 6; can be one of three different kinds: it may be supported on 0 and 1, or on 0
and another interior point, or it may even be a one-point design. Notice also that whatever
be ¢, if A gets very large then the design will be supported on 0 and another interior point
zo. However, surprisingly, as A — 00, o converges back to 1 as can be easily seen by
checking that logzo converges to zero. Note that this interior point is independent of the
prior. Consider now the classical case with a large A. Since the classical case can be thought
of as the case with ro = ro = 0, for large enough X the support of the Bayes design coincides
with that of the classical design as long as ro < 1. If the constant c in the weight function
= 1, and if one considers the classical case ro = 0, then it follows from Theorem 3.1 that the
optimal design for 6, is supported on 0 and 1 with mass p = 2 — V2 at 1if A < 4422,

1
and is supported on 0 and (%i—_z;%) * with mass 5’\7'% at zero. This interior point goes down

14



to approximately .92866 at A = 16.4245 and then starts moving back to 1.

3.2 Maximin efficient designs, 0 < z < 1.

In this section, we derive the value of the smallest € for which I'.(C') is nonempty and also
give geometric descriptions of the set I';(C) in terms of the moments ¢, ¢, etc. (each design
corresponds to a moment sequence). For ease of representation and understanding, we will
present most of the analysis for the classical case while keeping in mind that the analysis is
similar for the Bayes case although the algebra is of necessity more complicated. We first
need the following notations and a theorem.

Given A > 2, denote r = ,\L—1 and p = A—i2 Note p = 0o if A = 2. Also let v; = i%fvi(f),
where v;(£) denotes the risk for estimating ; using the design €. v; thus simply represents the
risk obtained by using the corresponding optimal design. As stated before, we will assume
that we have a simple linear regression with the independent variable varying in [0,1] and a
variance function w(z) = 1+ cz*, A > 2, ¢ > 0. Also, for the classical case, I'.(C) will be

denoted as simply I..

Theorem 3.2 Letrg =ro =0. Then
(Z) Vo = 1

(it)

Cc

zh::(V1+0+U2#A§2Jljc(¢l+c+l)

>0

= 4 F.A-1)F (A —2)32
z‘f/\>2\/1+c (\/HCH).
C C

Proof: Recall the definitions ¢; = F b(X—);), ¢ =0,1,2 where E(-) denotes expectation with

respect to the relevant design (measure).
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Part (i) follows from Theorem 3.1. To prove part (ii), conclude using part (b) in Theorem

3.1 that the optimal design for 6, is supported on 0 and 1 with mass Yite(iteml) a4 1 if

c

1
A< 2\/1—1'—° (\/l—fﬁ + 1) and otherwise it is supported on 0 and (%(/\’\_;21)%) * with mass 2():\__21)

at zero. The second assertion in part (ii) of the current theorem now follows on algebra by

using the fact that vy = —%— where in ¢; expectation is taken with respect to the designs
2—4
described above. &

Lemma 3.1 For any A > 2, if . is nonempty for some € > 0, then I'; also contains a two

point design supported at 0 and some other point in the interval [0,1].

Proof: The proof uses a standard complete class argument by arguing that

1 1 x —z? )
Y 14cz?? 1l4czr?® liczt

form a Chebyshev system; again, see Karlin and Studden(1966). &

In view of the above lemma, it is enough to consider designs supported on 0 and zo
(where 0 < ¢ < 1) with mass p at zo. Here p and zo are kept arbitrary. For such designs,
there is a convenient representation of c; in terms of ¢ and ¢;. This is the assertion of the

following theorem.

Theorem 3.3 For A > 2, c; = (eo)’ ™" or all two point designs supported on 0 and some
p

other zo in [0,1].
Proof: For A =2, r equals 1 and the above representation is trivial (in fact it is valid for

all designs). For A > 2, note that

o =1-p+o (2)

€ = ;E‘Lx (3)

?
+Cz;o
2

and cy = '1'%;?‘ (4)
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Solving the first two equations for p and zo one obtains

Tog = (1;160)r (5)
i 1+’I‘ 1+r
and p = (T-Sl . co)'t . (6)

Substituting (6) into c; in (4) one gets the required result. L

We now go onto deriving the value of the smallest € such that the set of designs I'; is not

empty. Note that if ¢ is the smallest such value then —— is the maximin efficiency and the

T

corresponding design is a maximin efficient design.
Towards this end, recall that in view of Lemma 3.1 it is enough to consider designs

supported on 0 and some other point in the interval [0,1]. Also recall that for such designs

¢z is completely determined from ¢y and ¢;. Finally note that a pair (co, ;1) arises from a

valid design (for the variance function 1 + cz?) if an only if 11? <e<l, ¢ > 1—"C°°-, and

1

_1 L
e < ¢y > (1;06‘1) * (the designs for which ¢; = =% are those supported on {0,1} and the
_1 1
designs for which ¢, = c(l) A (I—_CCQ) * are the one point designs; that for every other design
i i
the third inequality ¢; < c(l) A (l;cc"-) * holds follows from the Cauchy-Schwartz inequality).

We will call

1
1 1—co ~1 /1 —¢co\*
M = {(co,coH Sewsla2—2 q<qt( )} (7)

the moment space of the problem.

Notice that M can also be written as

1 1—¢ 1r 1—o¢ jpr
M:{(CO)cl):1+cScOSl, CIZ c ,01505+( ) } (8)

Now for a two point design ¢ described above,
v c - 1
i 2—i
€; = = -V > 9
©) vi(€) (Cocz - C¥) ®)
Co—;

& ——— < (14+¢);, 1=0,1. (10)

cocy — €2
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Using Theorem 3.3 and part (i) of Theorem 3.1, the first inequality in (10) reduces to
(1—co) e = (14e)(l —co) et "eo+ (1+¢€)c"e2 0. (11)
Similarly the second inequality in (10) reduces to
cco— (1 +€)vico(l —co)e;™™ + (1 + e)nc’c < 0. (12)
Motivated by these, we will define

So = {(co,c1) : (11) holds}, (13)

S1 = {(coyc1) : (12) holds} . (14)

Notice that elements of Sy or S; need not be within the moment space M but I, is nonempty
for a specific € > 0 if and only if So N S} N M is nonempty for this € > 0.

We now claim that if €¢ is the smallest € with the property that So N S3 N M # ¢, then
there exists a point in 05p N 051 N M where 05; denotes the boundary of S; (in fact we will

prove a stronger assertion).

Lemma 3.2 For ¢ > 0, let A, B. be closed sets and let C' be another fized closed set.
Suppose A.NC, B.NC are (closed) convex sets with nonempty interiors for each € > 0 but
AoNBoNC = ¢. Leteg = inf{e > 0: A.NB.NC # ¢}. Then A;;NB,NC = 0A,,NIB,NC,

provoded A., B. are continuos in €.

Proof: First note that £ > 0 and also that A.,NB,,NC = (0A.,UAL )N(0B,,UB2)NC
where D° denotes the interior of D.
Ay N By, NC = (0A;, N 0B, NC)U (04, N B N C)
U(A2 NdB, NC)U (A3 N B2 nC).
By definition of g, we have that A2 N BJ N C = ¢. Now observe that B, N C is a closed
convex set with a nonempty interior and is therefore regular, i.e., (B,, N C)° = B, N C.
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Suppose now A2 N B, N C # ¢. Then 3z A2 which is also in B,, N C. Therefore, there
is a sphere S(z,7) C AZ; also by the property that (B., NC)® = B,, N C, we have that
there is yeS(z,r) such that ye(B,, N C)°. Thus we now have ye(Bg, N C)° = B2 N C° and
this y is also in A% implying yeA2 N Bg N C° which is a contradiction to the fact that
A2 NBX NC = ¢. Hence A2 NB,NC = ¢, implying A2 N9B,, NC = ¢ since 0B., C B.,.

Similarly, dA., N B2 N C = ¢. This proves the lemma. [ )

In view of the above lemma, if € is the smallest & such that So N S1 N M is nonempty,
then we can find a point (cp, ¢;) in the common boundary of Sy as well as Sy which is also

in the moment space M. For this point (co,¢1), we then must have

Ca 1
2 = = 15
e = (15)
1
=7 = —c ol —co) (16)
1
(Set both inequalities in (10) as equalities, divide, and then use Theorem 3.3).
Substituting (16) into (11) (with an equality in (11), one gets
1 2= - a5 e
el ci=roy g (1 — )71 (17)

Note that for this point co # 1 (in fact it is also > ﬁ;o—) Also since this point (¢g,¢1) is in

the moment space M, we must have, by (16) and (8),

1 1—co\'™"
Lol —co)" > ( C") , (18)
(51 [}
r(l—r)
1 i=r /1 — o
and —c"co(1 —co)™" < g*" < co) i (19)
V1 C
On algebra, (18) and (19) reduce to
igr
4] v
< < —. 20
c+ v c+ ’Ull_;;- ( )



We have thus in effect proved that if € is the smallest € for which SpN.S; N M is nonempty,
then there exists a ¢o satisfying (20) such that (17) holds. Conversely, if there is a cp
satisfying (20) such that (17) holds for some given ¢, then So N S; N M is nonempty (in
fact 5o N 353 N M is nonempty) for that . Therefore the smallest £9 can be found by

maximizing the right side of (17), i.e.,

2r _H_'_: 1—1'—: =2r
fleo) =co— ™70, g7 (1 = co) T, (21)
for ¢ satisfying (20). At this stage it is convenient to reparametrize to z = 12~ and
p= %_2‘ = 1—3 We then have to maximize
z — 1, (L)p 2P
h(z) = c_\u 99
(2) 1+2 ’ (22)

v
in the interval 2 < z < 2’?—
To maximize h in the above interval, we take the derivative of log h; algebra gives that

the numerator in (log &)’ is proportional to

%1

N = (2) = pert = (p-1)e7, (23)

and the denominator in (log k)’ is positive for z in the above interval. Clearly now, N(z) is
decreasing in z so that if N(z) <0 at z = % then it is < 0 for all z in the above interval,
implying that log » and hence h is decreasing and is therefore maximized at z = 2. It is
easy to check that N(z) < 0at z =2 iff p > 3’%1%1 Otherwise, there is a unique zero of
N(z) in the above interval and this is the unique maxima of log h and hence of h. Clearly,
then, if p < le%l, then the unique maxima of A is at the root of

pPt+(p—12 =c- (ﬁ)p . (24)

c

Theorem 3.4 Let o = inf{e > 0:T'; # ¢}. Then

() co= 25 if p = 2 > ulita

v;—1 A=2 v1+c
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(ZZ) €0 = 1—h(z0) fP — __ < v1!1+c!

h(Zo) v1 +c ’

where zg is the unique root of (24).

Using the formulas for v; derived in Theorem 3.2 it is actually possible to get a better
idea of which values of the pair (A, ¢) imply p > %%l We omit these details.

It is interesting, however, that part (ii) of Theorem 3.4 can be much improved. ‘In
fact, once one finds the unique root z¢ of (24), it is possible to write down very convenient
expressions for the maximin efficiency €¢, the values of the moments ¢p, ¢;, and the two point

design these cg, ¢; correspond to. In effect, thus, it is possible to exactly write down what

the two point maximin efficient design is. This is the assertion of the next theorem.
Theorem 3.5 Let p = =5

(i) Suppose p > ”—lu(l%l Then

. 1+¢ v 1 ) d 1+4+¢
= — Cp = , €1 = , Lo = an = R
O =1 P Ty e Pyt T Po v+ ¢

where xg and po denote the two point mazimin efficient design.

(11) Suppose p < %ﬁl%l Then

_ p
&g = T——,

(p——l) 1 ]

a1 = & ( ) (vl)z,and
1+zo C2o

P (czo)P 1
Po = —\— ’
V1 \Uy

where 2zq is the root of (24).

Proof:  Proof of part (ii): To get €o, just use = h(zp) and then use that z solves

1
149

(24) for part (i1). To get the expression for co, simply use the fact that z, = 1_505 For ¢,
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use (16). For zo, use (6), and for po use po = 1 — co + & (which is an implication of (4). &

Discussion : Of course, given A and ¢, it will be easy to see using Theorem 3.2 whether case
(i) or (ii) applies in Theorem 3.5. Then Theorem 3.5 provides a very convenient vehicle for
finding the maximin efficiency and the required design. The case A = 2 is of some special
interest because this corresponds to regression on an ellipse. On the other hand, the case
A — oo is of interest as the other limiting case. We briefly describe the nature of various

things such as the maximin design, the maximin efficiency, etc. in these two cases.

Theorem 3.6 (i) Let w(z) = 1 + cz?, ¢ > 0. Then (the) mazimin efficient design is
supported on 0 and 1 with mass py = T\/% at 1 and the mazimin efficiency equals

1+C+2 . . . . . . . §
—1_—2(\/m4_1), which is monotone decreasing in ¢ with a mazimum possible value of %.

(i) Let w(z) = 1+ cz*, ¢ > 0. As A — oo, for every c (the) mazimin efficient design

3

3 and 41 respectively. Also, the

converges to a design supported on 0 and 1 with mass

.. 5 3
mazimin efficiency converges to § for every c.

Proof: Part (i) is a direct consequence of part (i) of Theorem 3.5 To prove part (ii), note
that p — 1 as A — oo. Also, using part (ii) of Theorem 3.2 and the definition of p, it is easy

to check that given any ¢, for large A,

. )%

—1 y 4

e (p+—_1_ (25)
(p-1)"

Note that (25) converges to 4 as p — 1. Thus, given any c, for large A, case (ii) in Theorem

3.5 applies. Use now the fact that zo solves (24), or equivalently,

-1 (p+ 1)+
pzg +(p— 1)z = (p—1)1 (26)
& pag"1 + az =(p+ 1)”"'1, (27)

where a, = (p — 1)z.

22



It is easy to show that {a,} is a bounded sequence (and is bounded away from zero) and
therefore has a convergent subsequence. From (27) it now follows immediately that every
convergent subsequence of a, converges to 3. Hence, Ll_lg{ (p—1)z0} =3.

Now from part (ii) of Theorem 3.5, we have that zo converges to 1 as p — 1, the mass
(at 1) po converges to 3 as p — 1 and €0 — 3 as p — 1 and hence the maximin efficiency

converges to %. This proves the theorem. &

Discussion : It is interesting to note that as A — 2 or oo, the maximin efficient design and
the maximin efficiency behave similarly. Indeed, for ¢ — 0, the designs in parts (1) and (ii)

of the above theorem are exactly the same and so are the maximin efficiencies.

3.3 Example.

Proceeding as in the preceding section, it is possible to derive a maximin efficient Bayes
design and the corresponding maximin efficiency provided one has a diagonal prior covariance
matrix for the regression vector § = (6o,81)'. We do not give this details. Table 3 below
gives these quantities assuming a N(0, I) prior. Table 4 gives the ordinary A-optimal design
assuming the same prior and its minimum efficiency over the coordinates. In Table 3, {z1, z2}
constitutes the support of the design, p denotes the mass at z;, r denotes % and e stands for
the maximin efficiency. In Table 4, the same notation is used for the A-optimal design and
e* denotes its minimum efficiency.

Discussion of Table 3 : The most interesting feature of Table 3 is the remarkable robust-
ness of the maximin efficiency e to the choice of A for any fixed value of c. Indeed, in some
cases, the design and the maximin efficiency e remain the same for a wide range of A for
fixed ¢. Also notice that similar robustness seems to hold over the choice of c for fixed A

as well, with the exception of the case ¢ = 0 which corresponds to the homoscedastic case.
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Notice that in this case the value of e generally seems to be higher, indicating a penalty for
lack of homoscedasticity. As in Table 1, if one fixes ¢ and A, then e seems to decrease as n
increases. In general, the value of e is moderate for small to moderate sample sizes.

Discussion of Table 4 : Again, the general features of Table 3 are present in Table 4 too.
As before, the interesting question is whether it is worthwhile to derive the maximin eﬂicient
design. Even a cursory glance of Table 3 and 4 evidently indicate that virtually for any ¢, A
and n, the maximin efficient design provides quite major gain in the minimum efliciency over
the standard A-optimal design. This was not the case for the variance function considered

in section 2.2.

4 Conclusions.

The results in this article pertain to the question of simultaneous optimization of the design
when interest lies in more than one specific problem and one wants to work with a vector
loss instead of collapsing the different problems into a single problem by taking a sum of the
coordinate wise losses. The analysis seems to indicate that for general polynomial regression
it may be hard to derive the maximin efficient designs for heteroscedastic models. A prior can
further complicate the situation. Bayesian results have been emphasized in this article while
keeping in mind that their frequentist analogs are often easier to derive. We consider these
important from a practical viewpoint and hope that compromise designs will be emphasized
in other contexts as well.

Acknowledgement. We are grateful to Mr. Jaime San Martin for giving a very neat proof of

Lemma 3.2 and to Mr. F.C. Chang for help with the numerical work.
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Table A

0,’s of interest

Maximin efficiecy || p

0;’s of interest

Maximin efficiecy

{60, 6,} 1.0 5 {61,065} 0.933012
{60,6,} 0.5 {61,064} 0.735753
{66, 02} 0.75 (65,05} 0.681868
{61,065} 0.75 {65,04} 0.968019
{60,61,0,} 0.5 {63,064} 0.75
{66, 61} 0.666472 {60, 61,05} 0.489838
{60, 02} 0.75 {60, 01,05} 0.482620
{65, 05} 0.671464 {60, 01,604} 0.498835
{6,,0,} 0.648998 {60, 82, 65} 0.497546
(61,05} 0.934186 {60, 02,04} 0.632240
{62,065} 0.75 {60, 83, 6.} 0.497850
{60, 61,05} 0.582961 {61,82,05) 0.664791
{60, 0y, 05} 0.656609 {61,02,04} 0.668603
{60, 05,05} 0.632688 {61,65,04) 0.722619
{61, 02,05} 0.648998 {6,, 05,04} 0.681868
{66,061, 05,05} 0.582961 {60, 1,05, 05} 0.482620
{60, 61} 0.489838 {60, 01, 65,04} 0.498835
{60,065} 0.692790 {60, 01,05, 04} 0.482620
{60, 05} 0.499669 {66, 02,05, 04} 0.497546
{66,084} 0.632240 {61, 02,065,064} 0.664791
{61,865} 0.668603 {60, 01,05, 05, 6,} 0.482620
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Table 1

A T | T ) 41 P2 €
0 | 0.2 0 1 0 0.217 | 0.876
0.1 0 1 0 0.215 | 0.842
0.04 0 1 0 0.259 | 0.769
0.01 0 1 0 0.461 | 0.548
1102 0 0.979 0 0.234 | 0.869
0.1 0 0.988 0 0.220 | 0.847
0.04 0 0.975 0 0.225 | 0.813
0.01 0 0.931 0 0.329 | 0.686
1.5 0.2 0 0.628 0 0.276 | 0.910
0.1 0 0.709 0 0.232 | 0.884
0.04 0 0.768 0 0.226 | 0.843
0.01 0 0.995 0 0.257 | 0.770
2 | 0.2 0 0.354 0 0.415 | 0.955
0.1 0 0.390 0 0.346 | 0.933
0.04 0 0.436 0 0.281 | 0.904
0.01 0 0.498 0 0.249 | 0.848
2.5 | 0.2 |[ 0.097 | 0.246 | 0.00007 | 0.430 | 0.986
0.1 [ 0.043 | 0.252 | 0.0008 | 0.424 | 0.974
0.04 || 0.275 | 0.284 | 0.00003 | 0.357 | 0.952
0.01 0 0.361 0 0.263 | 0.908
3 02 |0.099|0.127 [ 0.078 |0.769 | 0.997
0.1 0 0.141 0 0.680 { 0.994
0.04 0 0.177 0 0.464 { 0.986
0.01 0 0.237 0 0.304 { 0.961
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Table 2

A T T3 T2 D P2 e*
0 | 02 0 1 0 0.4 |0.733
0.1 || 0.423 1 10.163 | 0.345 | 0.652
0.04 || 0.478 1 |0.344 | 0.269 | 0.534
0.01 || 0.498 1 |0.455|0.210 | 0.413
1|02 0 1 0 |0.497 | 0.692
0.1 0 1 0 |0.492 | 0.626
0.04 || 0.436 1 |0.175 ] 0.416 | 0.541
0.01 || 0.454 1 [0.375 | 0.300 | 0.424
1.5 02 || 0551 |0.683| 0 |[0.451|0.826
0.1 || 0.748 1 |o049| o0 |o0.714
0.04 || 0.798 1 [0535] 0 |0.585
0.01 | 0.425 |0.920 | 0.219 | 0.442 | 0.439
2 | 0.2 || 0.306 1 |0.163| 0 |0.941
0.1 || 0.462 1 (0327 0 |0917
0.04 0 0579 0 |0.467 | 0.754
0.01 | 0625 |0.657| 0 |0.567|0.536
25| 0.2 || 0.00008 | 1 0.2 0 |0.981
0.1 0 1 0 0 |0.966
0.04 | 0.25 1 [0137| 0 |0.939
0.01 || 0.482 1 |0463| 0 [0.747
3102 0 1 0 0 |0.996
0.1 0 1 0 0 |0.993
0.04 0 1 0 0 |0.983
0.01 0 1 0 0 |0.949
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Table 3

c A r z1 | z2 P e c| A T T T3 P e
0 - 102 | 0] 1/0.16667 | 0.93687 I 1125 0.2 || O 1 0.30770 | 0.81605
0.1 || 0 { 1 |0.09091 | 0.96065 0110 1 0.29898 | 0.78267
0.04 | 0| 1 |0.03846 | 0.98187 004 ff O 1 0.29493 | 0.74667
001 0 { 1 ]0.25250 | 0.75952 001 O 1 0.29334 | 0.71883
05| 2 1024 0] 10.30707 | 0.82842 5 | 02 || 0 |0.88338 | 0.32904 | 0.82297
0.1 || 0§ 1 {0.29078 | 0.79563 0.1 || 0 |0.92154 { 0.30689 | 0.78633
0.04 [ 0§ 1 }0.28135|0.76117 0.04 || O [ 0.95614 | 0.29668 | 0.74798
0.01 ) 0| 1 }0.27676 | 0.73537 001 |f O |0.97929 | 0.29343 { 0.71915
2.5 0.2 0| 1030707 | 0.82842 || 2| 2 0.2 0 1 0.30120 | 0.80470
0.1 || 0 | 1 |0.29078 | 0.79563 0.1 )0 1 0.30496 | 0.76859
004 O [ 1 |0.28135]0.76117 004 O 1 0.31081 | 0.72889
001 0| 1 |0.27676 | 0.73537 0011l O 1 0.31523 | 0.69693
5102 ] 0] 1]0.30707 | 0.82842 2510210 1 0.30120 | 0.80470
0.1 { 0| 1 {0.29078 | 0.79563 01 1] 0 1 0.30496 | 0.76859
004 0 | 1 |0.28135|0.76117 0.04 1 0.31081 | 0.72889
001} 0 1 |0.27676 | 0.73537 001 O 1 0.31523 | 0.69693
1 12 (021 0] 1]0.30770 | 0.81605 5 | 02 [[ 0 |0.75471 | 0.33452 | 0.83537
0.1 ff 0 | 1 |0.29898 [ 0.78267 0.1 || 0 |0.79212 | 0.31206 | 0.79551
004 0 1 |0.29493 | 0.74667 0.04 ) 0 | 0.82762 | 0.30264 | 0.75081
001 0 { 1 |0.29334 | 0.71883 0.01 ) 0 | 0.85241 | 0.30067 | 0.71485
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Table 4

c A P 21 | 29 P € c| A T 1 To P e*
0 - 102§ 0] 1]0.44391 | 0.74497 "I 1125102 { 0 1 0.5 0.67593
0.1 [ 0 [ 1 [0.42788 | 0.68470 0.1 | O 1 0.5 0.61039
004 0 | 1 [0.41933 | 0.63191 004} 0 1 0.5 0.55239
0.0 0 | 1 {0.41544 | 0.59834 0011 O 1 0.5 0.51447
051 2 |02 (0} 1 [0.47974|0.70276 5 1 0.2 fj 0 |0.97464 | 0.49774 | 0.68296
0.1 |} 0| 1 ]0.47124 | 0.64056 01 0 1 0.5 0.61039
004 0 {1 |0.46675 | 0.58528 0.04 0 1 0.5 0.55239
001 0 | 1 |0.46473 | 0.54946 001 O 1 0.5 0.51447
25102 (| 0| 1]047974]0.70276 |2 | 2 | 0.2 }f O 1 0.51761 | 0.64585
0.1 || 0 | 1 }0.47124 | 0.64056 01 0 1 0.53569 | 0.57128
0.04 ) 0 { 1 |0.46675 | 0.58528 0.04) 0 1 0.54512 | 0.50737
0.01f 0 | 1 [0.46473 | 0.54946 0.01 | 0 1 0.54924 | 0.46558
5 102 | 0] 1|0.47974 | 0.70276 25102 | 0 1 0.51761 | 0.64585
0.1 { 0 | 1 {0.47124 | 0.64056 01 0 1 0.53569 | 0.57128
0.04 ( 0 | 1 [0.46675 | 0.58528 0.04 | O 1 0.54512 | 0.50737
001 ) 0| 1 ]0.46473 | 0.54946 0014 0 1 0.54924 | 0.46558
1 2102 (fo0}1 0.5 0.67593 m 5 102 | 0 (0.84199 | 0.50398 | 0.69562
01 1011 0.5 0.61039 0.1 || 0 ] 0.88485 | 0.51436 | 0.60891
0044 0} 1 0.5 0.55239 0.04 ]| 0 [0.91410 | 0.52425 | 0.53402
001 0|1 0.5 0.51447 0.01 }} 0 | 0.92938 | 0.53016 | 0.48598
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