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Point Estimation of Multivariate Normal Mean
Using ¢ Priors

Abstract

Bayesian point estimation of a multivariate normal mean is considered under ¢
priors. Let X ~ N,(4,0°I) and § ~ ¢t(m, g, 72I). The posterior mode v is employed
as a point estimate of §. The risk behavior of the posterior mode is explored in this
article. The unique unbiased estimator of the risk function of the posterior mode is
derived in a closed form. It is proved that for any fixed m, 72 and o2, the posterior

mode is minimax for moderate values of p.

1. Introduction

Consider the problem of estimating the mean vector § of a p > 3 dimensional
multivariate normal distribution, X ~ N,(8,02I), where o2 is assumed to be known.

For the squared error loss function

[ 8—=al?
=2

L(4,q)

the maximum likelihood estimator (MLE) P = X has risk R(4, @0) = p. James and
Stein [9] showed that the estimator 0 = (1 - ZIDI_2H22> X does better than MLE §'.

Its risk R(Q,@l), which is a function only of A = UZ%L;, increases from 2 at A = 0 to
the minimax value p as A — co. Baranchik [2] proved that, under squared error loss

function, an estimator of the form

@: 1_0-27‘(*%&))X (1)
X |2

1s minimax under certain conditions. In this article, we consider Bayesian point
estimation of a multivariate normal mean § under ¢ priors. DasGupta, Ghosh and
Zen [4] found that if the posterior distribution of ¢ is starunimodal about the mode

v, then v can be expressed as ¥ = aX, where ‘a’ is the unique root of
h(a) = a® — o+ (B + 7)ay —yy = 0, (2)

o= %5, B=m+p y=+andy= TX# Although the closed form of ‘a’ is messy,
‘a’ is a function of || X ||? indeed; therefore, ¥ = (1 — (1 — @))X, which is in the form

of (1), is employed as a point estimator of §.



We first establish sufficient conditions for the minimaxity of the posterior mode
in section 2. Also, the behavior of the function r(-) in (1) for the posterior mode is
discussed in section 2. The results point out that for any given m,7? and o2, r()
is nondecreasing in || X ||? if p < m(z—: — 1); furthermore, r(-) is bounded above by
2(p — 2) for moderate p. Risk behavior of the posterior mode and comparison with
the posterior mean j(X) are both important issues. Notice that, unlike the posterior
mode, the posterior mean doesn’t have a closed form expression and needs to be

approximated by numerical methods.

We denote the difference between R(4,v) and R(4, X) by Ay(8). Then the unique
unbiased estimator of Ay(f), denoted by u(X), can be derived in a closed form.
Therefore, u(X) + p can serve as the unbiased estimator of the risk function of v.
If the posterior is starunimodal, then ‘a’ is a function of X through || X ||> only.
Thus, u(-) can be treated as a function of || X [|>. Bounding u(]| X ||?) above by 0,
it is found that ¥ does better than MLE § under certain conditions; these results
are given in section 3. Then in section 4, dealing with the posterior mean, we find
that not only the posterior mean but also the posterior mode is tail minimax for all
p. Also, the plots of posterior mean and posterior mode give a comparison between

these two estimators.

2. Minimaxity of the Posterior Mode

Let X ~ Np(@,0%I) and @ ~ t(m,y,7%I). W.L.O.G., we take 02 = 1 and y = 0;
if not, all assertions hold with X—J_E in place of X. Since the posterior mode ¥ = a X

can be written as

-

where (|| X ||*) = (1 —a) || X ||%, it is of the form (1). Baranchik [2] proved that for
p > 3 the conditions

0= IX P <26-2) &)
and r(Il X ||*) nondecreasing in || X ||? (4)

are sufficient that y be minimax.

We first need two Lemmas, and then give a sufficient condition for the minimaxity
a2 1

of the posterior mode. Recall that o = 2 = #, B=m+p, v= % and y = X

for simplicity, sometimes we write ‘e’ instead of a(y).
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Lemma 1 Let r(|| X ||I°) = (1 —a(l X |1))- | X |I?, where a(-) is the unique root of
(2). Then r(|| X ||?) is nondecreasing in || X [|? if and only if p < m(r? —1).

Proof: It is equivalent to proving that r(y) is nonincreasing in y if and only if § < +.
This is because f < v <= p < m(7? —1). It was proved that a(-) is nonincreasing
in y. See Proposition 2.1 in DasGupta, Ghosh and Zen [4]. From (2), by implicit

differentiation, we have

da _ y) = 7= (B+7)a

3a? —2a+ (B +7)y.
Dividing both sides of (2) by a?, it gives

(5)

| g Bt7)ay—y

)

.therefore,
@) = =2 )
_ (ﬂ+zza—7. G

;From (6), elementary calculations give that

1—a(y) = y-ry)
= —d(y) = r(y)+yr'(y)
— r'(y) = _fl(y)-"—r(y)_
Y
Since y > 0,r(y) is nonincreasing in y is equivalent to a'(y) + r(y) >0, V y > 0.
From (5) and (7), it reduces to

7—=(B+7)a +(ﬂ+7)a—7
3a? —2a+ (B+7)y a?

= [0+ ma =[5 -

>0, V y>0.

1
3a2 —2a+ (B +7)

yJZO,Vy>O. (8)

Note that (6 +v)a —v > 0 (ora>F'+L7—) for | X |?> 0and a = 51 for

|| X II* = 0. Further, from (5), we have that

3a> —2a+ (B+7)y > 0, Vy > 0.

Again, algebra reduces (8) to
%% — 20+ (6 +7)y > 0. )
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Also, from (2), replacing a? —a by 2 —~ (8 + v)y in (9), straightforward algebra gives
that

2
(B0, ¥y >0
2
o<1 T <4< (10)

T B+ Bty
If r(y) is nonincreasing in y, (10) implies 3% > 1; this proves the ‘only if * part.
The ‘if’ part is trivial from (10).

Lemma 2 If p <m(r? —1), then (3) holds if and only if m + 4 < p.

Proof: From (2), it is obvious that
limaly) = 1 )
. g
d 1 = —
an Jim a(y) e
;From (5), (6) and (11), using 1’Hépital’s rule, we have that

: © . 1—a(y)
limr(y) = lim ”
= lin% —a'(y) ("Hépital’s rule)
y—
® L 7= (B+7)aly)

v=0  3a?(y) — 2a(y) + (B +9)y
w _1=(B+9)

3—2+0
= p.

Furthermore,

lim r(y) = lim 1=a(y)

y—00 y—00 Yy

= 0.
Since p < m(7? — 1), it then follows from Lemma 1 that r(y) is nonincreasing in y
and 0 < r(y) < B, Yy > 0. By direct computation,

B<2(p—2)<= m<p—4.

This proves the lemma.

We now state the following result without proof because it follows directly from
Lemma 1 and Lemma, 2.



Theorem 1 For fized m and 72, both (3) and (4) hold if and only if m +4 < p <

m(r? - 1).

Corollary 1 For fized m and 72, if m + 4 < p < m(7? — 1), then the posterior mode

U 18 minimaz.

Remark: For fixed m and 7%, the condition that m(r? — 2) > 4 is sufficient for the
existence of a p > 5 which satisfies the inequalities in Theorem 1.

Example: If we take m = 1 and 72 = 10, then, by Theorem 1, 5 < p < 9 is a sufficient
and necessary condition that both (3) and (4) hold.

Unlike (4), Alam [1] allowed r(|| X ||?) to decrease with increasing (|| X ||2),
though not too quickly. See Efron and Morris [5]. Condition (4) is relaxed to the
condition that

X 1P~ r(l X%
2(p=2) —r(l X II?)

is nondecreasing in || X ||?. (12)

From (6), algebra reduces (12) to the condition that

1—a(y)
y? [2(p —2) — =2

Yy

] is nonincreasing in y (13)

or

d 1 —a(y)
. <0 Vy > 0. 14
dy % [2(p —2) - %ﬂ] = ¥ (14)

Elementary calculations and substitutions yield that, under (3),

24 (B+7)a—7 v
—-p<L0,V— < < 1. 15
3a2—2a+(ﬁ+’y)y+ 2a2 P> B+ . (15)

Further simplification or characterization of (15) seems very difficult. Therefore,
we directly proceed to an analysis of the “unbiased estimate of risk” itself in the next
section. However, we will see subsequently that (15) has an interesting relation with
the unbiased estimate of risk. In fact, from (7), if we treat r(-) as a function of a,
r(a) = gﬁ_—l-zza);'y’ then the following proposition gives the l.u.b. of r(-) directly.

Proposition 1 If B > #, then r(a) is increasing on (5%, L) and decreasing on

542 B+y? B+y

21 1); _ (8+%)

(555:1); further, Maz r(a) = CHL.
Y



Proof: On direct computations, one has

dr(a) _2y—=(6+7)a

da a3

If 3 > 4+, then [7:{_7 < 78% < 1. The monotonicity of r(a) follows directly from

elementary calculations. And substituting a = [3—2_;7; in (7), we have
92 2
Maz r(a)=r( 7 )=(ﬂ+7),
75 <a<l1 B+ 4~

which completes the proof.

Let Ay(8) = R(4,¥) - R(4, X) be the difference between the risks of the posterior
mode ¥ and MLE X. In the following section, we will deal with the unique unbiased
estimator of Ay (@) first, denoted by u(X), and then derive a sufficient condition for

u(X) <0, ¥V X.

3. Risk Function of the Posterior Mode and Unbiased Estimate of Risk

Recall that under squared error loss, the risk function of the posterior mode is

given by

B, v)=E (|6~ ¢|)

which depends on § through A = “%Ui Stein [10] observed that for any absolutely
continuous function A(X;) with Lebesgue measurable derivative h'(X;) satisfying
BIK(X,)] < oo,

E(X; — 0;)h(X;) = Eb'(X)). (Stein’s Identity)
If 6(X) = X + b(X), to show that §(X) is better than X, V , we need to show that

A(8) = R(0,6(X)) — R(8,X) < 0, Y.

But

A@) = E(l0-6X) ) -E(6-X |
= E(l0-X-hX)H-14-X 1|
= E(I3X) 1) +2X - 0)b(X)) .
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From Stein’s Identity, we get that

a0 = B (L) +2 3 )

=1
if b satisfies the assumptions in Stein’s Identity.
Thus,

u(X) = _‘éh?(X) 4 zg_; Pd)

is an unbiased estimator of A(), and

u(X) < 0, VX

(16)

(17)

is a sufficient condition for A(§) < 0V §. See Stein [10], [11}, Hwang [7], [8], Hudson

[6] and Berger [3] etc.

If we take §(X) = v = aX and h(X) = (a — 1) X, where ‘a’ is the unique root of
(2), then v is of the form X + A(X). Since ‘a’ is a scalar function depending on X

through only || X ||?, we have

p

SRX) = (- 10X = (@=1) | X P

t==1 =1
Furthermore,
O0hi(X) _ .3a
ax, — -+ Xigx
_ _da 9 X|?
= (a 1)—{—X,d”X”2 aX.
da
= (a—=1)+2X?——.
(=02
Thus,
P O0hi(X) 9 da
=(a—1)p+2 —_—
;::1 X, (a=Dp+2| X | X

From (16), (18) and (19), one has

da
dil X[

u(X)=(a—1)° | X [ +2(a-Dp+4 ] X ||?

(18)

(19)

(20)



which is the unbiased estimator of

Ay(9)
= E(l8-vIH-E(e-X ")
= E(|9-v | -p

provided the expectation of each term in (20) exists.

Remark: Note that (20) shows that u(-) depends on X through || X || only. Also,
u(X) + p is the unique unbiased estimator of the risk of the posterior mode y. The
uniqueness is due to that || X || has a non-central chi-square distribution which is
complete. It is obvious that (17) is a sufficient condition for the minimaxity of v.
Therefore, the characterization of condition (17) is our next task. For convenience,

we denote z =|| X ||?; thus both u(-) and a(-) are functions of z.

From (2), by implicit differentiation, we have

da a*(1 —a)
dz (3¢ —2a)z+ (B+7) (21)

Also, (20) reduces to

,da
u(X) =u(z) = (1 —a) (l—a)z-l-l—_dz;—Qp . (22)
Letting
da
_ 2d
g(z) - 1 _ a’
from (21), direct computation gives that
(2) a’z
z =
’ (302 —2a2) + (B +7)
2
a

S Be By (23)

where y = 2. Note that g(z) >0, Vz > 0. Since 71 < a <1, it follows, from (22)

and (23), that (17) holds if and only if

(12

(1—a)z+43a2—2a+(ﬂ+7)y

—2p < 0. (24)
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Recall from (7) that

_1-a_ (B+7)a—~
(1 —a)z= b 2 .

Multiplying (15) by 2, it is clear that (24) is equivalent to (15). That is, (12) subject
to (3) is equivalent to u(X) < 0, V X. Recall that, from (2),

(B+7)a—~v

— 2_
2_” X ” - (12(1 —G.) 9

(25)

which gives an explicit expression of z in terms of ‘a’. For simplicity, we will sometimes
treat u(-), z(-) as functions of ‘a’. We are now in a position to prove the following

results, which establishes a simple characterization of (24).

Theorem 2 If B <4, then (17) holds if and only if B < 2(p — 2).

Proof: Recall that r(z) = (1 —a)z and g(z) = f—;_%. Then, from (22),

u(z) = (1 — a)(r(2) + 4g(2) — 2p). (26)

Since 0 < a < 1, one has

u(z) <0, Vz>0
< r(z)+49(2) <2p, Yz > 0. (27)

It is mathematically difficult to obtain the l.u.b. of r(2)+4g¢(2), but finding the l.u.b.’s
of r(z) and g(z) separately is easier. If B < 4, it follows directly from Lemma 1 that
r(z) is nondecreasing in z and lim r(z) = B, which is the l.u.b. of r(z). Thus, on

- 00

direct computations, one has

dr(z) da
T e 1—a)- 22> ,
7 (1—a) a2 0, Vz > 0 (28)

Moreover, dividing (28) by 1 — a, since 0 < a < 1, we have that

dr(z) de
dz — dz
l—a 1—a

= 1-g(z) 20, Vz >0 (29)

which implies that

g(z) £1, Vz > 0.



In fact, from (23), it is clear that

lim g(z) =1,

Z—00

which is the l.u.b. of g(z). Indeed, B + 4 is the Lu.b. of r(z) + 4¢g(z), because both
l.u.b’s of r(z) and g(z) are obtained z — oco. Thus, the restriction that 8 +4 < 2p
is equivalent to that § < 2(p — 2), which completes the proof.

Remark: The condition that both § < 4 and 8 < 2(p — 2) hold is equivalent to
m+4 < p<m(r? —1) as in Theorem 1.

Corollary 2 Under (4), (17) holds if and only if (3) holds.

Theorem 3 If ¥ < B <8, then (17) holds if EE2- 4 Sa=Bls < 9(p — 9),

Proof: Recall that r(-),¢(-) and u(-) are functions of ‘a’. By Proposition 1, we know
that WT‘:’LZ is the l.u.b. of r(-). Now, let us deal with g(-) first. Combining (23) and
(25), on direct computations, it is obtained that

208+ v)a? — (B+47)a+2y

(30)

Let A, B denote the numerator and denominator of (30) separately. Note that B
is positive, since both A and g¢(-) are positive. Then, on simplification, one has

B—A=(f+7)a’—(B+37)a+2y. (31)

Since the discriminant

A = (B+37)*—8y(B+7)

= (B+37)* >0,
we claim that
. 2y
B—-—A > 0, ifa<—— 32
51y (32)
and B—-—A < 0, ifa>——27—.
B+~

This is because, on direct computation,
, 2
P+~

B-A=0a=

10



Furthermore, the minimum value of B — A, %, is obtained at a = 5%—)
That is,
—(1=8)°
—— < B - A <0, f—-—<a<1 33
4B +1) B+ (33)
Dividing (32) and (33) by B, since B is positive, algebra implies that
B B+~
A =87 . 29
and 1 € =<14+——%—, ifa > ——. 34
511 a8 B (34
Again, algebra results in that the minimum value B is attained at a = Z%’
: B8y —B)
1e., B>———. 35
56+ 7) 9
If < 8y, from (34) and (35), it then follows that
A 2(y—8)* . 2y
1<=<14+——F—r—r~=r ifa > —. 36
B B8y —B) B+ (36)
By Proposition 1 and (36), we have that
r(a) +4g(a) < 2p, Va
if
(B+7)*  8(r=8)°
+ < 2p—4.
4y B8y —B)
This proves the theorem.
Remark: In fact,if v < f < 4+, then =L 2 > %ﬁ—)—, therefore, B > ﬁ?, which
is attained at a = ﬁ—_l_'y—, ita > ﬁﬁ— Thus (34) reduces to
A (r=8)°
1< =<1 . 4.
<pSltga 7 < B < 4y (37)

Note that the upper bound of (37) is sharper than that of (36); this is because

208 _(v=8) _(1=8)(4y - B)’

B —F) 8¢ 8By —p)

11



Corollary 3 (8) holds if (17) holds.

Proof: If § < v, it is trivial from Corollary 2. If not, taking a = [723;, one has that

r(a) + 4g(a)
I Gk ) S
4y

The result follows directly from (26) and Proposition 1.

Remark: This Corollary obeys Baranchik’s theorem. Also, it points out that condition
(3) is weaker than condition (17). That is, for fixed m and 72, the interval of p for
which (3) holds is wider than the interval of p for which (17) holds. Recall that (12)
subject to (3) is equivalent to (17). Thus Cor 3 explores a surprising result that (17)

and Alam’s conditions are equivalent.

Example: Let m = 1, 72 = 10 and ¢? = 1. Figures 1 and 2 illustrate the behavior of
u(z) for various values of p. Recall that u(-) is a function of X through || X ||? only,
and || X ||? has a noncentral chi-square distribution with parameter U_2|.|3 Thus, the
expected value of u(|| X ||?) is a function of || § ||? only, which can be numerically
computed by using IMSL subroutines. Figures 3 and 4 give the plots of Ey (u(]| X ||?))
vs. || 8 ||? for various values of p for the fixed m, 72 and o2, Since the risk function of
the posterior mode is equal to R(§,v) = Eg (u(ll X II?)) + p, Figures 3 and 4 also give
the illustration of risk functions. Note that for the minimaxity of the posterior mode,
the condition Ey (u(|l X I*)) < 0V ¢, is weaker than the condition u(|| X 1) <0V X.

4. Comparison With Posterior Mean

For p > 1, both posterior mean and posterior mode are of the form [1 =1 i X”: ] X.

As stated in the introduction, unlike the posterior mode, the posterior mean, j(X),
needs to be approximated by numerical methods. It seems necessary that a compar-
ison between the posterior mean and the posterior mode be made. Figure 5-10 give
the plots of the posterior mean and the posterior mode with p = 1 for some fixed
m, 7% and o®. A plot of their risk functions is given to help make a comparison.
Figure 10 describes the risk behavior for both the posterior mean and the posterior
mode. The risk functions are computed by using IMSL subroutines. Figure 10 shows
that both the posterior mean and the posterior mode are tail minimax when p = 1.
Indeed, they both are tail minimax for all p. For higher p, the risk behavior of the

posterior mode is described in Figure 4. It shows that if we take m =1, 72 = 10 and

12



0? = 1, then the posterior mode v is minimax for moderate values of p. Figure 10
indicates that the posterior mode is shrinking more than posterior mean; this can be

a reason why the posterior mean is not minimax for any p < oo.

References

[1] K. Alam. A family of admissible minimax estimators of the mean of a multivariate
normal distribution. Ann. Statist., 1:517-525, 1973.

[2] A. J. Baranchik. A family of minimax estimators of the mean of a multivariate
normal distribution. Ann. Math. Statist., 41:642-645, 1970.

[3] J. Berger. Improving on inadmissible estimators in continuous exponential fam-
ilies with applications to simultaneous estimation of gamma scale parameters.

Ann. Stat., 8:545-571, 1980.

[4] A.Dasgupta and J. K. Ghosh and M. M. Zen. Bayesian analysis of a multivariate
normal mean with flat tailed priors. Technical Report #90-22, 1990.

[5] B. Efron and C. Morris. Families of minimax estimators of the mean of a multi-
variate normal distribution. Ann. Stat., 4(1):11-21, 1976.

[6] H. M. Hudson. A natural identity for exponential families with applications in
multivariate estimation. Ann. Statist., 6:473-484, 1978.

[7] J. T. Hwang. Certain bounds on the class of admissible estimators in continuous
exponential families. Statistical Decision Theory and Related Topics III, S. S.
Gupta and J. Berger (eds.), 1982.

[8] J. T. Hwang. Improving upon standard estimators in discrete exponential fam-
ilies with applications to Possion and negative binomial cases. Ann. Statist,

10:857-867, 1982.

[9] W. James and C. Stein. Estimation with quadratic loss. Proc. Fourth Berkeley
Symp. Math. Statist. Prob., 1:361-379, 1961.

[10] C. Stein. Estimation of the mean of a multivariate normal distribution. Proc.
Prague Symp. Asymptotic Statist., pages 345-381, 1973.

[11] C. Stein. Estimation of the mean of a multivariate normal distribution. Ann.
Statist., 9:1135-1151, 1981.

13



u(z

P B |

o

|
Juy

U S TS I N SR TR T S S WS S N S'1

—2 1

PR

-4

Figure 1. The Curve of u(z):p=1,2,3,4,5
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Figure 2. The Curve of u(z) : p = 5,25, 45,65, 85
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Figure 3. Curves of E(u(Z)) vs. A:p=1,2,3,4,5
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Figure 4. Curves of E(u(Z)) vs. A: p=15,25,45,65
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Figure 5. Plot of Posterior Mean and Mode (i)
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Figure 6. Plot of Posterior Mean and Mode (ii)
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Figure 7. Plot of Posterior Mean and Mode (iii)
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Figure 6. Plot of Posterior Mean and Mode (ii)
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Figure 9. Plots of Posterior Mean and Mode
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Figure 10. Risk Functions of Posterior Mean and Mode
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