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Abstract

The problem under consideration is I-minimax estimation of a multivariate normal
mean with squared error loss. The family T' of priors is induced by mixing zero mean
multivariate normals with a covariance matrix 7 by nonnegative random variables T,
whose distributions belong to a suitable family G. For fixed family G, the linear I'-
minimax rule is compared with the usual I'-minimax rule in terms of appropriate I'-
minimax risks. It is customary to measure the performance of linear I'-minimax rule
by the ratio ([-minimax risk of linear rule)/(I'-minimax risk), (cf. Donoho, Liu and
MacGibbon (1990)). It is shown that the linear rule is “good”( i.e. the ratio of the risks
is close to 1) whenever supg % is “close” to supg E -1-_{-;, regardless of the dimension
of the model. Several examples illustrate a different behavior of the linear I'-minimax
rule.

Key Words: I'-minimax, scale mixture of normals, Brown’s identity, linear I'-minimax
rule.

AMS 1985 subject classification: 62C20.

1 Introduction

Partial prior information can be very well formalized and naturally leads to the de-
scription of a class of priors I', that is a basis for I'-minimax approach. (Kudo (1967),
Skibinsky and Cote (1962)). If the prior information is scarce, the class I' of priors under
consideration is large and we are close to the plain minimax principle. The extreme case is
when no information is available, in which case the I'-minimax setup is the usual minimax
setup.

On the other hand, if we have a lot of prior information, then the class I' is not rich. An
extreme case is a class I that contains only one prior. In this case, the I'-minimax framework
becomes the minimum Bayes risk principle framework. The spirit of I'-minimaxity can be
vividly expressed by the often quoted sentence of Efron and Morris (1971):

... We have referred to the “true prior distribution” ... but in realistic situations
there is seldom any one population or corresponding prior distribution that is
“true” in an absolute sense. There are only more or less relevant priors, and

*This research was supported by NSF Grant DMS-8923071 at Purdue University.



2 1 INTRODUCTION

Bayesian statistician chooses among those as best he can, compromising between
his limited knowledge of subpopulation distributions and what is usually an
embarrassingly large number of identifying labels attached to the particular
problem.

Some Bayesians object that the belief in I'-minimax may produce “demonstrable incoher-
ence”, since there are examples when the I'-minimax rule is not Bayes (Watson (1974)).
But in most cases the I'-minimax rule is the Bayes rule with respect to some prior from the
family T'.

For a nice discussion on I'minimaxity in the context of Bayesian robustness, we refer
the reader to Berger (1985).

Consider the following model:

X|0 ~ MYN(4,1),
(1) QlTNMVNP(QaTI)’
T~ G(1),(t > 0).

Let G be the family of distribution functions G. Suppose that random variables 7 have
uniformly bounded expectations, and that F7 = 0 not for all 7, i.e.

(2) ‘ 0< sup/ tdG(t) <
GegJT
where T is the union of supports of 7’s. Class G determines the family of priors I as

3) r={ [ $0)46),G e 6

where

1 —|le]

(4) $pa(8) = Crylers "

is the density of MVN(0,tI) distribution. The class (3) is an example of so called “scale
mixture of normals” or “normal scale mixtures” family. An interesting fact is that some of
the well known families of distributions such as: t (particularly Cauchy), logistic, double-
exponential, cosh™!, etc., can be obtained as appropriate normal scale mixtures. These
classes are attractive because they are easy to work with (Monte Carlo studies, Gibbs
sampler, Bayesian calculations), or they possess some desirable properties (Robust Bayesian
inference). For some accounts of significance of scale mixture of normals in statistics, we
refer the reader to Efron and Olshen (1978), Robert (1990), and DasGupta, Ghosh, and Zen
(1990). Having the family of priors, it seems natural to employ the I'-minimax setup for
estimating the unknown parameter . Let D be the set of all decision rules. The estimator
6* € D that minimizes sup,¢r 7(7,0), i.e.

5 inf sup r(w, ) = sup r(«, %),
® 27 (e,0) = (. )



is the I'-minimax and rr = sup,¢r 7(7, 6*) is the corresponding I'-minimax risk.

If we consider the set of linear decision rules Dy, then the rule 63 € Dy, for which

(6) inf supr(m,d) = sup r(r, 61),
6€Dy rel
is called the I-minimax linear rule and rf, = sup,¢r 7(7, 67) is the linear I'-minimax risk.

We are interested in performance of linear I'-minimax rules compared to plain I'-minimax
rules, and performance will be measured through the ratio p = % More precisely, for a
prespecified class G of hyperprior distributions G, we have an induced class I'. For the class
I’ we want to calculate p or at least an upper bound on p, say p*. Values of p close to 1
suggest good performance of the linear I'-minimax rule.

The calculation and estimation of p (or p*) seems to be the problem of interest. When
the model is X ~ A(6,1) and T is the family of all distributions on [—m,m] (the bounded
normal mean), Ibragimov and Has’minskii (1984) argued that p is finite. Donoho, Liu, and
MacGibbon (1990) have derived very sharp upper bound p < 1.25 that holds uniformly in
m. When T is a family of all unimodal and symmetric distributions on [—m, m|, Vidakovic
and DasGupta (1991) have shown that p < 1.074.

In the multivariate case, we think about a linear rule as an affine transformation 6(z) =
Az+ B, for some matrices A and B. Solomon (1972) has shown that B # 0 is an inadmissible
choice. Motivation for using linear rules is apparent: they are easily calculable and simple
to use.

2 Preliminaries

2.1 An Information Integral Inequality

First, we will prove an inequality involving the Fisher information integral. The lemma.
that follows can be stated and proven in much more generality. The integral

P (2 (g2
@ 1076 = [, 22l g,

is the trace of the Fisher information matrix I(d) (for a location parameter § of a family
f(z — @)). Let G be an arbitrary distribution function.

Lemma 2.1 Let ¢,+(z) be the density of MVN(0,tI). Then

®) 2| $pen(@dGO) < [ T(@pusa(2)dG(O)
Proof:

(. §—¢p,t+1<@)da(t))2

95 Poat1(2) o bp,i41(2)

= (/ W vV bp,t+1(2)dG( t))2

/ (3:1:. Ppit1(2))?

pot+1(Z)

B 4G() [ nen(2)G(0)
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Therefore:

. (fy 52—'_¢p’t+1(:g)dG(t))2 < /T (%d)p’tﬂ(@))sz(t).

Jr bpe+1(2)dG(2) p,t+1(Z)

If we take the derivative out of the integral sign and make a summation with respect to 7
in (9), we get

2 (g Jr $pann (@GO 1 Tl (1 (2)dG())?
Jr $p.141(2)dG() . /T bpe41(T) dG(2).
Finally,
L fr (@G D) Syt (@)?
®e Jr bpe+1(2)dG(2) dg < /W/T $p,t+1(2) dG(1)dg
P (2 101(2))?
o B o

The positivity of the integrand allows the interchange of the order of integration. O

2.2 Brown’s Identity

When the model is X |6 ~ A(6,1) and the loss is squared error, the following identity
(attributed to L. Brown) holds. For any prior distribution 7 the Bayes risk r(r) satisfies

(10) r(r) =1-Z(¢1 *7(x)).

Under such a model, the convolution ¢ *7(z) can be interpreted as the marginal distribution
for X. For derivation and some applications of Brown’s identity see Bickel (1981), also
Brown (1987). In the p-variate case Brown’s identity has the form

(11) r(r) = p— L(¢pa1 * 7(z))-

The function ¢, 1 *7(z) has an interpretation as the marginal density for X under the model
X|8 ~ MVN,(6,1).

Since, in general, rr > sup,r7(7), Brown’s identity gives only a lower bound on T
minimax risk. Therefore

(12) rr 2 sup(p ~ Z(gp1 * 7(2)) ),

but equality holds in most regular cases. For rigorous discussion on I'-minimax theorems
see Stein (1982).

3 Main Result

Assume model (1) and squared error loss. Let G be any family of distributions that
satisfies (2), and let T’ be the induced family (3). :



Theorem 3.1 :

Er
TL SUPGeg T+ E
(13) p= kg ZROOTIT

T SUPgeg L7

Proof: (a) Bound on
If the prior density is

w() = | 6nl0)dG),

then under the model (1), elementary calculations give the marginal density for X:

(14) me(g) = [ Sprra(2)dG(D).
This fact is apparent after the algebraic transformation
1 _lei2 1 _lz—oy?
T(8lt)dpa(z - 0) @y Gy
— 1 _% "2: '_::t-|-T1£"2 1 - 2llﬂlj
CrP P o+ 1y

Integrating out § we get (14). Now
e 2 sup(p - Z(mx(2)) )
wel
= sup(p— ([ dpena(@)dG(1))
Geg T
> sup(p— [ I(dpasa(@)dG(1) ).
Geg T
Using the well known fact that

I(dpe+1(z)) = %

17
we obtain a lower bound on rr :
15 T 2> su E sup £ .
(15) r2 p(p P -)= psup By

(b) Calculation of 7,
Notice that F§ = E(FE|t) = 0, and E6' = E(E(6¢'|r)) = E(rI) = (E7)I. If our
estimator is constrained to be linear, i.e. of the form

ér(z) = Az € D,
where A is a p X p matrix, then we need to find a matrix A* such that 65 (z) = A*z satisfies

(16) r, = inf supr(m,ér) = supr(7r 07)-
‘ 6L€DL nel
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Under squared error loss we have

EXE|AX - g|?

= EX'A'AX —EX'A'9 —E¢AX +0'9
trA'A(I+6¢') - 0'A'6 — 6'A0 + 0'¢

= (A-I)(A-I)§+trA'A

= [I(A-DaI* + || AlI*.

R(§,AX)

Therefore

r(r,6) = E°|(A - DE|I* + ||A|l* = Er||A - I|* + || A]I%,
and
(17) sup r(x, 61) = (sup E7)||A = I|I" + | AII"

Let 1o = supgeg ET(< 00). The next step is to find inf 4 to[|A—I||?+|| A]|?. If we differentiate
(17) with respect to A, we get

d(tol|A - I)1* + || Al1%) to2tr(A — I)'dA + 2trA'dA

2tr((1 +t9)A — to)'dA = 0.

It follows that
(1—t)A—1tl =0,

and

t
9 I = sup

r
A% = —I,
1+1p geg 1 + BT

(since 7 is monotonically increasing in z). The fact that A* minimizes (17) follows from
d(to||A — T||2 + || A||?) = 2d(tr(1 + o)A — toI)dA = 2tr(1 + tg)dA'dA > 0.

Therefore, the linear I'-minimax risk is

to
1+

Er
= psup

1

2 0 2

- + Il = .
1)1} l [ p e 1t Er

(a8 =t o

0
141
From (17) and (18) we get

Er
r su ==

(19) Lo SO LET (- . g
T SuPGegE1+r

Remark 3.1 :

Bound p* does not depend on the dimension p of the model.



Remark 3.2 :
Chebyshev inequality® gives

Er
" SUPGeg T1Er
supgeg Eipy
Er
1+ET

sup T
GEG 147

1
infgeg P(r > ET)’

IA

(20)

If G is any family of point mass distributions satisfying (2), then the upper bound of (20) is
achieved and is equal to 1. This is not a surprise. As we will see in Remark 3.4, the bound
* = 1 is valid for many general classes G.

Remark 3.3 :

Since for z > 0, the function f(z) = 737 is concave, and Jensen’s inequality gives the
expected relation
pr 21

Remark 3.4 :

a. It is easy to show (as an elementary moment problem) that in the case when G is a
set of all distributions satisfying condition (2) with supg ET = o, that supg Bt = 1—3—?5
This yields that the Bayes linear rule is I'-minimax and that p = p* = 1.

Even if we restrict a class G to be the class of (¢) all symmetric or (i7) all symmetric
unimodal distributions on an interval [a,b], then the I'-minimax rule is linear, the corre-
sponding hyperprior G puts all mass at the middle point ﬂz'—b, and p = p* = 1. Let us show
that this is the case when G is as (41).

Fix two nonnegative numbers a and b, such that ¢ < b, and consider the class G of
all unimodal and symmetric (about ¢ = %b) distributions on the interval [a,b]. Now, any
random variable 7 with distribution in the class G, can be represented as

(21) T~c+U-Z,

where U is an uniform on [-1,1] and Z is the corresponding random variable defined on
[0, b_Ta], and independent of U.
Since ET = ¢, then
Er ¢
Sgp1+E7' T 1+4¢’

'If f(z) is a nonnegative and nondecreasing function and X is a nonnegative random variable,then for

any ¢: P(X > ¢) < Efﬁ(cl)l In our case f(z) = 737 and c = EX.
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and

c+UZ
1+c¢+UZ

c+UZ
1+c+UZ)

supEliT = supE

= sup EZ(EUIZ
Z

Inlicts g
= sup B(1 - —te=2),
up ( 57 )
We maximize the above expectation by taking Z to be identically 0, since the function under
the expectation sign is monotone decreasing in Z, when 0 < 7 < I’_T“ That choice of Z
gives 7 = ¢, and the maximal expectation is 1 — 11? So, in this case the corresponding
linear Bayes rule is I'-minimax. The standard way to check for I''minimaxity of a rule do,
that is Bayes with respect to the prior mp € T', is to prove that for any other prior r € T'

7‘(71', 60) S 7'(7'('0, 60)

The right hand side is 5. The left hand side is

2
X181 — X 2 = EQ_ 2, _PC
e || -l +
_ pc
T o1+4¢

because EZ||||2 = pe for any prior in the class I'. Therefore, the linear rule is I-minimax,
the prior 7(8) = ¢, c(8) is the least favorable, and p* = 1.

b. Let now G be the class of all distributions on [0, 00), unimodal about ¢ > 0, such
that 0 < supg E7 = tg < oo. We will show that in this case p* > 1. Any random variable T,
unimodal about ¢, can be written as

(22) T=c+UZ,

where U is uniform #[0,1}, and Z is fixed mixing random variable, independent of U.
Condition 0 < ET < tg is equivalent to —2c < EZ < 2(tp—c). Let us assume that tp > c.
The case #p < c is analogous. First, sup, 77 ET = 2 +t U Z#0,

T c+UZ 7 1 1+c¢c+ 7
= =FE(1- zlog———
brr = EPrperuz P - Zlee— o)
while for Z = 0, E{fz = 13- The function 1—llogﬁ'—_{—:';—— is increasing in Z, and the

solution of the moment problem

supy E(1 — log H5£2)
subject to EZ < 2(tp —¢)



is the random variable Zp, degenerate at 2(t9p — ¢). This corresponds to

T~ Ule,2to — c].

Therefore,
- 14
e r < /2toc dt—1+lg1+2t°c°
1+7~ 2(t0—c) 1+t 2(to—c¢) ’
and
~lo
* _ 1+to

14 BT
+ S(to=0)

Table 1 gives maximal values for p*, as a function of (> c¢), for different choices of c.

c=0 c=1 c=3 c=4 c=10
max p* | 1.11593 | 1.04439 | 1.02024 | 1.01593 | 1.00699
to 1.7382 | 6.6368 | 15.8827 | 20.4786 | 48.0086

Table 1.

4 Examples

Example 4.1 :

Let G be the Poisson family {P(}1),0 < A < A}. In this case

_ Er A
=S P I Er - 1+A
A—1+4e2
> =
T > supE1+T A ,
A2

*

PP =TI D1

The limiting behavior of p* is as follows:
,0* - 1’A — 00,

and
* A? A 0
=T nA o) A0

Therefore, we can not claim that the linear rule is good for small values of A.
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Example 4.2 :

If 7 has the Inverse Gamma IG %,mT"z) distribution, then § has the multivariate

T,(m,0,0%I) distribution. Since ET = ;—n"% should be finite (condition (2)), we assume
that m > 2.
So, let T' be the family
{T,(m,0,0%1),0 < o < S},

where m > 2 is the number of degrees of freedom and let S be a nonnegative real number.

m mo?

We are interested in calculating p* for the above family. For 7 ~ ZG(%, ), we have

(23) B =

where T'(a,b) = [yt le~'dt is the incomplete Gamma function. When m is fixed, the
expression (23) is increasing in o, and

mS? m ms? m mS?
sup Bo—— = (—5—) ¥ (1~ 5, =),
o<o<s 1+7T 2 27 2
Since supo<,<s 1f157 = msgf;_2, we have
e
S2+m=2
(24) pr= mS2\ o &-Hn m mS2?
(2)2621—‘( — 9 2)

The following table gives the worst choice of S(the ratio p* maximal), for the selected values
of m.

m=3 m = m=2>5 m= m=10 | m =20
max p* | 1.46969 | 1.24333 | 1.16415 | 1.09932 | 1.06231 | 1.02776
) 0.44908 | 0.59973 | 0.68457 | 0.77822 | 0.84642 | 0.92399

Table 2.

For example, for m = 5 degrees of freedom, the family {7,(5,0,02I),0 < o < 0.68457}
maximizes p*. The fact p¥,,. = 1.16415, means that the loss (in terms of I'-minimax risks)
incurred by using the linear TI'-minimax rule instead of the unrestricted one is less than
16.5%. Figure 1 shows the function p* = p*(S), for m = 3,5, and 10 degrees of freedom.

Example 4.3 :
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Figure 1: p* for m = 3,5, and 10

A very interesting example is when the family G is {{/[0,m], 0 < m < M}. Here

M
* __ 2+M

P = maEMy

M
As a function of M, p* — 1 when M — 0 or co. The least favorable choice of M is 3.4764

for which the linear I'-minimax rule is 11.6% worse than the plain one. This can be viewed
as special case of (22) with ¢ =0 and Z = M.

Example 4.4 :

Let G = {(1-e)1(r=1)+€l(r =t), 1<t <T}. This class of hyperpriors was con-
sidered by Albert (1984) in a different context. The induced class of priors I is the normal
N(0,1) distribution e-contaminated by the normal N (0,¢) distribution, 1 < ¢ < 7. This
case is interesting since, using numerical methods, we can give sharper lower bounds on
rr.(7E, say). Instead of evaluating the integral [ Z(¢p1+1(2))dG(t) we numerically evalu-
ate Z( [ épt+1(2)dG(t)). For the sake of being explicit, fix ¢ = 0.1. In this case, 7} has the
maximum 0.60378 at T = 25.888745. This gives p < 1/0.60378 = 1.65623 uniformly in T'.
This means that the linear I-minimax rule is “worse” than the plain I'- minimax rule by
(about) 66% in the least favorable case. At the same time, Theorem 3.1 gives

l—eteT
(25) pH(T) = T2
3t 2T 13T
The function p*(T') is increasing in T and
2
lim p*(T) = .
1 = T
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L8157/

D
Ry [PPSO
N

Figure 2: Plot of p*(T)

The choice € = 0.1 gives an upper bound on p of 1.81818. (See Figure 2). Table 3 gives
some numerical results for ¢ = 0.1 and the selected values of T.

R lower bnd on rr (15) L %{: p* (13)
1 0.5 0.5 0.5 1 1
1.5 | 0.51217 0.51 0.51220 | 1.00004 | 1.00430
2 | 0.52353 0.51667 0.52381 | 1.00053 | 1.01388
3 | 0.54277 0.525 0.54545 | 1.00494 | 1.03896
5 | 0.56799 0.53333 0.58333 | 1.02702 | 1.09375
10 | 0.59307 0.54090 0.65517 ] 1.10472 | 1.21124
20 | 0.60314 0.54524 0.74359 | 1.23288 | 1.36388
50 | 0.60378 0.54804 0.85507 | 1.41620 | 1.56024

Table 3.

Because of the discussion in Remark 3.4, we can easily generalize this example. Let G be
the class {(1 — €)1(7 = 1) + €G(t)}, where G(t) is (i) an arbitrary, (¢7) symmetric, or (ziz)
symmetric unimodal distribution on [1,T]. In the case (), the bound p* is the same as in
(25), while in cases (:7) and (7¢7) we have

where ¢ = LL,
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5 Generalization

A very natural question is what happens to p* when covariance matrices in the model
and the prior are not identity matrices. So, let us assume the following setup:

Xlg ~ MVNP(QaE)
(26) Bl ~ MVN,(0,79)
T~ G(t),(Tr > 0).

where ¥ and ¥ are arbitrary positive definite matrices. Let G belongs to the family G for
which the condition (2) is satisfied. Taking the nonidentity matrix X is unessential, since

we can rescale the model by multiplying X with »-s. Consequently, let ¥ = 1.
Denote with ¢, 5(z — ) the density of MVAN,(u,X) distribution. The marginal distri-
bution of X in the model (26) can be expressed as

m(@)= [ ¢prrn()dG(0).
Mimicking the calculation in the Proof of Theorem 3.1, we get
(27) rr < sup E(p— tr(I +7¥)71).
Geg

On the other hand, the matrix differentiation and basic matrix algebra yield that the linear
I'-minimax estimate is

((I+ (sup ET)¥) ™)X,
Geg
and the corresponding linear I'-minimax risk is

(28) p—tr(l+ (glé% ET)¥)71,

Therefore, the bound on p (which generalizes that in Theorem 3.1) is

p—tr(I + (supgeg ET)¥)7!
supgeg(p — trE(L + 7¥)"1)"

(29) pr=

As we can see, the bound (29) depends on the dimension p of the model.
We give two examples of calculation of p* in the general case.

Example 5.1 :

If a random variable 7 is as in (21), i.e. belongs to the class of all symmetric and uni-
modal distributions on [a, b], then the relation p* = 1 continues to be true. Let Ay, Az,..., A,
be the eigenvalues of the matrix ¥. Then

P

- 1

rL:p—tr(l-I—clIl)I:p—E T o
i=1 t
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and

v

p
1
— EZEVV?
rr S%P(P ; 1+ (c+ UZ)/\i)

P 14 cAi+ Z )
_ VA ] )
S%P(p E ; 2ZX; log 14ch;—Z\; )

For the choice Z = 0 (among all random variables on [0,% 252]), the previous supremum is
achieved and has the value »

=1

Therefore, p* = 1.

Example 5.2 :

The bound (24) can also be generalized. Let, again, A1, Ag,..., A, be the eigenvalues of
the matrix V.

'L=p f=p- Zz:m 2+mS2)\

0 > sup (p— Etr(I+7¥)7h)

0<o<S
2 m
() = 0T g
= sup p— ——+— —e 2t dt
o<ocs. (%) — 1+1t\

mo /\ mm ma? ) m moi);
= e P Z( )ige T (-5, —5)

mS /\ mm mSA m mS2\
= p-E I3, T)
=1

Therefore,
P-Yim 2_r+mS Y

20Ty SN 2
p—Th, (BFA)E Re e n(-2, m%)“)
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