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1. Introduction

Let M be a compact, orientable, C* surface of genus > 2 and with fundamental
group I' = 7y (M). Let I; and I be isomorphisms of I into PSL(2,R), the group of linear
fractional transformations z — -sf_fg where a, b, ¢, d € R and ad — bc = 1, which may
also be viewed as the group of isometries of the hyperbolic plane H. When are I; and I,
geometrically conjugate, i.e., when does there exist ¢ € PSL(2,R) such that p o [;(y) =
I;(v) o ¢ for all 4 € I'? Equivalently, when is there an isometry ®: H/I1(T') — H/L,(T)
which induces the trivial isomorphism I, o I of fundamental groups?

We shall discuss two criteria, the first due to Mostow [M], the second to Bishop and
Steger [BS]. Mostow’s criterion uses the Dehn-Nielsen boundary correspondence ([De],
appendix). This is a homeomorphism %: R — R such that o li(y) = Ix(v) o for every
v € T it is uniquely determined by I; and I,. (NOTE: R = RU {oo} is a circle here.)
Mostow’s theorem states that I; and I, are geometrically conjugate iff ¢ is absolutely
continuous, in which case 9 is the restriction to R of a linear fractional transformation
¢ € PSL(2,R). The Bishop/Steger criterion is based more directly on the geometric
actions of I;(I") and I3(T") on H, equipped with the Poincaré distance d. It states that
and I, are geometrically conjugate iff for any (every) z € H and 0 < s < 1,

Y exp{—sd(Ii(7)z,2) — (1 — 8)d(Lx(7)7,2)} = o0

~€er

Moreover, if I; and I; are not geometrically conjugate then there exists § > 0 (depending
on s but not z) such that

> exp{(1 = §){—sd(Li(7)2,2) — (1 - 8)d(I2(7)z,2)}} < oo

~€er

The purpose of this paper is to prove analogous theorems for surfaces of variable
negative curvature and to exhibit their close connection with the ergodic theory of the
associated geodesic flows. Let g; and g2 be C°° Riemannian metrics on M, each with
strictly negative curvature at every point of M. ASSUME that the geodesic flows asso-
ciated with g; and g2 both have topological entropy 1. (NOTE: Multiplying a metric g
by a scalar a has the effect of multiplying the topological entropy of the geodesic flow by
a~1/2, Also, if ¢ has constant curvature —1 then the geodesic flow has topological entropy
1.) Let m: M — M be a universal _covering space of M, let §; and §, be the canonical
liftings of g1 and g to M, and let d; and d; be the corresponding distance functions on
M. As before, set T = m (M );_identify I' with the group of deck transformations of M.
Each v € T is an isometry of (M, §) and also of (M, §z). Also, T is naturally isomorphic
to the fundamental group 71 (M) of M.

Let g be an arbitrary C*° Riemannian metric on M with negative curvature at every
point of M. It is known (Prop. 2. below) that there exists in each free homotopy class é a
unique closed geodesic B35 parametrized by arclength. The function which assigns to each
free homotopy class § the (g9—) length A\;(Bs) of Bs is called the marked length spectrum
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of (M, g). Observe that the set A of free homotopy classes is in one-to-one correspondence
with the set I'* of conjugacy classes of I', so the marked length spectrum may be viewed
as a function on this set of conjugacy classes.

THEOREM 1: For any two negatively curved C™® Riemannian metrics g1 and g3 on M
the following statements are equivalent:

(1.1) g1 and g have the same marked length spectrum;

(1.2) for each 0 < s <1,

Y exp{—sxg, (B) — (1 = 8)Ag, (BP)} = 00; and

s€A

(1.3)  for each € M and 0 < s < 1,

Zexp{—sjl(i, 7‘%) - (1 - S)Jz(i, 75:)} = 0.
~€el

Furthermore, if (1.1)-(1.8) do not hold then for every 0 < s < 1 there ezists 0 < p < 1
such that Vi e M

(1.4) X exp{—p(sAs, (Bs) + (1~ $)Ag,(Bs))} < o0

sea

and

(18) % exp{~plodi(373) + (1~ )da(2, 7)) < oo

NOTE 1: ﬂgi) is the unique closed g;-geodesic in the free homotopy class §. The curves
§1) and ﬁgz) will in general be distinct, although they are (of course) homotopic.

NOTE 2: Henceforth, the term “geodesic” will be used for unit speed geodesics, i.e.,
geodesics parametrized by arclength.

According to a recent theorem discovered independently by Croke [Ct], if ¢; and g,
have the same marked length spectrum then there is an isometry I: (M,g;) — (M, g;)
inducing the identity on m (M).

It is not immediately apparent what the natural generalization of Mostow’s theorem
should be, because it is not clear what is the “natural” ' analogue of the Lebesgue measure on
the boundary of hyperbolic space. As before, let m: M — M be a universal cover of M; M
has a concrete realization (as a manifold) as the unit disc. There are, of course, many C'*®
covenng projections from the unit disc to M. By Koebe’s uniformization theorem, there
is at least one C* covering projection m: M — M such that each deck transformation
preserves the Poincaré metric on M; thus the Poincaré metric projects via w to a C™®
Riemannian metric on M of constant curvature —1. Henceforth, we shall assume that
7 M — M is such a covering projection.

We will see (sec. 2) that if g is any Riemannian metric on M with negative curvature
at every point and § is its canonical lift via = to M, then every j-geodesic ray in M
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converges (in the Euclidean metric on M) to a unique point of 8M = unit circle. Two
natural measure classes on M, depending on the Riemannian metric g, may be defined:

(1) Fix # € M and pick a direction v (at ) at random (the set of directions is the unit
circle in the tangent space TM3z, and “at random” means from the uniform distribution on
this circle). There is a unique geodesic ray emanating from # in direction v; it converges to
¢ € OM. Define vL to be the distribution of this random point £. For any %, §j the measures
vE vl are mutually absolutely continuous (a.c.), so the measure class v is well-defined.
We will call it the Liouville class.

(2) Fix # € M and consider the orbit ' = {y%: 7 € T'} of # under the group I' of deck
transformations. For each s > 1 define a probability measure v on I'Z by placing at each
v% a mass e~*3E78) |5, cre~*4E7'E) We will show (sec. 5) that v? is well-defined for all
s> 1and & € M; that as s | 1 the measures vz converge weakly to a probability measure
vz supported by 6M and that for any #, j € M the measures vz and vy are mutually
absolutely continuous. Let v denote the measure class thus determined. We shall call it
the Patterson class because its construction is motivated by Patterson’s construction [P]
of measures on the boundary of the hyperbolic plane for Fuchsian groups.

When the Riemannian metric g has constant curvature —1, the measure classes v~

and v coincide. In general, however, they may not.

THEOREM 2: The Riemannian metrics g1 and g, have the same marked length spectrum
iff the Liouville classes (vL)y, and (v),y, are the same; otherwise, (vL),, and (v%),, are
mutually singular.

THEOREM 3: The Riemannian metrics g; and g2 have the same marked length specirum
iff the Patterson measure classes (v)g, and (v)y, are the same; otherwise, (v)y, and (v),,
are mutually singular.

Thus, there are two natural generalizations of Mostow’s theorem. Of the two, Th. 2
appears to be the more elementary; but Th. 3 is more closely tied to the Bishop-Steger
criterion. Our proof of Th. 2 is very simple and also elementary: it uses only the ergodic
theorem for the geodesic flow and some basic facts about negative curvature (sec. 3). Our
proofs of Theorems 1 and 3 (secs. 4 and 6, respectively), although not difficult, rely on
deeper properties of the geodesic flow, notably the existence of Markov partitions [Ra],
[Bo;], together with the machinery of Gibbs states and Ruelle operators [Bos).

NOTE: While writing this paper I learned from Prof. M. Ramachandran that Theorem 2
was discovered earlier by A. Katok [K]. Katok’s paper does not include a proof. Since my
proof is relatively short, I have left it in the paper (sec. 3).

2. Background: Negative Curvature and Geodesic Flow

All Riemannian metrics in this paper will be C°°.
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PROPOSITION 2.1: Let g1 and g, be Riemannian metrics on M, each with negative
curvature at every point of M. Then there exists a C path g; in the space of Riemannian
metrics on M, 1 <t <2, connecting g, and gz and such that for each t € [1,2] the metric
gt has negative curvature at every point of M.

PROOF: For any Riemannian metric ¢ on M with negative curvature there exists a
Riemannian metric g* with constant curvature —1 such that g = pg* for some C, positive,
scalar-valued function p on M. This is because the Riemannian metric g determines a
conformal structure on M, with respect to which M becomes a Riemann surface; its
universal cover m: M — M is the unit disc, by the Koebe uniformization theorem, so the
Poincaré metric on M projects to a Riemannian metric g* on M with constant curvature

—1. It must be that g = pg* because by construction of g* the map (M, g) LN (M, g*) is
conformal.

There is a C* path connecting ¢ and g*: just set g; = (¢ + (1 — t)p)g*, 0 < t < 1.
That each g; has negative curvature at every point of M follows immediately from Th. 1
of [GR].

Thus it suffices to show that any two Riemannian metrics g§ and g} of constant cur-
vature —1 can be connected. But this follows from the connectedness of Teichmiiller space,
which in turn follows from standard results in the theory of quasiconformal mappings. In
brief, the argument runs as follows. Let M be the unit disc and § the Poincaré metric on
M. By the uniformization theorem there are covering projections m;: M — M taking §
to g¥. The mapping id: M — M is (g7, 93 )-quasiconformal; it lifts to a quasiconformal
mapping Q:M—M satisfying m3 = m; 0 Q. We may assume that Q) fixes three points 1,
—1, i. By smoothly deforming the dilatation of Q we may obtain a smoothly varying path
of quas1conformal mappings Qs: M — M,1<t< 2, such that @1 = id and Q; = @ (see
[Ah], Th. 5, Ch. V). The deformation of the dllatatlon p: may be performed so that each
f¢ is automorphic with respect to the Fuchsian group of deck transformations of M deter-
mined by the covering m;: M — M. Consequently, each m; o Q: projects the Poincaré
metric § to a metric g; of constant curvature —1 on M. Since Q; varies smoothly, so does

9gi- g

Next we discuss properties of the geodesic low. Any Riemannian metric ¢ on M
determines a Riemannian metric on the unit tangent bundle S*M. It will be useful to
view S'M as a single manifold for varying g, namely S'M = TM* |/ ~ where TM* =
{(z,v): z € M, v e TM,, v # 0} and (z1,v2) ~ (z2,v2) iff z; = 25 and v; = Av, for
some A > 0, A € R. This allows us to view the geodesic flows for different Riemannian
metrics as flows on the same manifold. For any Riemannian metric ¢ on M we will denote
the induced metric on S*M by g also and the corresponding distance function by d.

For a given Riemannian metric g on M the associated geodesic flow ¢s: STM — S1M
is defined as follows: ¢(x,v) = (z¢,v:) where x4, t € R, is the unit speed g-geodesic in M
with initial point 9 = = and initial direction v9 = v, and v is the direction of (d/dt)z;.
Assume that g has negative curvature at every point of M. Then the geodesic flow ¢, is an
Anosov flow (called C-flows or Y-flows in the older Russian literature: [An], [AS]). Several
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important features of Anosov flows will be fundamental to our arguments; we summarize
them here.

PROPOSITION 2.2 [An]: There ezist foliations W, W*, and G of SM by C' curves,
each invariant by ¢, and such that at each (z,v) € STM the leaves of W2, W*, G intersect
transversally. The leaves of G are orbits of ¢, while the leaves of W? and W* are called
“stable” and “unstable” manifolds, respectively. There exist constants 0 < Cy < C; < o0
and A\, < 0 < A, such that for any segment L, of a W*"-leaf and any segment Ly of a
W?e.-leaf,

C,e*? length (#¢(Ls))/length (L) < cretet,

Coe™*" length (¢(Lu))/length (Lu) < cre™,
for all t € R.

In particular, if (z,v), (¢',v") are in the same stable manifold then d(¢:(z,v), ¢+(z’,v'))
— 0 as £ — oo. Moreover, for all sufficiently small ¢ > 0 the set of (z',v') such that
d(¢+(z,v), p:(z',v")) < € for all ¢ > 0 is contained in the connected component containing
(z,v) of the intersection of the e-ball centered at (z,v) with the leaf W*(z, v) of W* passing
through (z,v).

PROPOSITION 2.3 (Anosov Closing Lemma [An]): For every € > 0 there exisis § > 0
such that if for any (z,v) € S'M and t >0

d((z,v), $+(z,v)) < 6,

then there exist (a:’,v’) € SIM and t' € (t —¢,t +€) such that ¢t,(xl,vl — (zl,vl) and for
every 0 <s <t At
d(ds(z,v), ¢s(z',v")) <e.

Thus, closed geodesics (periodic orbits of @) are dense in a very strong sense. Note
that since S*M is compact there will exist along any orbit (z¢,v;) of ¢ many pairs ¢/, ¢"
such that d((z¢,ve), (zer,ve)) < 6.

The final, and most important, property of Anosov flows is their “structural stability”.

PROPOSITION 2.4 (Structural Stability [An]): Assume that g i3 & Riemannian met-
ric with negative curvature and geodesic flow ¢;. Then for any Riemannian meiric g'
sufficiently close to g in the Cl-topology and with geodesic flow 1, there exists a homeo-
morphism h: S*M — STM C°-close to the identity which takes orbits of ¢, onto orbits
of Y¢. In particular, V (z,v) € SIM and t € R

h o ¢(z,v) = ¥, o h(z,v)
where T = 7(¢;z,v) is jointly continuous and, for each (z,v) € SYM, t — T is a homeo-

morphism of R fizing 0. Finally, h: S*M — S'M can be made Hélder continuous with
exponent a, for some a > 0.



Proofs may be found in [An] and [Ro], with the exception of the statement about
Holder continuity of h. This statement, however, follows from a careful reading of the
proofs, and seems to be fairly well known. ([Mo], p. 435, remark (c), mentions that & is
Hoélder continuous in the corresponding Structural Stability Theorem for Anosov diffeo-
morphisms.)

Let p: S'M — M be the natural projection.

PROPOSITION 2.5: Let g1 and g2 be Riemannian metrics on M, each with negative
curvature at every point of M, and let ¢§1) and ¢$2) be the corresponding geodesic flows on
S'M. Then there ezists a Holder continuous homeomorphism h: S*M — S1M which
takes orbits of ¢V onto orbits of ¢(2) and (therefore) takes the periodic orbits of 811 onto
the periodic orbits of (3. Moreover, h is isotopic to the identity map. Thus, for any
¢ -periodic orbit ay the corresponding ¢? -periodic orbit ap = h(a1) i3 homotopic to ay.

PROOF: By Prop. 2.1 there is a smooth path g, in the space of negatively curved Rieman-
nian metrics on M that connects g; and g,. Consequently, Prop. 2.4 implies that there are
homeomorphisms h,: S'TM — S*M such that (1) by = identity; (2) s — h, € CO(M, M)
is continuous; and (3) h, maps orbits of ¢(!) onto orbits of ¢(*). (Here ¢(®) is the geodesic
flow on S'M for the metric g;.) Thus, for any periodic orbit a of ¢(1), the mapping
s —> po h,0a is a homotopy of po a. O

PROPOSITION 2.6: Let g be a Riemannian metric on M with negative curvature at every
point. Then in each free homotopy class on M there is a unique closed g-geodesic, which
i3 the shortest closed curve in that homotopy class.

NOTE: This is reasonably well known, but for completeness we shall prove the uniqueness.

PROOF: The closed geodesics are precisely the p-projections of the periodic orbits of the
geodesic flow (counted twice: once forward and once backward). Every homotopy class
in M contains at least one closed geodesic, namely any shortest curve in the class ([BC],
ch. 11). To show that there is only one, it suffices, by Prop. 2.5, to consider a metric g of
constant curvature —1. But the closed geodesics for a metric of curvature —1 are precisely
those curves whose lifts to the universal covering space (M ,§), § = Poincaré metric, are
geodesics whose endpoints on OM are the two fixed points of some v €T, a

Recall that M is the unit disc and that =: M — M is a C*® covering projection
with the property that each deck transformation is an isometry of (M, gp) where §, is the
Poincaré metric on M. Thus, the Poincaré metric on M projects via 7 to a Riemannian
metric of constant curvature —1 on M. Using this metric in conjunction with Prop. 2.5
and homotopy lifting, we will show that for any other negatively curved metric ¢ on M the
Hadamard manifold (M, §) has many of the same qualitative features as the hyperbolic
plane.



Given m: M — M, there is an induced covering projection #: S'M — SM such that

-~

st L nm

Tl lx

sSsM L M

commutes, where p and p are the natural projections.

Let h: S'M — S'M be a homeomorphism which is isotopic to the identity, such as
that produced in Prop. 2.5. There is a natural lifting of & to a homeomorphism A: S*M —s
S M which is also isotopic to the identity (this follows from the homotopy lifting theorem).
For any Riemannian metric g on $*M with lift §, there exists a constant C < oo such that

(2.1) dhX),X)<C VXeS'M,

where d is the distance function determined by §.

PROPOSITION 2.7: Let g; and g5 be negatively curved Riemannian metrics on M, and

let ¢(1) and ¢£2) be the corresponding geodesic flows on S'M. Let h: STM — S'M be a
homeomorphism isotopic to the identity taking ¢V)-orbits onto ¢ -orbits. For each ¢1)-

orbit 11(t) define ¢2(T(t)) = h(z,bl(t)) to be the corresponding ¢@-orbit. Then for any lift
P1 of Py to SIM there is a unique lift 1y of Yo to STM such that

(2.2) max sup di($1(t), ¥2(7(t))) < C.
t=1,2 R

NOTE: g; induces a Riemannian metric on S*M which lifts to S*M; d; is the correspond-
ing distance. The constant C' < oo depends only on the metrics ¢;, g2 not on ;.

PROOF: Taking 2(7(t)) = h(41(t)) and applying (2.1) proves the existence of a suit-
able lift 9;. Uniqueness follows from an easy argument using §s = Poincaré metric.

(NOTE: The uniqueness statement will not be needed.) |

PROPOSITION 2.8: Let g be a negatively curved Riemannian metric on M, let § be its
canonical lifting to M, and let d be the corresponding distance function. For any geodesic
ray &(t) in M there exists £ € OM such that

(23) Jim a(1) = ¢

(in the Euclidean topology on M UM ). For each & € M and each & € OM there ewists a
unique geodesic ray &(t) such that

(2.4) @(0) = Z and tl_LIElo a(t) =¢.



If @1(t) and aa(t) are geodesic rays such that lims_,oo a1(t) = €1 and limy_oo G2(t) = &,
then

(2.5) Jlim d(@(t), Ga(t)) = oo if & # &;
(2.6) Jim d(@1(2),Ga(t +1.)) =0 if b1=6

for some t, € R.

PROOF: These statements are elementary and well known for the Poincaré metric. For
arbitrary ¢g they follow from Props. 2.5 and 2.8 with § = § and §» = Poincaré metric. For
any §i-geodesic ray there is a unique §a-geodesic ray that stays within a bounded distance
(Prop. 2.7); since the §o-geodesic ray tends to a point £ € M the same must be true of
the g;-geodesic ray. This proves (2.3).

Suppose &; and é@; are §;-geodesic rays that tend to &1, & € OM, respectively. Let
a7, a3 be the unique §-geodesic rays that track @i, G, at bounded distances. If §; # &
then &} and &3 separate in Poincaré distance; hence &;, 62 must also separate in Poincaré
distance, and so also in d;-distance. This proves (2.5). If, on the other hand, ¢, = &; then
the Poincaré distance between &} and @; goes to zero as they approach &;. Now project to
M and pull back to S*M: the ¢{?)-orbits corresponding to &} and &3 become increasingly
close for large time, and since h: S'M — S'M is a homeomorphism the same must be
true for the corresponding ¢(!)-orbits. (2.6) follows from this.

Now fix # € M and consider the set of directions at # S'M; = {(7, v) € S'M: ij=%}.
For each (Z,v) € S 1M; there is a unique geodesic ray emanating from # in direction v, and
which tends to a point £ = £(v) € dM. To prove the existence statement (2.4) it sufﬁces
to prove that v — £(v) is continuous and 1 — 1. But continuity follows easily from the
continuity of h: S'M — S'M and elementary hyperbolic geometry. As for injectivity,
suppose the geodesic rays @; and d&; in directions v1, v; tend to the same ¢ € M. Then
by the result of the previous paragraph, the d-distance between &; and &, decreases. But
this contradicts negative curvature: cf. [BC], sec. 9.5, Cor. 1. O

As in the preceding proof, let S'Mj; denote the set of directions at & € M, i.e.,
S'M; = {(§,v) € S'M: §j = z}. For each & € M, S'M; is a circle. Let g be a negatlvely
curved Riemannian metric on M and let § be its lift to M. Then for each # € M there
is a homeomorphism Hj: S'M; — OM defined by H; (v) = € if the geodesic ray starting
from Z in direction v tends to £.

PROPOSITION 2.9: For any &,§ € M the homeomorphism Hﬁ_lﬂg : S'Mz — S'M;
is C1.

NOTE: This will be used in the definition of the Liouville boundary measure class in
sec. 3. In general Hz: S'M; — OM is not C*.
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PROOF: It suffices to prove this for § near Z.

Here is a dynamical description of Hg— 'H;. Project &, §j to z, y € M. Then SM,
and S'M, are nearby C* curves in S'M. Consider the foliation W* of S'M by stable
manifolds (curves) (see Prop. 2.2). Since (M,g) has negative curvature, each S'M, is
transverse to W*. Let N, be the union of small segments of leaves of W* passing through
points of S'M,. For any (z,v) € S'M, the orbit ¢¢(z,v) intersects N, transversally for
some |t| small, in the leaf of W* passing through some (y,u). It must then be the case
that H 'H:(v) = u, because the ¢;-orbits through (z,v) and (y,u) are asymptotic.

‘The fact that H 7 1H; is C! now follows from the implicit function theorem, because

the stable foliation W* is C*! (cf. [HP]). O

3. Liouville Measure and Intersection Statistics

Let g be a negatively curved Riemannian metric on M and let ¢; be the geodesic flow
on S'M determined by g. The Liouville measure L is the Riemannian volume on S1M ;
it has total mass 27 area (M). The Liouville measure is ¢;-invariant, ergodic, and mixing

[An].

Fix any # € M, and define a probability measure vE on OM as follows. Choose
a direction v at # randomly, according to the normalized Lebesgue measure on {v €
T Ms;: §(v,v) = 1}. The direction v determines a unique §-geodesic ray starting at #; this
geodesic ray tends to ¢ € OM. The distribution of the random endpoint £ is defined to
be vL. In the notation of Prop. 2.9, £ = Hz(&,v). Since H;IH;.: S'M; — SIMg is a
C'-homeomorphism, it follows that for any #,§ € M the measures vE and vé’ are mutually
absolutely continuous. Define (vL), to be the measure class of .

The relation between the Liouville measure on S*M and the measure class (v1), on
OM is this. Let m: M — M be the covering projection and let P C M be a connected
region with compact closure such that 7: P — M is 1—1 and onto. Choose (z,v) € S'M
at random according to L, let 4 be the geodesic ray in M with initial point z and direction
v, and let 4 be the unique lift to M starting at # € P. Then # tends to £ € OM. The
distribution of ¢ is an average of the measures v, & € P, hence is a representative of the

measure class (v1),.

Define the intersection number N¢(a;f3) of the smooth path a(s), 0 < s < t, with
the smooth closed curve 3 to be the number of transversal intersections of a with 3. (If g
traverses its trace more than once, intersections are counted as multiple.)

PROPOSITION 3.1: Let (M, g) be a compact Riemannian manifold of (variable) negative
curvature, and let L be the corresponding Liouville measure on S*M. For each (z,v) €
S'M let a(s) = az,,(s) be the geodesic on M with initial point = and direction v. Then
for every closed geodesic § on M and L-a.e. (z,v) € S'M,

4 length ()

(3-1) tlir&t_th(a; h) = 27 area (M)’
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We will refer to these limits as the “intersection statistics” of the geodesic flow. Clearly
the intersection statistics determine the marked length spectrum!

PROOF: This is just an instance of Birkhoff’s ergodic theorem: the geodesic flow on S'M
is ergodic relative to L, so time averages converge to space averages. Define F.: SM — R
by

Fe(z,v) = e"'p(D(z,v)/¢)

where ¢:R — R is a continuous probability density with support contained in (0, 1) and
D(z,v) is the distance to 3 along the geodesic ray emanating from z in direction v. For
any € > 0 the function F, is bounded and Borel measurable, and for any (z,v) € S'M
such that a # 3,

N y(a; B) — / F.(a(s))ds| < 2.

Consequently, it suffices to evaluate [ F.dL (or, failing that, the limit as ¢ — 0). Using
the coordinate system 6, D,z where z = arc length along 8, 8 = angle made with 3, and
D = distance to 3, one has for ¢ — 0

2T e
/ Fodl ~ / / / e~10(D/e)dD| sin 6|d8dz
gJo Jo
= 4 length (5). O

Suppose now that a(s) and a'(s), s > 0, are geodesic rays in (M, g) which are asymp-
totic, i.e., such that d(a(s),a'(s + sg)) — 0 as s — oo for some fixed sy € R. Then «
and o' have the same intersection statistics: if for some closed geodesic 3 the averages
t"1N¢(a, B) converge to a limit as ¢ — oo then so do the averages ¢t~ Ny(a', 3), and the
limit is the same. Thus the existence and values of the limits are functions of the points

¢ € OM.

The proof of Th. 2 will be based on the fact that intersection statistics are “topo-
logically invariant”: if ¢g; and g2 are negatively curved Riemannian metrics and a;,as
are corresponding g;-, go-geodesics (in the sense of Prop. 2.5) then a;,a; have the same
intersection statistics. See Prop. 3.4 below. We will prove this in several steps: first we
will prove it for closed geodesics; then we will use the density of closed geodesics in S'M
to prove it for arbitrary geodesics.

For any two closed C! curves a and § on M define N(a,f) to be the number of
transversal intersections of a with § (if a or § traverses its path more than once then
intersections are counted according to multiplicity).

PROPOSITION 3.2: Let g1 and g2 be negatively curved Riemannian metrics on M, and
let a;; and B; be closed g;-geodesics such that ay is homotopic to az and B, is homotopic
to B3. Then

(3.2) N(a1,p1) = N(az, B2).

10



NOTE: Recall (Prop. 2.6) that each free homotopy class has exactly one g;-geodesic.

PROOF: Let g,, 1 £ s £ 2, be a smooth path in the space of negatively curved Riemannian
metrics connecting g, and g2 (Prop. 2.1). Let a, and 3, denote the closed g,-geodesics such
that a, is homotopic to a3 and f, is homotopic to #;. Then a, varies continuously with s,
as does f3,, because a closed geodesic is the unique shortest closed curve in its homotopy
class, by Prop. 2.6. Consequently, any transversal intersection of a, with 8, will persist
when s is varied slightly. Therefore, the only way N(a,,S,) could fail to be constant for
1 < s £ 2 would be for o, and 3, to have a tangency (nontransversal intersection) for some
s. But this is impossible, because distinct geodesics through a point must have different
directions. a

LEMMA 3.3: Let g be a Riemannian metric on M with negative curvature. Then for each
closed geodesic B there exists a constant K = Kg < oo with the following properties. For
any geodesic segment a(s), 0 < s <t,

(3.3) Ni(a,B) < K(t+1).

For any closed geodesic ¥(s), 0 < s </, v # B, and any geodesic segment a(s), 0 < s < ¢
with lifts ¥ and & to M,

(3.4) |Ne(a, 8) — N(v, B)| < K{2+ d(&(0),%(0)) + d(a(t), 7(t'))}-

PROOF: The first statement is a consequence of negative curvature. Consider the uni-
versal cover (M, §); it is tessellated by I-images of the “fundamental polygon” Pz = {§ €
M: d(3,%) < d(7, ni) Vn € T}. Let 8 be a lift of B to M; since A is a closed geodesic only
finitely many I'-images of § will enter P,. Call this number C. Now let & be any geodes1c
segment lying entirely in P,; then & can cross only C I-images of 3. Consequently, if « is
any geodesic segment with a lift & lying entirely in P, then a can only cross B at most C
times. Now there is a constant D < oo such that any geodesic segment & in M of length ¢
enters at most (Dt + 1) I'-images of P,. Hence, for any geodesic segment a in M of length
t, « can only cross 8 at most C(Dt + 1) times.

To prove (3.4) consider the following deformation of & to 4 in M. Move the initial point
from G(0) to 4(0) along the geodesic segment connecting them, move the final point from
a(t) to 4(t') along the geodesic segment connecting them, and let the deformation proceed
through geodesic segments. Project this deformation back down to M, and consider how
the number of intersections with B changes as the deformation proceeds. Transversal
intersections persist under small deformations, so the only changes in the intersection
number occur when an endpoint passes through 8. Thus, we need only estimate the
number of intersections of § with the projections of the geodesic segments from &(0) to
7(0), and from &(t) to 4(t'). But upper bounds on these follow immediately from (3.3),
yielding (3.4). a
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PROPOSITION 3.4: Let g1 and g2 be Riemannian metrics on M, each with negative
curvature, and let ay(s) and ag(s), s > 0, be geodesic rays in metrics g1 and ga, respec-
tively, with lifts &, and & to M that converge to the same point € € OM. Then there is a
constant C = C¢ € (0,00) such that for each pair B1,B2 of homotopic closed geodesics (B;
geodesic in metric g;)

(35) tll)ﬂ;lo t_th(al y ,31) =C tllglo t—th(az, ,32)

whenever both limits exist.

NOTE: The important point is that C' does not depend on the homotopy class of 3; and
B2

PROOF: If a; is asymptotic to a closed geodesic 7 (note: this is the case for both i = 1,2
or neither) then v, and 7, are homotopic and the result follows from Prop. 3.2. So we may
assume this is not the case.

Recall that the intersection statistics of a g;-geodesic a; depend only on the endpoint
¢ € OM of its lift &;. Consequently, it suffices to prove (3.5) for any g;- geodesic ap with
a lift &y converging to £. Thus, we may assume that the lifts a} and o3 of a; and a5 to
S'M are matching ¢(1)- and ¢(P-orbits, i.e., that

az(r(t)) = h(ai(t)) VteR

for a suitable time change 7(t), here h: S'M — S1M is the homeomorphism provided by
Proposition 2.5.

The plan now is to approximate a} by long periodic orbits of the geodesic flow ¢(1),
using the Anosov closing lemma (Prop. 2.3). Since S*M is compact, a}(t) must visit some
é-ball in S'M infinitely often as ¢ — oo; therefore, there exist 0 < ¢y < #; < 3 < ... with
tn — oo and ¢(M-periodic orbits (Dv*(2), 0 < t < t,, such that

di(at(t), Dyi) <e V0<t<t, Vn>1

(an initial segment of a} may have to be deleted for this). If € > 0 is sufﬁc1ently small
then a* and 4* may be lifted to S'M in such a way that the lifts remain at d;-distance
< &. They may then be projected to M, where

di(a1(2), VF,(8)) <& VO<t <ty Vn>1.
It now follows from Lemma 3.3 that for every n > 1,

|Ne. (a1, 81) = N(Dyn, B1)] < Kp, (2 + 2¢).

Each ¢(1-periodic orbit (4* corresponds via h to a ¢(?)-periodic orbit (Py*(s), 0 <
8 < 8, while a? corresponds to a}. By Proposition 2.7 the orbits (2)4* have lifts (5%
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to S'M that stay within a distance C of the corresponding (Mv%, and similarly for o3.
Consequently, 3
d2(a2(0), P4a(0)) < 2C + €',

d3(@2(7(tn))), P4n(sn)) < 2C + ¢’

where &' > 0 is such that d;-distance < € become d»-distances < ¢'. Once again, Lemma 3.3
applies, this time to the effect that

INrtn) (@2, 82) = N(Pya, B2)] < Kp, (2 + 4C + 2¢').

But by Proposition 3.2, for every pair (81, 82) of homotopic closed g;-, go-geodesic
and every n > 1, N((Vy, ,31) = N(@«,, ,). Thus, the inequalities of the two precedmg
paragraphs combine to give, for every pair (S, 82),

| Ve, (a1, 1) — Nr(e,) (@2, B2)] = O(1) as n — oo,
Jim t7 N, (a1,51) = nli_)ngot;INr(t,.)(ah B2)

whenever at least one of the limits exists. Hence, if both limits in (3.5) exist for some pair
(1, B2), then limt;17(t,) = C exists. Observe that 0 < C < oo because the Riemannian
metrics g1, g2 satisfy C1g1 < g2 < Cag; for certain constants 0 < C; < C; < 0o. Finally,
note that if both limits in (3.5) exist for more than one pair (81, 2) then the ratio C of
the limits is the same for all pairs, because the same sequence ¢, — oo may be used for

each. O

PROOF of Theorem 2: If g, and g, have the same marked length spectrum then Croke’s
theorem [Cr| implies that g; and g, are isometric, hence have the same Liouville class.

Suppose g; and gz are negatively curved Riemannian metrics on M whose Liouville
classes (v1),, and (v%),, coincide. Fix & € M and choose £ € M according to (v£),,; let
&1 be the §;-geodesic ray in M from Z to . Then by Prop. 3.1, for every closed g;-geodesic
ﬁl in M ’

¢1-length (6,)

(36) lim¢™ Nt(ahﬂl) 27!'(91 -area, (M))

where a; = 70@&;. Similarly, if £ € M is chosen according to (v}),,, &; is the §a-geodesic
ray from Z to £, and f; is any closed g;-geodesic in M, then

g2-length (B2)
27 (ge-area (M))

(3.7) Jim t 7 Ny(az; B) =

where ay = 7 0 @s.
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Now if &, @&, are §1-, §2-geodesic rays in M starting at # and ending at ¢ and if Gy,
B2 are closed g1-, gz-geodesics which are homotopic then by Prop. 3.4

(3.8) tlifilot_th(“”ﬂl) =C¢ tlifg) t~ Ny(az; B2)

provided both limits exist. But, by hypothesis, (vF),, and (v£),, are mutually absolutely

continuous, so there must exist ¢ € M such that (3.6) and (3.7) hold for all 8y, B;. It
then follows from (3.8) that there is a constant 0 < C' < oo such that for each homotopic
pair 1, B2 of closed ¢;-, g2-geodesics,

g1-length (B1) = C(gz-length (83)),

i.e., the marked length spectrum of (M,g;) is a constant multiple of that of (M, g,).
Finally, C = 1 because the geodesic flows for ¢g; and g, both have topological entropy 1
(see [PP]: topological entropy controls the growth of the length spectrum). a

4. Symbolic Dynamics and the Bishop-Steger Dichotomy

Our approach to Theorems 1 and 3 will be via symbolic dynamics for the geodesic
flow(s) and the accompanying “thermodynamic formalism”: cf. [Ra], [BR], [Boz], [Ru].

Let A be an aperiodic, irreducible, ¥ x k matrix of zeros and ones and define
Sa={z€ X {L,2,...,k}: A(@n,2n41)=1 Vn},

The shift o: £4 — X4 is defined by (0z)rn = Tp41. Distances on X4 are defined by
d(z,y) = exp{—n(z,y)} where n(z,y) is the largest integer n such that z,, = ym V|m| < n.

Now let r: ¥4 — R be a strictly positive, Holder continuous function; define the
suspension space

Lh={(z,t) €4 xR: 0<t < r(x)}.

Distances in X7, are defined by d((z,t),(y,s)) = d(z,y) + |s — t|. Now identify (z,r(z))
with (oz,0). The resulting quotient space will still be denoted by X7,. The symbolic flow
¢ on X7 is defined by

Ys(z,t) = (z,t+2) if 0<t+s<r(z),

¢3°¢t = ¢s+t V S, tER.
In other words, starting at any (z,t¢), move up the vertical fiber over (z,0) at unit speed
until reaching (z,r(z)), then jump instantaneously to (oz,0) and continue.

The geodesic flow for any negatively curved Riemannian metric has a “representation”
as a symbolic flow. Specifically, let g be such a Riemannian metric on the compact surface
M and let ¢; be the corresponding geodesic flow on S M.
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PROPOSITION 4.1 ([Ra],[Bo1]): There ezists a symbolic flow 1; on a suspension space
% with Holder continuous height function r and a surjective, Hélder continuous map
g L7 — S'M such that
gopr=¢iogq.

Furthermore, q is measure-preserving for the mazimum entropy invariant probability mea-
sures on £, and S'M, respectively, and is a.e. one-to-one relative to the mazimum entropy

measure on STM.

The map ¢ is not a homeomorphism but is finite-to-one. Thus, it is not necessarily
the case that periodic orbits are in one-to-one correspondence. However,

PROPOSITION 4.2: For all but finitely many periodic orbits v of ¢ the following is true.
There exists a unique periodic orbit B of ¢ such that q o B traverses the same path as v,
and go 3 =1+ (so B and ~y have the same period).

PROOF (sketch): The existence of g: £7 — S'M follows from the existence of a Markov
partition — see [Ra]. The only points ( € S*M for which ¢~*(¢) is not a singleton are
those points { such that the orbit ¢:({) passes nontransversally through a wall of one of
the “rectangles” of the Markov partition. But these walls consist of sections of stable
manifolds or of unstable manifolds (c.f. [Po], sec. 1); consequently at most one periodic
orbit can pass through a given wall. Since each rectangle has four walls and the Markov
partition has only finitely many rectangles, there are at most finitely many periodic orbits
with more than one symbolic representation. O

NOTE 1: It is always the case that if 4 is a periodic orbit of ¢ and J is an orbit of 1 such
that ¢ o 8 follows the path of v, then § is periodic and the period of § is a multiple of the
period of 7.

NOTE 2: Prop. 4.2 could be bypassed in the arguments to follow by using the weaker
results of [Boy], sec. 5, but this makes the argument slightly more complicated.

To describe the maximum entropy invariant measure for the symbolic flow 1, on X7
we need the concept of a Gibbs measure on the sequence space X4. Let f: ¥4 — R be
Holder continuous, and define Spf: ¥4 = Rby Spf = f+foo+foo?+...+foo™ 1. The
Gibbs measure p5 on X4 with potential f is the unique shift-invariant Borel probability
measure 4 on X4 with the following property: there exist constants 0 < C; < C; <
and P(f) € R such that for each y € ¥4 and each n =1,2,...,

c, < Mz €Za: zj=y; V0O<j<n}

S T e uf) — P} =

(See [Boz], Ch. 1, for the existence/uniqueness theorem and a catalogue of basic properties
of us.) The constant P(f) is called the pressure of f.
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Each Gibbs measure uy on X4, being shift-invariant, corresponds to a unique ;-
invariant measure fiy on X7, which is defined as follows: for each continuous G: X%, — R,

r(z)
Gips= [ [ " Gle,dtdus@) [ ru.
T, z€x, Ji=0 Ta

PROPOSITION 4.3: Assume that the topological entropy of the symbolic flow 1, on L7
is 1. Then P(—r) =0 and i, i3 the mazimum entropy invariant probability measure for

Pr.
This is the special case ¢ = 0 of [BR], Prop. 3.1.

The main reason for bringing Gibbs measures into the discussion is the existence of
necessary and sufficient conditions for two Gibbs measures yy and 4 to be mutually abso-
lutely continuous. Say that f and g are cohomologous if there exists a Hélder continuous
function u: ¥4 - Rsuchthat f—-g=u—uoo.

PROPOSITION 4.4 ([Bog], Th. 1.28 and Prop. 1.14): Let f,g: ¥4 — R be Hélder contin-
uwous functions satisfying P(—f) = P(—g) = 0. Then either p_5 = p_y or p_5 and p_,
are mutually singular. The following are equivalent:

(4.2) B—f = P—g;
(4.3) f and g are cohomologous;

(4.4) Snf(z) = Spg(z) V z € X4 satisfying o"z = z.

Now suppose that r: ¥4 — R is strictly positive, and consider again the symbolic
flow 1 on the suspension space X . An orbit of the symbolic flow is periodic iff it passes
through a point (z,0) € X% such that £ € X4 is a periodic sequence; in this case the
period of the ¥-orbit is S,r(z), where n is the least positive integer such that o"z = z.
This implies that if f and g are strictly positive on £4 and P(—f) = P(—g) = 0 then f
and g are cohomologous iff corresponding periodic orbits of the symbolic flows t,b{ and 1]
have the same periods.

We will need several basic facts about the “presure” functional f — P(f) (recall that
P(f) is the normalizing constant in (4.1)).

PROPOSITION 4.5: For Hélder continuous f,g: ¥4 — R,

(45) P(f)= lim ~log{ Y exp(Saf(@))}

T: otz=zx
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(46) P(f)= lim Zlog{ Y exp(Saf(@)};

z per(z)=n
(4.7) f>g=P(f) > P(9);

(4.8) IIf — gllo <& = |P(f) — P(9)| <&¢;

(4.9) Paf+(1—a)g) <aP(f)+(1—a)P(g)V0<a<1

unless f and g are cohomologous.

PROOF: (4.5) follows from [Bog], Lemma 1.20 by a routine argument, and (4.6) follows
easily from (4.5). The monotonicity and continuity properties (4.7)—(4.8) follow directly
from (4.5). The convexity property (4.9) is known ([Ru], Prop. 4.7) but the proof is
somewhat obscure, so we shall give another.

Let pt = fa£4(1-a)¢ be the Gibbs measure for the potential af +(1—a)g. By Prop. 4.3
the measures p, py, and pgy are all mutually singular. Consequently, from the “Variational
Principle” ([Boz], Prop. 1.21 and Th. 1.22),

P(f) > entropy (i) + / fdu;
P(g) > entropy (1) + / gdy;
Plaf + (1~ a)g) = entropy (4)+ [(af +(1— alg)d

from which (4.9) follows immediately. O

Let M be a compact surface and let S M be its circle bundle (as in sec. 2); let g; and
g2 be Riemannian metrics on M, each with negative curvature at every point of M; and
let ¢(l) and ¢(2) be the corresponding geodesic flows on S1M. By Prop. 4.1 there exists
a symbolic flow 1/)t “representing” ¢( ? for each i = 1,2. These representations do us no
good, however, because the suspension spaces may be ent1rely unrelated. Fortunately, the
structural stability theorem (Prop. 2.5) allows us to construct symbolic representations
for ¢V and ¢ which are “compatible” in that the underlying sequence space X 4 is the
same. Let h: S'M — S'M be a Holder continuous homeomorphism mapping ¢(1-orbits
onto ¢(?-orbits and isotopic to the identity (Prop. 2.5).

PROPOSITION 4.6: There exist a sequence space X4, strictly positive, Holder continuous
functions r1,r2: £4 — R, and surjective, continuous gi: L7 — S'M such that ¢; o ¢§') =
¢$') 0¢gi, t = 1 and 2. Each ¢; i3 measure-preserving and a.e. one-to-one relative to
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the mazimum entropy invariant measures. Furthermore, there ezists a homeomorphism
H: ¥% — X7 such that for each z € ¥4, H(z,0) = (¢,0) and H maps {(z,t): 0 <t <
ri(z)} onto {(z,t): 0 <t < rq(z)}, and such that

. L 3y
a |l l g
(4.10) s'M A s'm

commautes. In addition, P(—r1) = P(—rz) =0.

NOTE: The commutativity of the diagram implies that corresponding orbits of ¢(1) and
#?) have the same symbolic representation.

PROOF: First apply Prop. 4.1 to obtain X 4,71, and ¢;. Then h0¢: I — S'M isa
Holder continuous, surjective map taking 1(1-orbits onto ¢(?)-orbits. For each z € & As
define r2(z) to be the amount of time it takes the ¢(®-orbits through & o a1(z,0) to
proceed from h o ¢1(z,0) to h o ¢gi(z,r1(z)). Then r;:X4 — R is strictly positive and
Hoélder continuous (Hélder continuity follows by a routine 3ec-argument from the Holder
continuity of k, ¢;, and r, together with smooth dependence on initial conditions for the

flows ¢ )-

Now consider the suspension space X'} and the symbolic flow ¢§2) on X2. Define
g2: T2 — S'M by
g2(2,0) = hogq(z,0) VzeZXIyg,

q20¢§2)= 52)0(12 VteR,
and define H: X% — X7 by H(z,s) = H(z,%(s)) where

ho ¢V o qi(z,0) = ¢§2) o g2(z,0).

The advertised properties of ¢; and H are easily checked (that P(—r;) = P(—r;) = 0
follows because ¢§1) and ¢£2) have topological entropy 1). O

NOTE: The preceding argument is essentially known — see the proof of Prop. 5.4 in [BR].
However, these authors do not mention that Hoélder continuity of the structural stability
homeomorphism is (apparently) needed for the Holder continuity of r,. Holder continuity
of ry is essential in order that the results of [Bog], Ch. 1 be applicable.

LEMMA 4.7: Let r, and ry be as in Proposition 4.6, and fir € M. For each v € T there
exist w € X 4 and n > 0 such that

(4.11) |di(&,7%) — Spri(w)] < C, i=1,2,
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where C < 0o i3 a constant not depending on v. Moreover, there exists k < oo such that
the mapping ¥ — (n;wow1 . .. wn-1) 18 at most k-to-one.

PROOF: Let &g,l)(t) be the unique §;-geodesic ray in M such that c’i,(.,l)(O) = & and
&S,l)(t.,) = ~ where t, = di(#,7%). By structural stability (Proposition 2.7) there is a

corresponding §o-geodesic ray &9) such that
L&D @), 6D (1) < ¢

for allt > 0, ¢ = 1 and 2, and the constant C' < oo does not depend on t or 4. The
go2-geodesic ray &S,z) does not necessarily pass through either & or 4, but by the triangle
inequality B

1da(#, 1) - {t,)] < 2.

When the geodesic rays &S,l) and &E,Z) are projected to M and then pulled back to STM

they become corresponding orbits of the geodesic flows ¢(!) and #(?). These orbits then

pull back (via g1, ¢2: see Prop. 4.6) to corresponding orbits ,3,(,1) and ﬂﬁ” of the symbolic

flows ¥(1) and (). By Proposition 4.6 there exist w € 4 and n > 0 such that

ﬁ.(,l)(O) = (w, s) , some 3 € [0,r1(w)),
ﬂ'(f)(g) = (w,s") , some s’ € [0,r2(w)),
,H,(Yl)(t'y) — (o.n—lw,sll) , some s" € [0,1'1(0"—1(.0)),

BP(7(ty)) = (0" 'w,s") , some s™ € [0,r2(c" 'w)).
Hence
|Sn7'1(“") - t‘7| < 2”7'1”00,
|Sar2(w) = 7(ty)| < 2[|r2||co-

The inequality (4.11) now follows, with C = 2(C" + ||r1||eo + |I72]|c0)-

Although the mapping v — (n;wowi ...wp—1) is not necessarily one-to-one, there

exists k < oo such that it is at most k-to-one. This is because if v, 4’ map to the same
(n;wowy . .. wn—1) then the orbits ,3.(,1) and ,3,(;) stay close together in X7}, forcing o”zg,l) and
51571,) to stay close together in M, and thus forcing an upper bound on dy(v%,v'Z). But for

any r > 0 the number of 4’ € T such that di(y%,7'#) < r is bounded by a constant k,
independent of ~. O

PROOF of Theorem 1: FIRST assume that g; and g2 have the same marked length
spectrum. (This is the easy half.) Then A, (ﬂgl)) = Ay, (ﬂgz)) = {(§) for each free homotopy
class §. By a theorem of Margulis [Mr] (see also [PP] and [Lal, sec. 5), if N(¢) is the number
of free homotopy classes § such that £(6§) < ¢ then for some constant 0 < C < oo,

tlim tN(t)e ' =C
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(here we have also used the fact that the topological entropy of ¢ is 1). The conclusion
(1.2) follows directly.

To prove (1.3) we will argue that the sum in (1.3) dominates a multiple of the series
in (1.2). Fix a free homotopy class é and consider the closed g;-geodesic ﬂf;i). This closed
geodesics has infinitely many lifts to M, but at least one lift Bgi)(t), 0 <t < (), such
that J;(:’z’:,ﬁgi)(O)) < d;-diameter (M). For this path ﬁgi) there exists 4 € T such that
7(,3?)(0)) = ~§i)(€(6)), because ﬂgi)(O) = ﬂgi)(£(6)). Since v is an isometry, the d;-distance
from 4% to ﬁgi)(€(6)) is the same as the dj-distance from Z to Bgi)(O), hence by the triangle
inequality, B

di(%,v%) < £(8) + 2d;-diameter(M).
Now let &(t), 0 < t < d;(#,7%), be the §;-geodesic segment from # to v%; smce &(d;(8,%))
= ~v&(0) and ﬂ;)(E(a)) = 7[36')(0), there is a homotopy deforming & to ,36 that projects

to a homotopy in M deforming « to ,B s through closed curves. Consequently, a is in the
free homotopy class §. Thus, the mapping § — < is one-to-one. It now follows that

3 exp{—sAg, (B57) — (1 — 5)Ag, (B}

sea
< exp{2(d;-diameter (M) + d,-diameter (M))}

- exp{—sdi(5,75) - (1 — 8)da(&,7%)};

~€r
so (1.3) follows from (1.2).

SECOND, assume that g; and g, have different marked length spectra. Then by
Proposition 4.4 the functions ry and r; (whose existence is guaranteed by Proposition 4.6)
are not cohomologous, and so by (4.9), P(—sr1 — (1 — s)rz) < 0. Consequently, by (4.8),
there exists 0 < p < 1 such that P(—p(sr1 + (1 — s)rz)) < 0, and now by (4.5),

(4.12) Z E exp{—p(sSnri(z) + (1 — 8)Spra2(z))} < 0.

n=1 z:iotz=zx

Recall (Proposition 4.2) that, with finitely many exceptions, periodic orbits of ¢(*)
correspond to periodic orbits of ¢(') with the same periods. Moreover, penodlc orbits of
¥ are those orbits that pass through points (z,0) € L% such that 0"z = z for some
n > 1; and the period of such an orbit is S,r;(z). By Proposition 4.6, corresponding orbits
of #(1) and ¢(?) are represented by the same (z,0). Thus, with finitely many exceptions,
each free homotopy class § is represented in the sum (4.12). The result (1.4) therefore
follows from (4.12).

It remains to prove (1.5). According to [Boy], Lemma 1.20, since P(—psr; — p(1 —
s)re) <0,

Z Z exp{ sup (—psSar1—p(1—38)Spr2)} < oo,

apti...0p—~
a0a1...0p—1 0G1 n-1

20



where
sup Spg = sup{Spg(w):wi =a; V0 <L i <n}.

agdi...Gp—1

Consequently, by Lemma 4.7,

Zexp{_psc‘{l(i‘7 7E) —p(1 - 3)52(57 7%)} < oo. o
~€r

5. Patterson Measures

The definition of the Patterson measure requires an estimate due to Margulis [Mr].
Let g be a negatively curved Riemannian metric on M, let § be its Lift to M via the
covering projection 7: M — M, and let d be the associated distance function on M. Then,
according to [Mr], for each # € M there exists 0 < Cz < oo such that

(5.1) {y € T:d(&,v%) < t}| ~ Cze

as t — oo, where h is the topological entropy of the geodesic flow of g. (That the exponen-
tial rate in Margulis’ formula is the topological entropy follows from [Ma].) Henceforth,
we shall assume that A = 1.

It follows from (5.1) that for each € M and s > 1

Zs(s)2 Y exp{—sd(2,7%)} < oo,

~€erl

but that limsj; Zz(s) = oo. Consequently, we may define probability measures v{ on
MU ?M by putting mass exp{—sd(%,v%)}/Zz(s) at 4% for each v € I, where s > 1 and
Z# € M. The main result of this section is the following.

PROPOSITION 5.1: For each % € M there exists a Borel probability measure vz supported
by OM such that viv; as s | 1. For any two %, §f € M the measures vz and vy are
mutually absolutely continuous, and dvz/dvy is bounded away from 0 and oo.

The notation - indicates weak-* convergence: vp,—ov if for every bounded, contin-
uous, real-valued function f on M U OM it is the case that [ fdv, — [ fdv. By Helly’s
selection theorem (called “Alaoglu’s theorem” by analysts — see [Ry], Ch. 10, Th. 17), any
sequence of Borel probability measures on a compact metric space has a weak-* convergent
subsequence. Thus, the existence of v; may be proved by showing that for each & € M

there is at most one possible limit of v as s | 1.

We will follow the same basic strategy as in [Ni], sec. 4.2, but many of the steps will
differ in detail because we cannot use hyperbolic trigonometry. It is worth noting that
our standing assumptions concerning the covering projection : M — M, namely that = is
C* and that each deck transformation is an isometry of (M, Poincaré metric), are crucial:
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Prop. 5.1 is easily seen to be false for many C™ covering maps 7: M — M. The standing
assumptions were used in obtaining certain of the results of sec. 2, which we will call on
below. We note also for future reference that, in consequence of the standing assumptions,
each element v of the group I' of deck transformations acts on MUOM as a linear fractional
transformation preserving M. Hence T is a Fuchsian group with no parabolic or elliptic
elements.

First we shall make some observations about geodesic lines and rays in (M ,§). Two
distinct geodesic lines intersect in at most one point (this follows from negative curvature
and the Gauss-Bonnet formula for geodesic triangles). By Prop. 2.8, each geodesic ray in
M tends to a point ¢ € dM (in the Euclidean topology on M U aM ), which we will call
its “endpoint”; moreover, for each # € M and each ¢ € OM there is a unique geodesic
ray with initial point # and endpoint €. Any geodesic line & in M has two endpoints ¢,
¢ € M, and £ # £' (because if £ = ¢’ then any geodesic line § that crosses & transversally
would have £ as an endpoint, since &, 3 cross only once; but then there would be distinct
geodesm rays from some & € M to ¢). If & and f are geodesic lines with endpoints &, & o
£r 5:&5 € OM and @&, B cross transversally then ¢, £ separate £} 5 &g on the circle M.

LEMMA 5.2: Fiz % € M. Let 3, € M be a sequence of points such that lim 2, = £ € OM

n—+oo
(in the Euclidean topology on Mu 6M}, and let £, € OM be the endpoint of the geodesic
ray in M starting at £ and passing through z,. Then

lim £, =¢.

n—o0

PROOF: It suffices to show that the sequence {, has no accumulation points on OM other
than £. So choose { € OM, ( # €.

Consider the geodesic lines through & with endpoints £ and (, respectively. These
geodesic lines have second endpoints £’ and ¢’ on OM, respectively, and the four endpoints
are arranged on M in the order £, ¢, €', ¢'. Choose any n € &M on the open arc of
OM with endpoints ¢, ¢ not containing €', ¢'. The geodesic ray from # to 7 extends to a
geodesic line whose second endpoint on OM we call 1'; the six endpoints must be arranged
on &M in the order &, 7, ¢, €', 1", ¢'. Let a denote the geodesic line with endpoints 7, 7.

Observe that a divides M U M into two connected components A; and A¢, with
€ € A¢ and ¢ € A¢. Any geodesic ray 8 that starts at # must lie entirely in A or entirely
in A; (otherwise it would cross a twice). If B passes through 2z, and z, is close to £
then f lies in Ag, hence so does its endpoint £,. Consequently, the sequence £, does not
accumulate at (. a

LEMMA 5.3: For all &, §j € M and £ € OM there exists a real constant C(%,7,¢) with
the following property. For any sequence Z, € M such that lim %, = € in the Buclidean

n—o0
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topology on M U OM,
(5.2) lim {d(%,2n) — d(§,2a)} = C(%,,€).

Furthermore, for fized &, € M the mapping £ — C(&,4,£) is continuous in £ for £ € OM.
Finally, for each v € T,

(5.3) C(%,9,¢) = C(v&,7%,7€)-

NOTE 1: Compare with [Ni], Lemma 3.2.1.

NOTE 2: It follows from (5.2) and the triangle inequality that

(5.4) IC(2,9,6)| < d(&,9).

NQOTE 3: It may be possible to deduce some of this from the existence of the “Busemann
function”, but the continuity in £ is a major point.

PROOF: For # € M and ¢ € OM let éz¢(t) be the geodesic ray (parametrized by
arclength) such that &z ¢(0) = # and lims_, o @z ¢(t) = €. By Prop. 2.8 there exists, for
each pair #, § € M and each ¢ € M, a real number te = —C(&,7,€) such that

(5.5) Jim d(@in¢(2), Gg,e(t +1¢)) = 0.

We will show that, for fixed #, § € M, the mapping £ — t¢ is a continuous function from
OM to R, and that (5.5) holds uniformly for ¢ € M.

Before doing so, however, we will show how this implies the other statements of the
lemma. Consider the geodesic ray starting at # that passes through Z,; this ray terminates
at some point ¢, € M. Since Z, — €, Lemma 5.2 implies that ¢, — £. Also, since
%n — £ € OM it must be the case that d(%,%,) — oo and d(§,%,) — oo. A simple
argument using (5.5) and the triangle inequality now shows that

lim (d(3, %n) — d(§, Za) + te,) = 0.

The result (5.2) follows from the continuity of { — t¢, and (5.3) follows because each v € T
is an isometry of (M, §) (note that z, — ¢ implies vz, — £ because v acts on M U dM
as a linear fractional transformation).

In proving the continuity of £ — t¢ it suffices to consider #, § € M such that d(, j)<e
for some small & > 0, because (5.5) implies that for all #, §, € M and £ € M,

(5.6) C(%,9,¢) + C(#,%¢) = C(&,£,¢).
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Project the geodesic rays &z ¢(t) and éye¢(t) to M and then pull back to S’M to ob-
tain orbits o} .(t) and o} .(t) of the geodesic flow; then oy (0) = (z,v¢) € S1M, and
oy ((0) = (y,ug) € S'M,. Recall (Prop. 2.8 and f.) that { — (z,v¢) and £ — (y,u¢)
are homeomorphisms of M onto S'M, and S'M,, respectively. By (5.5), a:,f(t) and
o «(t+1¢) are asymptotic as t — oo; consequently, if Z¢ < 0 then a; . intersects the stable
manifold W*(y,u¢) through (y,u¢) at time —t¢, and this intersection is transversal. (If
te > 0 then o . intersects W*(z,v¢) at time t¢.) As { varies continuously on OM the

initial point (z,v¢) of o ¢ varies continuously along the curve S'M,, so by the continuity
of the stable foliation W* and the transversality of the intersections the time ¢; at which
the intersection takes place varies continuously with €. The uniformity in £ of (5.5) also
follows from this analysis, because the rate of contraction in the direction of the stable
manifold W* is continuous on S*M (Proposition 2.2). O

_ Following [Ni], we define “shadows” B(Z:{,r) C OM as follows: for r > 0 and 3, § €
M, let B(Z:§,r) be the set of all { € OM such that the geodesic ray from Z to £ intersects
the d-ball of radius r centered at §. Observe that B(Z:§,r) is an arc of dM.

LEMMA 5.4: For anyr >0, any %, j € M, and any £ € B(%: §,r),
|C(&,§,€) — d(%,§)| < 2r

PROOF: Consider the geodesic ray é;z ¢ from £ to €. Since { € B(%: §,r), this geodesic ray
intersects the d-ball of radius r centered at § in some point 7. Clearly, C(%, %, ¢) = d(%, 2

(just take Z, on Gz¢ converging to ¢ and apply (5.2)). Also, by (5.4), C(§,%,€) < r.
Therefore, by (5.6), |C(,§, & )—oZ(:T:, Z)| < r. The result now follows by another application
of the triangle inequality, since d(, 2) < r. O

Consider now the probability measures v and their weak-* limits as s | 1. By
Margulis’ formula (5.1) (recall that A = 1) Zz(s) - oo as s | 1, so as s | 1 all of the
mass in »¢ floats out to OM (specifically, for each t < oo, lim,y; v2{i: d(%,§) < t} = 0).
Consequently, any weak-* limit of v; must be supported by oM.

LEMMA 5.5: Fiz &, € M and suppose s, | 1 i3 a sequence such that
pz = weak-x limy;" and

- 3"
o = -k o
pg = weak-+ limuyg

both exist. Then pz and py are mutually absolutely continuous, and the Radon-Nikodym
derivative duz/dug is bounded away from 0 and oo.

PROOF: For any v €T and s > 1,
d(2,78) < 2d(,7) + d(§,7§) < 4d(&,7) + d(#,7%)
= Z3(s) < Zy(s)exp{2d(%, §)} < Zz(s) exp{4d(2,7)}-
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If 4, € T is any sequence such that y,% — € € OM, then it is also the case that Y — &,
S0 Y% and 7,3 become close in the Euclidean metric on M U dM. Hence, if f: 6M — R
is any nonnegative, continuous function then

[ fdus < exp(4d(z, ) [ s

It follows that uz and py are mutually absolutely continuous and that duz/dug is bounded
above and below by exp{+4d(%,§)}. O

LEMMA 5.6: Let s, | 1 be a sequence such that v;" converges weak-* to some probability
measure pz. Then for each v € T the sequence uf,; converges weak-* to a measure .z,
and

(5.7) V20— exp(C(a12,0)) Ve ol

Moreover, for any continuous f: OM — R,

(5.8) [ fdus = [(7 o).

PROOF: Note that Zz(s) = Z.,3(s) for each s > 1, and that d(,v'%) = d(y%,vy'%) for
all 4, 4 € I. Consequently, for any continuous g: M UJM — R and each s > 1,

/gdvg = /(g 0 y)dvy;

Since g — g o+ is a linear isometry of C' (MUOM), it follows from the Riesz representation
theorem that if ¥3" —5u; then 2% ~% itz Where p1.z is defined by (5.8).

For any v € I and s > 1 the measures v; and v3; are supported by I'#, and for each
7' €T
dv;
d 3
Let f: MUAM — R be continuous, and define f,: MUdM — R by
f+(§) = f(§) exp{d(2,§) - d(v%,9)}, § € M;
f7(£) = f(f) exp{C(:T:,'y;Tr:,E)}, £ €oM.
Then by Lemma 5.3, f, is continuous. Since |d(%,§) — d(v&, §)| < d(%,v%) for all § € M,

we have, as s | 1

[ favie = [ 1@ expiod(@,5) - sdios, )i s) ~ ~ [ .

= /fdﬂ'yi =/f-1dﬂ5-

E(y'#) = exp{—sd(%,7'%) + sd(7a:,7 £)}.
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Since this holds for any continuous f, it follows that uz and u,z are mutually absolutely
continuous, and that the Radon-Nikodym derivative is given by (5.7). O

LEMMA 5.7: Let s, | 1 be a sequence such that v;* converges weak-+ to a probability
measure juz. Then puz has no atoms.

PROOF: By Lemma 5.6, for each 7 € T the measures v} converge weak-* to a probability
measure p.z which is related to pz by (5.7)~(5.8). If £ € OM were an atom for uz of size
p > 0, then by (5.7) £ would be an atom for p.,z of size p-exp{C(%,~%,£)}. But C(&,+%,¢)
can be made arbitrarily large by a suitable choice of 4 € I'; this contradicts the fact that

each p.z is a probability measure.

(To see that C(Z,v%,{) can be made large, consider the geodesic ray &z ¢ from 7 to £.
For each point § on @3z ¢ there exists 4 € I such that d(§,v%) < r where r is the d-diameter
of M. Now choose § on ;¢ so that d(%,7) is large and use Lemma 5.4.) [

LEMMA 5.8: Let s, | 1 be a sequence such that v;* converges weak-* to a probability
measure pz. Then for every € > 0 there exists r < co such that for every j € M,

pz(B(§: &,7)) >1—e.

PROOF: By Lemma 5.7 the measure p; has no atoms; consequently, for any € > 0 there
exists § > 0 such that for every arc J of the circle M of arclength < 6, uz(J) < e.
Therefore, to prove the lemma it suffices to show that there exists r > 0 so large that for
every § € M the arclength of M\B(§: #,r) is < 6.

If this were not the case then there would be real numbers r, 1 oo, points §, € M
converging to some ¢ € M, and points ¢, € M converging to some ¢ € dM, ¢ # €, such
that for each n = 1,2,... the geodesic ray &z, ¢, does not enter the d-ball of radius ry,
centered at #. We will show that this is impossible.

Choose distinct points &1, &2, €3, £&4 € OM arranged in the order &1, &3, &3, £4 on OM
and in such a way that ¢ and { are in opposite open intervals £;£;+1 (e.g., £ € £1€; and
¢ € €384). For each i = 1,2,3,4 let G; be the geodesic ray from Z to {;. Then &, 82, &3, 84
divide M into “quadrants”, with £, ¢ on the boundaries of nonadjacent quadrants. We
may arrange it so that €, ¢, &, &2, s, & are distinct points on M and so that they are
a'rra‘nged in the order §1 ’ éa {2 ’ 63, C’ 64-

For sufficiently large n the geodesic ray éj, ¢, must either cross &; and &s or cross
a4 and &;. Assume the former. By the Gauss-Bonnet formula, the areas of the geodesic
triangles formed by @3, &3, &y, ¢, are bounded above. But the area of that part of the
d-ball of radius r, centered at 7 lying in the quadrant between &; and &; converges to co
as n — oo. Therefore, it must be that dz, ¢, enters the d-ball of radius r,, centered at .01
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Say that a Borel subset A of M is I-invariant if for every y € T', A = yA.

LEMMA 5.9: Let s, | 1 be a sequence such that v;* converges weak- to a probability
measure pz. Then for any -invariant Borel subset A of OM,

pz(A) =0 or 1.

PROOF: We use essentially the same argument as in [Ni]. Assume that pz(A4) > 0; it
suffices to prove that for any € > 0, uz(4) > 1—e.

Since A has positive uz-measure, it has a point of density ¢ € M. Fixr > 0 large,
and take a sequence v, € I' such that 4,# — ( (in the Euclidean topology on Mu oM )
and such that each point 4, is within d-distance r of the geodesic ray from # to ¢. Then
for each n > 1, ¢ € B(&:yn&,r). Moreover, since y,& — (, the shadows B(%: v, %, r) shrink
to ( as n — oo, by Lemma 5.2. Since ( is a point of density of A, it follows that

Ly K3(A0B(E:7nE,7))

=1
n—eo  pz(B(E:1mE,r))

and
pz(B(E:yni,r)) >0 Vn2>1.

Since A is I-invariant, 14 = 14 o 4 for each 4 € I'. Thus, by Lemma 5.6, for each
vy€Tlandr >0

ua(A) = / 1adpz
=/1Adﬂ"1§
- / 14(€) exp{C(, 7%, €)}dus(£)
> / exp{C(&, 7%, &)} dus(£).
ANB(z:vz,r)
Furthermore,

/, _exp{C(&,7%,£)}dps ()

ZT

d.u‘y:i

/ B(z:4%,r) © o dﬂ'z
P'i

_l:izi,r))
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By Lemma 5.8, there exists r > 0 sufficiently large that pz(B(§:%,7)) > 1 — ¢ for every
§ € M; consequently, for such r,

ua(A) > / exp{C(&, 7%, €) }dpz (€)
ANB(&:4E,r)

S1oe— / exp{C(#,7#, )} duz(€)
A°NB(%:4%,r)

pz(A° N B(&:9%,1))
pz(B(F:7E,7))
A N B(E:98,1), o,

pz(B(E:7%,7))
because exp{C(&,7%,£)}/ exp{C(%,v%,€'} < " for all ¢,¢' € B(&:4%,r), by Lemma 5.4.

Setting v = 7, and applying the result of the preceding paragraph, we conclude that
,LL;E(A) Z 1—e. d

21-e—{

4"/ exp{C(Z,7%,€)}dpz(£)
B(z:7;r)

>1—-e—{

PROQOF of Proposition 5.1: It suffices, by Lemma 5.5 and the Helly selection theorem, to
prove that for each # € M the measures v have only one weak* limit as s | 1. Suppose
there are sequences s, | 1 and ¢,, | 1 such that

[.I,E:) = weak-* limv;",
,u(i) = weak-* limv;".

Then Lemma 5.6 implies that for each v € T there exist probability measures p,(yz, 1=1,2,

such that vz —),ufylz) and V,Yz—mgi) and

d$) :
(59) du Z,) (f) = exp{C’(fi, YE, 5)}’ 1=1,2
(5.10) /fdp /f oydul) Vyerl, i=1,2.

Set fiyz = 2(” w4 (2)), then u( ) is absolutely continuous with respect to f,z. Set

haa(€) = (dﬂ(l)/dﬁn)(f), then by (5.10)

[ o1)hs 0 v)dins

/ foyduly)
= / (f o Mhyzdfiyz
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for all f: OM — R continuous and all ¥ € I. On the other hand, (5.9) implies that
hyz = hz for every v € I'. Thus

hz o ¥ = hz a.e. (d,l_l,i)

It now follows from Lemma 5.9 that h;z is a.e. (fiz) constant, hence “5_:1) = p?).

NOTE: We are justified in applying (5.10) to fhz above despite the fact that hz may not

be continuous. This is a standard argument in measure theory: the set F of Borel sets B
such that 1 de(;) = [1po fydy,(,;g is a o-algebra, and if (5.10) holds for all continuous f
then F contains all closed sets, and consequently F = {Borel sets}. Therefore, (5.10) holds
for all simple functions, and, by taking monotone limits, for all nonnegative measurable

functions. O

PROPOSITION 5.10: For each Z € M and all sufficiently large r > 0 there ezist constants
0 < Cy <03 < 0 such that for every y € T

o, < BBEED) _
" exp{=d(z,9)}

PROOF: By Lemma 5.6,

vz(B(&:v4%,r1)) =/ exp{—C(%,7%, £)}dvz(§)

B(Z:4%,r)
and
vaa(B(E:7%,7)) = va(B(y~5:2,7)).

By Lemma 5.8, vz(B(§: &,r)) > 1/2for all §j € M and all sufficiently large r > 0. There-
fore, the result follows from Lemma 5.4. 0

6. Patterson Measures and Mostow Rigidity

In this section we shall use the Bishop-Steger criterion (Theorem 1) and some of the
machinery of sec. 4 to prove Theorem 3. Assume that ¢g; and g2 are Riemannian metrics
on M (normalized so that the associated geodesic flows have topological entropy 1), and
let Vél), 1/;2) be the Patterson measure (cf. Prop. 5.1) for the distances d;, d3, respectively.

Let Ci(%,,€) and Cy(%, 7, £) be the functions defined by (5.2) for d; and ds.
PROPOSITION 6.1: If for some & € M

(61) 3 exp{=5(d(3,78) + D@, 7)) = o0
~€r
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(1)

z

(2)

then vy’ and vy’ are mutually absolutely continuous.

PROOF: I the sum is infinite then by Theorem 1 the metrics g; and g2 have the same
marked length spectrum. Hence, by Prop. 4.4, the height functions r; and r; of Prop. 4.6
are cohomologous, and therefore by [Bos|, Th. 1.28, there exists a constant K < oo such
that ||Snpr1 — Snr2||eo < K for all n > 1. It now follows from (4.11) that for every v € T

|d1(,7&) — d2(8,7%)| < K + 2(||r1]loo + |Ir2lleo + C).
Consequently, there are constants 0 < C; < C2 < oo such that for all s > 1

C1(3)g < (¥2)gs < C2(v2)n

so uél) and Véz) are mutually absolutely continuous, with dug) / duél) bounded above and

below by C; and C,. O

PROPOSITION 6.2: If for some & € M

1. . 1=
(6.2) Y exp{ (7, 72) — 3da(E78)} < o0
~€er
then Vagl) and 1/%2) are mutually singular.

PROOF: Set I'; = {y € T:dy(&,7%) > d2(#,7%)} and T3 = T\T';. If (6.1) holds then

(63) Y exp{~di(E,75)} < o0
~€Ty

and

(6.4) Z exp{—da(%,7%)} < oco.
~€r'2

Consider the “shadows” B;(&: §, R) for the metrics §;; thus, B;(Z: §, R) is the set of all
¢ € OM such that the §;-geodesic ray starting at # and terminating at £ enters the d;-ball of
radius R centered at §. Since the metrics §; and §; are comparable (i.e., C1§1 < G2 < C2§1),
for each R; > 0 there exists Ry > 0 such that V &, §j, B1(&: §, R1) C Ba(&: §, Rz); conversely,
for each R; > 0 there exists Ry > 0 such that By(&:§, R2) C B1(&:§, R1).

Fix R > d;-diameter (M). For each ¢t > R define
T'(t) = {y €T:t — R < d\(%,7%) <t + R},
()" = {7y € T(t): du(&,7%) < da(%,7)},
A(t) = U‘yEI‘(t)Bl(i:'yiaR),
At)* = U'yEI‘(t)*Bl(i:’)’i,R)-
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Then for each t > R, A(t) = OM, because every §,-geodesic ray that starts at Z must pass
within distance R of some vZ at distance ¢t + R of #. Hence, Vél)(A(t)) =1 for each t > R.
It now follows from Proposition 5.10 and (6.3) that lim;_, Vél)(A(t)\A(t)*) =0, so

lim s (AR)*) = 1.
But by the preceding paragraph, (6.4), and Proposition 5.10,
lim v (A)*) = 0. |

PROOF of Theorem 3: By Theorem 1, g; and g, have the same marked length spectrum

iff (6.1) holds. Therefore, by Propositions 6.1-6.2, (6.1) holds iff l/él) and V,gz) are mutually
(2)

absolutely continuous; otherwise 1/‘,%1) and v;"’ are mutually singular. O
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