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Abstract

Given a random variable with distribution indexed by a one dimensional param-
eter #, we consider the problem of robustness of given Bayesian posterior criteria
when the prior cdflies in the class I'sy = {F : Ff, < F' < Fy and F is symmetric and unimodal}.
Such a class includes as special cases well known metric neighborhoods of a fixed
cdf such as Kolmogorov and Lévy neighborhoods. A general method is described
for finding the extremum of posterior expectation of a function k(@) as the prior
varies in I'syy. Finally, the method is illustrated with two examples. The use of

this family in sub jective prior elicitation is also discussed.

Key words : cdf, distribution band, symmetry, unimodal, prior, posterior, likeli-

hood, robustness, range, Kolmogorov metric, Lévy metric



1 Introduction

Study of sensitivity of Bayesian quantities to possible perturbations or misspecifications
of the prior is crucial to any complete Bayesian analysis. It is now generally recog-
nized that any elicitation process, leading to a prior 7o, is to some extent arbitrary and,
therefore, any prior in a “neighborhood” of the elicited prior would also be a reason-
able representation of the prior beliefs. Hence a Bayesian analysis will be reliable if the
ranges of posterior quantities over a neighborhood T' of the initial prior are not signifi-
cantly wide. Past work in this area has mainly concentrated on four different types of
prior neighborhoods; parametric families (like conjugate priors), contamination classes,
density bands and priors with specified quantiles; significant among them are, Huber
(1973), Leamer (1978,1982), DeRobertis and Hartigan (1981), Polasek (1984), Berger
and Berliner (1986), Berger and O’Hagan (1989), Sivaganesan and Berger (1989), Das-
Gupta and Studden (1988,1989), Lavine (1987,1991), Berliner and Goel (1990), Basu and
DasGupta (1990), Wasserman and Kadane (1990), DasGupta and Delampady (1990),
Srinivasan and Truszczynska (1990) and Basu (1991). The review paper of Berger (1990)
contains a detailed discussion as well as other references.

The class T' of cumulative prior distributions to be considered here is what we call

the “distribution band”, namely

r F: Fis a cumulative distribution function 1)
and Fr(0) < F(6) < F,(0) Vo

where Fy, and F, are two fixed cdf’s, satisfying Fr(0) < F,(8) for all 4. Bayesia:n
robustness investigation over this class was carried out in Basu and DasGupta (1990).
It was commented there that a “distribution band” is very intuitive, rich, easily can be
adjusted to meet the subjective specification of the user and also allows a wide flexibility
in the prior tails. It is also mathematically tractable and the ranges of interesting
posterior quantities can be determined with limited numerical work.

Unfortunately, as pointed out in Berger and Berliner (1986), the ranges of posterior
quantities will often be exceedingly large if reasonable shape restrictions are not imposed

on the prior family. Indeed, the distribution band contains many unreasonable priors



and the extremal prior cdfs are found to assign point masses to several points and also
have regions with zero masses. It is argued by Berger and Berliner (1986) that a more
reasonable choice is to restrict only to symmetric and unimodal priors in the specified

family, which leads to the new class,
T'sy = {F €T : F is symmetric and unimodal } (2)

Similar to the distribution band I', the restricted class I'sy also allows wide variations
in the functional form and tails of F' € I'syy, while deleting many unreasonable priors,
and retaining an overall uniform shape feature. The overall shape of the prior is often
rather confidently known, so it is not desirable to allow priors in the class with widely
different shapes.

Another important aspect of the above class is that neighborhoods of various metrics
on the space of distribution functions are often of the form (2). Suppose we believe that
the prior will be unimodal about some point g, and through the elicitation process,
decide on Fj, unimodal about 6y, as the prior cdf. A natural way to incorporate the
uncertainty in the elicitation process would be to allow an error of € in the specification,
leading thus to the class (2), with F7(8) = max[Fp(0)—¢, 0] and Fyy(6) = min[Fo(0)—e, 1].
This is, in fact, the class of cdf’s, unimodal about 6y, in the closed e-neighborhood of
Fy under the Kolmogorov metric on the space of distribution functions, defined by
dp(F1, F3) = sup |F1(0) — F2(8)|. Another commonly used metric that also leads to a
family of the ;oergin (2) is the Levy metric, defined as dr(Fy, F3) = inf{e: Fi( —¢)—e <
F3(0) < F1(0 + €) + €}. More discussions on Kolmogorv and Lévy neighborhoods, and

their applications in Bayesian robustness studies are given in Basu and DasGupta (1990).

2 Notations, assumptions and preliminaries

Suppose interest lies in h(6}, some known function of 8, defined on the parameter space

©. For robustness investigation, we seek

p(h) = _inf p(h, F) and p(h) = sup p(h, F),
SU Fel'sy (3)

. [ R(8)(6)dF(9)
where p(h, F) = EFO®)(p(6)) = [, €6))dF(e)



where £(0) (= f(z]0)) denotes the likelihood function.

For the sake of brevity, only the problem of evaluating (%) will be described. The
infimum problem is technically exactly similar and consequently, no attempts will be
made to elaborate on it. Some useful examples of h(6) are h(0) = 8, h(0) = L(0, a) where
L is a loss function and a is an action, and h(#) = f(zo|f). These make EF(I=)(h(4))
respectively equal to the posterior mean, the posterior expected loss of an action ‘a’,
and the predictive density at zo.

Assumptions:

The following technical assumptions will be made:

(1) The parameter space © is either a compact interval [a, b] on the real line ® or
itself (in which case we take a = —o0, b = +00 and interpret the interval to be

open). Let M be the mid-point of the parameter space ©.

(2) Fp(6) and Fy(0) are continuous cumulative distribution functions on ©, and they
are unimodal about M, i.e., Fr,(0) and Fy(9) are convex for § € [a, M) and concave

for 0 € (M, b].

(3) Fy(0) = 1 — F(2M — ) V6 € ©. This assumption is not necessary, but the
effective band generated by symmetric F'’s between Ff, and Fy will automatically

satisfy this requirement.
(4) FL(M) < 0.5 and, FU(M) > 0.5.

(5) We further assume that Fp() is smooth for § € (M,b). Since Fy is concave in
(M, b], the right and left derivative of F(0) exists for § € (M,b). We are further

assuming that they are equal.
(6) Likelihood £(8) is continuously differentiable on (a,b) and £(a) = £(b) = 0.

(7) h(6) is continuously differentiable on (a, b).



The class I'syy is now defined by

F: Fr(9) < F(0) < Fy(6) Voeo,
Psv = F is a cumulative distribution function and ¢ - (4)

F is symmetric and unimodal about M

Let by = eiagb]{a : Fr(9) = Fy(0)}. Since Fp(b) = Fy(b) = 1, by < b. Also, as
€ )
Fr, and Fy are both concave on (M,b], and FL(6) < Fy(0) V8 € [a,b]; hence FL(8) =
Fy(0) V0 > bo.

Effective band if F.(M) < 0.5
Since any F' € I'sy, being symmetric about M, satisfies F/(M) > 0.5, it is clear that

a sharper lower band than F, exists on 8 € [M, b] in this case.

Let
Fr(bo) — 0.5
bo— M

be the straight line joining the points (M, 0.5) and (bo, Fr.(bo)).

to(60) = 0.5 + 6 — M)

(A) If the straight line to(0) always lies above or on Fg,(0) for § € [M, b], then we define

Gr(9) =

to(0) M <0< b,
Fr(6) by <0<b.

(B) Else, if to(0) crosses Fr, in [M,bo], draw a tangent ¢1(8) from the point (M,0.5)
on Fy, between 6 € (M, bo). Such a tangent will exist if ¢9(8) crosses Fr. Let the
tangent t;(6) meet F, at the point 5. Now define

Gr(9)

[ we) M<o<y,
Fr(6) n<é<b

It is easy to see that any F € I'sy will lie between G, and Fy for 6 € [M,b]. The
effective band, between [M,b] is thus G and Fy. For notational convenience, we will

keep on denoting them by Ff, and Fy.



3 Linearization

For any F' € I'syy, we now have

Jay R(0)£(0)dF(6)
Jla iy ©0)dF ()
Joaa {R(0)(0) + h(2M — 0)L(2M — 0)} dF(0) + h(M)UM){F(M) — F(M-)}
Sy 1€(6) + £(2M — 0)} dF(0) + 4(M){F (M) — F(M-)}
(by symmetry about M)
It = {h(0)€(0) + h(2M — 0){(2M — 0)} F(8)d0 + h(M){(M)
Jor 35 {4(0) + £(2M — 0)} F(8)d0 + £(M)
(integration by parts)

p(h, F)

By using a standard linearization argument, the problem of finding sup p(h, F') can
Felsy

be reduced to finding
inf / FA(O)F(8)do (6)

Fel'gy

where
15(0) = =5 {h(O)A(0) + h(2m — (M — 0)} ~ XS (t@) +e2M —0)}) (1)

and A is any real number (see Lemma 2.2.1 of Basu and DasGupta (1990) for a formal
proof).
Assumption (8) : For each fixed A, f1(f) changes sign a finite number of times in (M, bo).

Suppose, for 6 € (M, b), f,(6) changes sign n times, at M < a; < ... < a, < by.

Let ap = M and a,qq = bo.

(M, o) fori =1,
Define I; = (atn, bo] fore=n+1, (8)
(ic1,0;) fori=2,....n
Furthermore, label I; as ‘+’ if f,(6) is nonnegative on I;, and as ‘—’ if it is nonpositive

on I;.

Next, for each i = 1,...,n, fix h; satisfying
1. FL(ai) S hz S Fy(a,’), and



We will find irF11f | ]lf,, r(8)F(0)df over the restricted class
w={F€lsy: Flay)=hi,i=1,...,n}. 9)

Further restrictions on the £;’s :

We need at least one unimodal F' to pass through the points {(e;, h;),t =1,...,n}.
For any concave function g, defined on [u,v], and for any two points s < t € [u, v];

let r(0) be the straight line joining the points (s,g(s)) and (t,g(t)). Then g satisfies

7N

g(0) r(0) for 6 € [u,s),

v

r(0) for 0 € [s,t),
< r(8) for @€ [t,v].

Thus, for any pair j < k € {1,...,n}, let r;x(0) denote the straight line joining the
points (o;, h;) and (ag, hi). Then the set of h;’s (4 =1,...,n) must satisfy

(1) 7;x(0) > FL(6) for 6 € [M, o] U [ag, bo].

- (2i) rip(a) > hiifi < jori>k, and
rig(on) < hgif j <t <k

The method for finding the extremal prior is best illustrated through an example.
Example 1
Suppose we sample X from N(6,1) yielding the likelihood,

£(0) = exp (—%(0 ~ X)2) , feR

Let Fy be the conjugate N(0,1) prior distribution, and we consider the class of all

symmetric unimodal distributions in the e-Kolmogorov neighborhood of Fo. Thus
F: max(0, Fp(0) — €) < F(8) < min(1, Fo(0) —¢), 0 € R,
sy = F is a cumulative distribution function and . (10)

F is symmetric and unimodal about zero

Suppose we are interested in finding the supremum of the posterior mean over I'sy.
Assume X > 0. For h(0) = 0, it can be shown that f1(8) (cf. (7)) changes sign at most

2 times, say at a; and a; (0 < oy < @z < 00), with fy(8) > 0 for § € (o, a3) if A > 0.

7



Hence for the purpose of minimizing [ f1(6)F(6)d8 over F € I'sy, we would like to
make F' as small as possible in the interval (a1, a2) and as large as possible outside, in
a way such that the resulting F' is nondecreasing and concave on (0, o).

Fix hy and h; as mentioned before, satisfying the required conditions. Let t1(6) be

the straight line joining the points (a4, k1) and (aq, hs).

Case A : t1(0) lies above or on Fy (cf. Figure 1).

min[Fy(0),4:(0)] if 6 € [0,),
Define F(0) = § ¢,(6) if 6 € [ay, o), ' (11)
min[Fy(6),t1(0)] if 0 € [ag, 00).
We claim that F' is the extremal prior in this case, which minimizes [ f)(6)F (6)dé
over I'sy.
Proof : We aim to make F' as small as possible in (o, a2) and as large as possible outside,
subject to the restrictions that F'(a;) = hy and F(az) = hy and that F' is nondecreasing
and concave in (0, co).
Because of concavity, any F' € I'sy must lie on or above t1(0) for 0 € (a1, as), and
on or below t;(6) outside. Also, the class I'syy restricts F' between Fy, and Fy.
This clearly indicates F' to be the extremal prior, subject to it being concave on

(0, 00), which, indeed, it is.

Case B : t,(0) crosses Fy, (twice) (cf. Figure 2).

1. Draw a tangent t?)(a) from the point (a1, h1) on F,(0) between 8 € [ay, ay]. Let
t{(0) and Fr,(0) meet at ;..

2. Similarly, draw another tangent tgz)(e) from the point (as, hs) on FL(8) between
0 € [o1,0n]. Let t?)(a) and Fp(60) meet at aq;.

It can be shown that there indeed exist tgl)(ﬁ) and t§2) (0) satisfying the above, and

oy < ajp < ag < as.



Figure 1: Extremal F in Case A. The dashed lines are Fr, and Fy. The solid line is the

extremal F.

o a4 T - ;
O (a5 a2

Figure 2: Extremal F in Case B. The dashed lines are Fy, and Fy. The solid line is the

extremal F.



Now, define

min[Fy(6), £(8)] if 6 € [0, o),

tM(6) if 0 € [0, 012),
F(H) = < FL(G) if 8 € [0112,0121), (12)
{9 () if 0 € o1, o),

| min[Fy(9),(0)] if € [az, 00).

We now claim that F is the extremal prior in this case.

Proof : For minimizing [ fA(0)F(8)d8, we want to make F'(#) as small as possible for
0 € (a1, az2). Hence, to beat the performance of F in the interval (cu, c12), an F passing
through (@i, k1) must lie below t&”(o) for at least a non-empty interval C [oy, a15]. Such
an F will surely meet £{")(8) on or before oz, say at B;. Thus, the straight line tM(8)
meets F' at two points, oy and f;, and lies above F' in between. This clearly violates
the concavity of F'.

Any concave F' thus, must lie on or above F in the interval [@1, @12]. Now, to beat
the performance of F in the interval [0,¢;), an F must lie above F' for a non-empty
interval C [0, ), pass through the point (e, k), and lie on or above F in the interval
(a1, 12). It is easy to see that such an F' cannot be concave.

The arguments for showing that F' is the best in the other intervals too are very
similar.

We have, thus,(solved the problem of minimizing [ f1(8)F(6)d0 in the restricted class
Iy = {F € Lsy : F(an) = h1, F(a2) = hy}. For finding the overall optimal F which
maximizes the posterior mean p(h, F) = EFX)(9) over the class I'sy, what remains
is a 3-dimensional numerical maximization, namely maximizing p (h,l_’ﬁ()\, hi, hg)) over
A, by and has.

Remark : The e-Kolmogorov neighborhood of Fy = N(0,1) does not satisfy assumption
(2), namely olirglo Fr(0) = olir(r)lo max(Fo(f) — €,0) # 1, and eli)r_noo Fy(0) # 0. However,

this problem can easily be circumvented by standard limiting arguments.
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4 The General Case

The basic argument given in the above example applies to the general situation. We
present here the form of the extremal prior in the general set-up, without proof.

Recall that the original general problem was reduced to finding FleIIl‘g ] Jor F(O)F(6)do
(cf. (9)), and that we assumed that f(6) changes sign n times, at M < o < ... <
a, < bg.

The determination of the extremal prior is done in a few steps.

Step 1 : I; = (-1,;) (cf. (8)) has label ‘+’, and I; is not at end, i.e. s # 1 or n + 1.

Let ¢{”(6)
Case A : (0
Define G;(8) = t9(6) 6 € [M, by).
Case B : tz(- )(0) < Fp(0) for some 0 € [a;_;, o;].

be the straight line joining the points (-1, ki-1) and (o, hs).
6) > Fi(0) for 6 € [c;_1, o]

1. Draw a tangent tf-”(@) from the point (a;—;, hi1) on Fi () between 6 € [a;_1, o).
Let tgl)(a) and F1(0) meet at ofV) € € [aso1, o).

2. Similarly, draw another tangent tz(-z)(é’) from the point (ay, h;) on Fr(6) between
6 € -1, ). Let tz(z)((‘)) and F(6) meet at a,(-2) € [aimy, o]

It can again be shown that tz(-l)(ﬂ) and tz(-2)(0) can indeed be drawn and o;_; < az(-l) <
az(-2) < «;. Now, define
t(0)  for 0 € [M, o),
Gi(0) =9 Fu(6) for b € [af’,af?), (13)
t§2)(9) for 0 € [af?, bo)-
This ends Step 1.
Step 2 : [; has label ‘+’ and I; is at end, i.e. i =1 or n + 1.
Suppose ¢ = 1, i.e. [; = [M, ).
Let t§°)(0) be the straight line joining the points (M, 0.5) and (ay, As).
If #7(0) > Fy(0) V8 € [M, ay), then define Gy(8) = +(0), 8 € [M, bo).

11



Else, if ¢{” (6) crosses Fr(0) between {M, o], draw a tangent tg2)(0) from the point
(a1, h1) on Fp, between 6 € [M,a;]. Let t§2)(0) and Fy meet at P € [M,a1]. Now

define,
Fr(9) for 8 € [M,a?),

1(6) =
{ #9(0)  for 0 € [0, by).
The case of 2 = n + 1 is handled similarly.

Step 3 : I; has label ‘—’.

If I; is not at end (¢ # 1,n + 1), then [;_; and I;;, have labels ‘4’, and for those,
Gi_1 and G4, are already defined by Step 1 and 2.
Define Go(6) = Gr42(0) = Fy(0), 6 € [M,bo], and now define

Gi(0) = min [G;—1(9), Fu(9),Git1(8)], 6 € [M, bo].
Finally, the extremal prior F which minimizes [£; fx(0)F(8)df over I%, is given by,

hi if9=ai, i=1,...,’rL,
F(0)=< Gi0) ifbel, i=1,...,n+1, (14)
Fy(6) if 6 € (bo, b].
Remark : For finding the optimizing F which maximizes p(h, F) over F € Tgy, the
optimum values of o;’s and h;’s have to be determined through numerical optimization.

The «;’s are determined by A (see definition of ;’s), so the finite-dimensional numerical

maximization would be over A and the h;’s.

-5 Application: Ranges of Posterior Mean

In this section, we apply the method described earlier to two examples to find the
ranges of the posterior mean over two specific prior classes of symmetric and unimodal

distributions.

5.1 Example 1 continued
Let X ~ N(8,1). Let Fg, as before, denote the conjugate N(0,1) prior cdf.

12



In Table 1, we list down the values of the supremum (E, Es, Esy) of the posterior

mean EF(0|X) as F varies in the following 3 prior classes :

r = e-Kolmogorov neighborhood of Fy.
I's = {F €T :F is symmetric about zero}.
sy = {F €T :F is symmetric and unimodal about zero} .

Only the values of the supremum are reported. Due to the underlying symmetry of the

classes, it follows that

inf EF(0]X) = —sup EF(] — X) for F =T,I's,I'sy. (15)
Fer FeFr

The first observation from the table is, the imposed constraints of symmetry and
symmetry and unimodality, do not help much in reducing the ranges. As commented
in Basu and Dasgupta (1990), when the absolute value of the observed X is large, the
difference between the supremum (E) and infimum (E) of the posterior mean EF(6|X)
over the e-Kolmogorov neighborhood I' is rather large. For example, if X = 2 and
e = 0.1, then EP(9|X) = 1,E = 0.258 and E = 1.623, giving a range of 1.365. For
X = 4 and the same ¢, the values are respectively 0.483 and 5.815, giving a range of
9.332. We expected that the additional constraints of symmetry and symmetry and
unimodality will greatly reduce the ranges, by deleting the unreasonable priors from
the considered prior class. But as can be seen from table 1, such is not the case. For
X = 2 and € = 0.1, the values in the class I's are Eg = 0.2764 and Es = 1.521, with
a range of 1.2446. For the symmetric unimodal class sy, the values are Eqy = 0.2764
and Esy = 1.4768, with a range of 1.2004. Thus, imposing the added constraints only
lead to a minor reduction in the range. For X = 4, Eqy = 0.4957 and Egy = 3.9462
with a range of 3.4505 in the class I'syy. Hence, the imposed shape constraints reduces
the range quite a bit for large |X| values, but still they fail to achieve robustness.
This is primarily due to our choice of Fy as N(0,1), the resulting class I'sy contains
priors with extremely thin as well as extremely thick tails, even after the imposed shape
restrictions. Robustness is generally lacking when there is such a wide variety of tails

and the likelihood #(8) is concentrated in the tail.
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5.2 Example 2

Let X ~ Binomial(n,8) yielding the likelihood £(6) =~ 6%(1 — 6)~%, 0 €[0,1], X €
{0,1,...,n}. Take Fj to be the conjugate symmetric Beta(3, §) cdf. Let I' denote the

¢-Kolmogorov neighborhood of Fy and let
lsy = {F €T : F is symmetric and unimodal at 0.5}.

Remark : The resulting Fz(8) = min(1, F5(9) — €) does not satisfy assumption (2),
namely F7, is not concave on (0.5, 1], since it has a point mass at 1. Same is true for Fy,
due to its point mass at 0. But this problem can easily be circumvented by considering
the effective band generated by symmetric and unimodal distributions in between F},
and Fy (similar to what has been done for F,(M) < 0.5 in the general setup).

For n = 5 and § = 2, Table 2 shows the supremum of the posterior mean E¥(6|X)
over the two classes, I' (E) and sy (ESU), for two different values of €. Table 3 shows
the supremum (FSU) for the class I'sy with different choices of the # parameter for the

base prior Fy = Beta(8, 3). As before, only the supremum values are reported, since

inf EF(0|X)=1—sup E¥(fjn — X) for F =T,Tsy. (16)

In our earlier discussion on this example in Basu and DasGupta (1990), we observed
that the ranges of posterior mean EF(6]X) over the Kolmogorov neighborhood T' is,
in fact, large for extreme X-values, whereas for X-values in the middle, which are
compatible with the base prior Fp, the ranges are small. From table 2, we observe
that, contrary to the results of Example 1, the added constraints of symmetry and
unimodality, indeed, reduce the ranges significantly in this example. Whereas in the
Kolmogorov neighborhood T', the infimum (£) and supremum (E) of EF(|X) for X = 2
and € = 0.10 are 0.376 and 0.527 respectively, giving a range of 0.151, with the additional
shape constraints, the infimum (Egy) and supremum (Esy) over the class T'sy are
respectively 0.4286 and 0.4702, thus reducing the range from 0.151 to 0.0416. Such a
reduction can be observed through out the table. But still we fail to achieve robustness

for extreme X-values even in the constrained class I'sy. For example, for X = 1, the

14



range of EF(0]|X) over I'sy is 0.0662 even for € = 0.05, though it is reduced from the
range of 0.0980 of the unconstrained class I

From table 3, it can be seen that as the tail of the base prior Fy gets sharper (as
B increases), the ranges of EF(0|X) for X values in the middle gets smaller. But for
X =1 or 4, the reduction of the ranges is in a much smaller scale. Had we had more

extreme X-values, it is expected that the ranges will increase with sharper tails of Fp.

6 Discussion and summary

Much of previous work on Bayesian robustness has dealt with prior densities such as
density bands and their modifications. In this article we have proposed specifying the
prior through its cumulative distribution function, which we feel is more intuitive and can
directly be assessed from prior probability considerations. An advantage of the family
described here is that flexibility in the prior tail is achieved very easily. Indeed, it seems
that for Kolmogorov and Lévy neighborhoods, even a small € gives a wide variation in
prior tails.

The choice of a prior class I' depends on the two competing goals of including all
reasonable priors as well as not including the unreasonable priors. As mentioned in
section 1, a distribution band, while containing the reasonable priors, can be “too big”,
in the sense of containing unreasonable priors which artificially inflate the ranges of
the posterior criteria. The further restriction of symmetry and unimodality on the
distribution band seems to strike a reasonable compromise between the desire to have
' include all reasonable priors, and the problems of having a too-large I'. Whether one
uses such a class, of course, is dependent on believing that symmetry and unimodality
are reasonable.

As is clear from example 1 and 2, the degree of robustness present, in any given situ-
ation, can depend heavily on the observed value of X. Indeed, in example 1, the further
shape restrictions of symmetry and unimodality, fail to remove the lack of robustness
for extreme X values, and even for moderate X values, the reduction in the ranges of

the posterior mean is minor. In example 2 though, the restriction of the distribution
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band to symmetric and unimodal distributions, indeed, leads to major reductions in the

ranges of the posterior mean.

When robustness fails to achieve for a given class I', one must reconsider the subjec-

tive inputs. In particular, further refinement of I' may lead to robustness; knowledge of

the priors in I', at which the extremes occur, can be invaluable in suggesting where to

concentrate such efforts at refinement.
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Table 1: Supremum of posterior mean over the prior classes I', I's and I'sy, the three

neighborhoods of N(0,1). The likelihood is N(X,1).

Prior classes
¢ =0.01 e =0.05 e =0.10
X | EP T I's I'sy r I's I's r I's Ter

-4 1-2.0 || -1.454 | -1.456 | -1.468 |[ -0.871 | -0.882 | -0.897 || -0.483 [ -0.496 | -0.496
-3 | -1.5 || -1.222 | -1.226 | -1.230 || -0.748 [ -0.760 | -0.760 | -0.393 | -0.397 | -0.397
-2 | -1.0 [[ -0.889 [ -0.890 | -0.890 |f -0.558 | -0.560 | -0.560 l -0.258 | -0.276 | -0.276
-1 1-0.5 |[ -0.453 | -0.456 | -0.457 |[ -0.266 | -0.294 | -0.296 || -0.048 | -0.140 | -0.141
0 | 0.0 |[ 0.033 0.0 0.0 0.154 0.0 0.0 0.298 0.0 0.0

1105 || 0.537 | 0.534 | 0.532 {f 0.658 | 0.645 | 0.631 || 0.814 | 0.767 | 0.747
2 | 1.0 || 1.066 | 1.062 | 1.061 | 1.312 | 1.281 | 1.266 |[ 1.623 | 1.521 | 1.477
3 | 1.5 || 1.738 | 1.733 | 1.705 || 2.548 | 2.511 | 2.194 |[ 3.409 [ 3.296 | 2.533
4 1 2.0 | 3.214 | 3.213 | 2.851 || 5.010 | 4.999 3.820 3.815 | 5.772 | 3.946
5 | 25 | 6.031 | 6.031 | 4.832 |[ 7.424 | 7.422 | 4.991 | 8.085 | 8.069 | 4.999

Table 2: Supremum of posterior mean over the prior classes I', and I'sy, the two neigh-

borhoods of Beta(2,2). The likelihood is Binomial(5, ).

Prior classes
e=0.05 e=0.10
X EF°(0|X) r T'st r I'sy

0.3333 0.3940 | 0.3695 || 0.4540 | 0.4012
0.4444 | 0.4860 | 0.4605 |f 0.5270 | 0.4702
0.5555 0.5920 | 0.5690 || 0.6240 | 0.5714
0.6666 0.7040 | 0.6967 || 0.7400 | 0.7143

> W N =
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Table 3: Supremum of posterior mean (—E—SU) over ['sy, symmetric unimodal Kolmogorov
neighborhood, of different Beta(S, ) priors. The likelihood is Binomial(5,6) and € =
0.05.

=15 B =20 B =4.0 B =6.0
X EFo Egsy EX Egsy EFo Egy EFe Egy

1] 0.3125 | 0.3486 || 0.3333 | 0.3695 || 0.3846 | 0.4180 || 0.4118 | 0.4409
0.4375 | 0.4544 || 0.4444 | 0.4605 || 0.4615 | 0.4736 || 0.4706 | 0.4802
0.5625 | 0.5771 || 0.5555 | 0.5690 || 0.5385 | 0.5487 || 0.5294 | 0.5373
0.6875 | 0.7355 || 0.6666 | 0.6967 || 0.6154 | 0.6411 || 0.5882 | 0.6123

= o D
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