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Abstract

Assume that the probability density function for the lifetime of a newly designed prod-
uct has the form: |H'(t)/Q(6)|exp{~H(t)/Q(6) }. The Exponential, Rayleigh, Weibull
and Pareto pdf’s are special cases. Q(6) will be assumed to have an inverse Gamma prior.
Assume that m independent products are to be tested with replacement. A Bayesian Se-
quential Reliability Demonstration Testing plan is used to either accept the product and
start formal production, or reject the product for reengineering. The test criterion is the
intersection of two goals, a minimal goal to begin production and a mature product goal.
The distributions of sample size and total number of failures and the exact values of various
risks are evaluated. Based on a result about a Poisson process, the expected stopping time
for the exponential failure time is also found. Included in these risks and expected stopping
times are frequentist versions, thereof, so that the results also provide frequentist answers

for a class of interesting stopping rules.
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1 Introduction

Reliability Demonstration Testing (RDT) is often used for the purpose of verifying whether a
specified reliability has been achieved in a newly designed product. Based on a demonstration
test, a decision is made to either accept the design and start formal production, or reject the
design and send the product back for reengineering.

A serious problem with RDT is that a reliability test can be very expensive in terms of
money and time, especially in the case of products that require very high reliability and have a
long lifetime. A common solution is to take into consideration prior information, typically from
engineering knowledge or knowledge of previous similar products, and to test in a sequential
fashion. Bayesian Sequential Reliability Demonstration Testing (BSRDT) can, in many cases,
significantly reduce the amount of testing required.

The following design questions are of interest. How many units need to be tested to reach
a decision? How much time is required to make a decision? What are expected losses? There
are a variety of Bayesian non-sequential reliability demonstration tests for answering these
questions. For example, see Schemee (1975), Goel (1975), Balaban (1975), Esterling (1975),
Joglekar (1975), Schafer (1975), Goel and Coppola (1979), and Bivens, Born, Caroli and Hyle
(1987).

The first BSRDT was introduced by Schafer & Singpurwalla (1970). They introduced
the following test procedure. One unit at a time is tested, where the lifetimes of units are
independently identically exponentially distributed with mean 6. The unknown @ is assumed
to have an inverse Gamma prior distribution. Choose a minimum acceptable value, say 6,
and let P, = P(@ > 6y|data). The test is terminated when P, > 1 — a9, in which case a
decision to accept the product is made, or when P, < a4, in which case a decision to reject the
product is made. Schafer & Singpurwalla (1970) were primarily concerned with the acceptance
probability of this procedure, and developed approximations for it. Some related computations
and approximations for other risks were done in Schafer and Sheffield (1971) and Mann, Shafer
and Singpurwalla (1974). The extreme difficulty of all computations of this type is discussed
in Martz and Waller (1982); one of the major motivations for this work is to show how such
computations can be done explicitly, in closed form.

The stopping rule of Schafer & Singpurwalla (1970) is discrete, in the sense that one can

only stop the test when a failure occurs. This can be inefficient when observations are very



expensive and/or have long lifetimes. Barnett (1972) proposed a continuous BSRDT plan for
the exponential failure rate problem. By his method, one can stop the test at any time that
enough information has accumulated. Again, however, closed form answers were not obtained.

Related work can be found in Chandra and Singpurwalla (1981), Epstein and Sobel (1953),
Goel and Coppola (1979), Harris and Singpurwalla (1968, 1969), Lindley and Singpurwalla
(1991a,b), MacFarland (1971), Martz and Waller (1979), Montagne and Singpurwalla (1984),
Ray (1965), and Soland (1969).

In this paper, a general BSRDT plan, stimulated by the work of Barnett (1972), is consid-
ered for a general class of life distributions. The Weibull and Pareto distributions are special
cases. The testing plan continues until the posterior loss is decisive according to a desired
criterion, at which time testing terminates and a decision made concerning the quality of the
product. For this plan, the exact values of various risks and the distribution of the total num-
ber of failures are evaluated. Also, bounds on the expected testing time are given and, for the
special case of an exponential failure time, the expected testing time is computed explicitely.
Included in these risks and expected stopping times are frequentist versions, thereof, so that
the results also provide frequentist answers for a class of interesting stopping rules.

In Section 2 of the paper, the basic model and the BSRDT plan are introduced. The total
number of units tested, the testing time, and several other important features are introduced

and evaluated in Section 3. Most proofs are given in Section 4.

2 Structure of the Problem

2.1 The Model

The basic model is as follows. Suppose that units are independently tested on m machines.
Whenever a unit fails, it is replaced by a new unit and testing is continued until enough
information has been obtained. This model includes the case in which m machines are tested
themselves and, upon failure, a machine is repaired or rebuilt (immediately) so that the repaired
machine is as good as new. The inter-failure times for machine ¢ will be denoted by #;1,%;2,- -,
for i = 1,2,--.,m. Given 0, the life times ¢;;, ¢ = 1,2,---,m, j = 1,2,.-., are iid. random

variables with reliability function

Ro() = P(tnn > 1]6) = exp{ —H()/Q(8)}, t >0, (1)



ie., t;, i=1,2,---,m, j =1,2,.-. have the probability density function
’(t) H(t)
= IO oo Y, :
Here H(-) is a known increasing function satisfying H(0%) = 0 and t]jm H(t) =00, Q()isa
—00
known and strictly increasing function, and 8 is the unknown characteristic life. The density
of (2) is a special form of the exponential family and encompasses many common reliability

distributions.

Example 2.1 If in (2), Q(z) = H(z) = zP,(z > 0) for some known positive constant 3, (2)

becomes

oy = B2 L exp{~(4)°), t>0, Q

which is the p.d.f. of the Weibull distribution, W(8, §). Note that the exponential and Raleigh

distributions are obtained when § = 1 and 2, respectively.

Example 2.2 Assume that, for given 8, X, X7 are independent random variables and X; has
reliability function exp{—t% /6°}, where B, (1, and B; are known positive constants. Then
min{X4, X>} has the p.d.f.

th1—1 4 3,1P2-1 1P 4 P2
f(ile) = Bt (55, >0, (4)

which is a special case of (2).

Example 2.3 Assume that, for given 0, {Xi}izl is a sequence of independent random variables
and X; has reliability function exp{—tﬁ1 /(i168 )}, where 1 and 8 are known positive constants.
Then inf,>; X, has the p.d.f.

F(t6) = ﬂloﬁlt exp{~(e#* - 1)/6°}, 1 >0, (5)

which is the truncated extreme value distribution, and again a special case of (2).

Example 2.4 Let H(t) = In(t 4+ 1)(t > 0) in (2). Then the lifetimes ¢;;, ¢ = 1,2,.--,m,
Jj=1,2,.-., are iid. Pareto distributions with p.d.f.

£(t16) = 1/[QO)t + )TOP], > 0. (6)



From Billingsley (1986) ((21.9) on Page 282), we know that

E(t¢j|«9) = /0°° P(t,:j >s|0)ds= /000 Ry(s)ds.

Since Q(-) is strictly increasing, we get Q(61) < Q(62), if 61 < 82. Thus Ry, (t) < Ry, (t), which
implies that E(t;;|61) < E(t:5]02), for 1 < 2. In other words, larger 6 provide larger expected

lifetime.

2.2 The Prior and Posterior

Prior information about the unknown parameter 6 is assumed available in the form of a prior
density function 7(-). Schafer (1969) and Schafer and Sheffield (1971) observed that the inverse
Gamma prior distributions are often reasonable for exponential failure problems. Here, the

prior p.d.f. of @ for the family (2) will be assumed to belong to the conjugate family

b*. {Ci b
7(8) = I‘—(a—)ag—_‘_(—l()o—) exp{—-Q—(e—)}, for 8 > 0. (7N

Note that then Q(6) has an inverse gamma distribution ZG(a,b). Methods of choosing a and
b will be discussed at the end of the subsection.
Define N;(t) = max{j : ti + ---+ £;; < t}, the number of failures in machine 7 at time ¢,

and
N(t) = Ni(t) + - -+ + Nu(?), (8)

the total number of failures at time ¢. Let

m Ni(t) m Ni(t)
V=v)=Y Y Ht)+ Y H{t— ) ti)- ©)
i=1 j5=1 =1 7=1

Here we define 7, - = 0. Since H(-) is continuous and strictly increasing, so is V(t), t> 0.

Then the likelihood function of 8 is proportional to

Ll {_V_(t_)}
Q@O P10 [
It follows directly that if we stop the test at time ¢, the posterior density of  is

(VO)+0)VO+e  Q'(6) {V(t>+b
T(N(Z) +a) @Vereti(g) “P177Q(0)

i.e., Q(0) has, a posteriori, an inverse gamma distribution, ZG(N (t)+a, V(t)+b). In particular,

n(6|data) =

}, for 6 >0, (10)

it follows that the posterior a** quantile is

sy _ -1 _2(V(E) +b)
7(2)=4 (Xg(N(t)+a.)(1—a)

), for 0<ax<l, (11)
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where Q~'(-) is the inverse function of Q(-) and x?(1 — ) is the (1 — a)®* quantile of the x2
distribution with j degrees of freedom .
Selecting a prior from the conjugate family

Option 1: Ask for (Jo (the best guess for the mean of Q(#)) and o, (the standard deviation

for the guess). Then a and b can be determined by the equations

Qo = b1(a — 1)/(a), _, [ e=2+aye,
03, + Q3 = b°T'(a - 2)/I(a), b= Qo(a—1).
Option 2: For the Weibull case with known 3, Q(#) = 6°. Ask for 6, (the best guess for
the mean of ), and o (the standard deviation for the guess). Then a and b can be determined

by the equations

b1/PT(a—%) T'(a—2/8)T(a o2
fo = T(a) ’ [2(a—1/8) = 1+§§-’
=
b*/Pr(a—2) 8oI'(a) 17
63 + 0f = —pr2, b=[rg_1°ﬁ].

Note that an approximate value of ¢ can be determined by iteratively solving

=05+ [In(1+ ‘;—g) + %111(1 - aﬁl— 1)] /In(1 - (a6 — 1)7?),

starting with the initial estimate
L1 2 o8
a= -{3-{3 + exp[ﬁ 1]1(1 + 0—8')]}
Actually, & is often a very reasonable approximation to a itself.
Option 3: For the Weibull p.d.f. with known f3, ask for the 0.5 quantile, ¢(0.5), and the

0.75 quantile, ¢(0.75), of the predictive distribution.. Then it can be shown that the matching

choices of a and b are

a

In2/10{[4(0.75)/9(0.5)}" - 1},
[q(0.5))P /(2" - 1),

assuming that ¢(0.75) > 21/P¢(0.5). If this is not satisfied, the given functional form for the

b

prior may not be suitable.

For example, assume that the p.d.f of lifetime is W(6, 8) with 8 = 1.35. I we have from
engineering knowledge and/or knowledge of previous similar products that the best guess for
the mean of 6 is 6y = 8,000 (hours) and the standard deviation for the guess is o9 = 6,000
(hours), then a = 2.5 and b = 304,931. If we know that ¢(0.5) = 5,000 (hours) and ¢(0.75) =
9,147 (hours), then @ = 3.0 and b = 379, 112.



2.3 The BSRDT Plan

There are a variety of possible goals for sequential experimentation. The following BSRDT
plan is the intersection of two goals.

1. Let 6; be the goal to begin production, in the sense that the experiment will stop and
production begin if there is 100(1 — a1)% “confidence” that 6 > 6;.

2. Let 03 be the mature product goal , in the sense that the experiment will stop and the
product will be rejected (sent back for reengineering) if there is 100(1 — a2)% “confidence”
that 0 < 6,.

Here oy and ay are two usually somewhat small numbers, and ) < 02 are two prespecified
values. The region 6; < 6 < 6, is often called the indifference region.

The BSRDT plan also arises in formal decision models. Suppose that a product with
small § < (;) should be rejected and with large & > (62) should be accepted. Let /(8) be
the loss for making a wrong decision, where () is nonincreasing and nondecreasing in (0, 6]
and [#;,00), respectively, and [(f) = 0 for § € (6;,0,). The test will stop and production
begin if the posterior loss of accepting the product ( foe 1 [(@)n(0|data)df) is small enough, and
the test will stop and the product be rejected if the posterior loss of rejecting the product
(f5; 1(8)7(6|data)dh) is small enough. The BSRDT plan arises if /() is constant on both
(0, 64] and [f2, c0).

It is easy to see that the testing plan is equivalent to
Stop and accept the product, if ¢*(oq) > 6;

Stop and reject the product, if ¢*(1 — a2) < 65,

Continue testing, otherwise,

where ¢*(a) is the o*® posterior quantile. From (11), this is equivalent to

Stop and accept the product, if V(¢)+b> %Q(al)xg(N(tHa)(l - o), (12)
Stop and reject the product, if V(¢)+b< %Q(OZ)Xg(N(t)+a)(a2)'

As with certain classical sequential tests these procedures are “semicontinuous” (see Epstein
and Sobel, 1955): one can “accept” when the continuous time of accumulated nonfailure is
large enough, but can “reject” only on the (discrete) occurrence of a failure. It is possible to

graph the stopping boundaries of this test by defining
1 9 1 2 .
¢i = 5Q(02)X3(a+i)(@2) a0d di = 5Q(01)X3a4i) (1 — 1), £20. (13)

7



Since both @; and ag are small, it can be assumed that as < 1 — ;. Then it can be seen that

¢; > d;—_1 when 1 is large enough, as long as 6; < ;. Therefore there is an ig such that
to =min{¢ =1,2,...:¢; > d;_1}. (14)

Note that if io > 1, then ¢; < do, which implies that ¢o < do, but for ép = 1 we will need to
assume that ¢p < dg. If b < ¢g, we should reject the product without test, and if b > dy, we
should accept the product without test. Obviously, these two cases are unlikely to occur in
practice, so we consider only the case where ¢o < b < dp.

Let T3 < Ty < ... < T, be the first n ordered failure times for all the m machines.
For instance, Ty = min{ty1,%21,+-+,¢m1}, and if the first failure occurs on machine ;, then

To = min{t;,1 + ti 2, ti1,¢ # 21}. Let T be the stopping time or total testing time, that is

. 1 1
T= mm{t >0: V() +5> Q0N +a)(1 — @) o1 < 5Q(O)X5(t)+a)(@2) }

A graph of V(t) + b with resp.ect to t is shown in Figure 1 using simulated data from a
W(6800,1.35) distribution. For the graph, a = 2.5, b = 255,000, o; = 0.10, @2 = 0.10, 6, =
6,400 and #; = 8,650, which implies ¢cg < dg and ip = 8. Note that both the acceptance
boundary and the rejection boundary have random jump points, but have fixed height at each
point. At time T, V(T') + b hits the rejection boundary. In general, at the stopping time
T, V(T) 4+ b will hit either a horizontal segment on the acceptance boundary or a vertical
segment on the rejection boundary. If 61 < 6,49 < oo and the sampling region is closed.
If ¢4 < 02,i0 = oo and the sampling region is open. Although we have derived this class
of stopping boundaries from a Bayesian perspective, they can be used simply as specified
boundaries in a frequentist analysis. Indeed frequentist measures of performance will also be

considered.

3 Features of the BSRDT Plan

3.1 Design Criteria and Risks

Let A and R denote the action (or, by an abuse of notation, the region) of accepting the
product and the action of rejecting the product, respectively. Several risk criteria, defined
in Chapter 10 of Martz and Waller (1982), can also be used to measure the goodness of the
BSRDT plan. The following names of these risks are borrowed from related conventions in

quality control.
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1. Classical Producer’s Risk, v = P(R|f2), and Classical Consumer’s Risk, § = P(.A|6,). Here
v is the probability that a product at the mature product goal will fail the BSRDT and § is

the probability that a product at the goal to begin production will pass the BSRDT. Note that
these are frequentist risks. It can be seen that P(.A|6) is monotonically increasing in 6. Thus
P(R|0) < « for 8 > 6,, and P(A|f) < § for 0 < 6.

2. Average Producer’s Risk, § = P(R|@ > 6;), and Average Consumer’s Risk, § = P(A|f <

61). Here 7 is the probability of rejecting a good product and & is the probability of accepting
a bad product. Note that computation of these risks involves the prior.

3. Posterior Producer’s Risk, v* = P(8 > 6;|R), and Posterior Consumer’s Risk, §* = P(6 <

61])A). Here 4* is the posterior probability that a rejected product is good, and 6* is the
posterior that an accepted product is bad.

4. Rejection probability, P(R) = /@ P(R|6)7(0)df, and Acceptance probability, P(4) =1 —
P(R). Here P(R) is the unconditional probability of the product passing the BSRDT.

The choice of criteria to evaluate the BSRDT is left to the user. For the fixed sample size
problem, many papers are available concerning how to choose the criteria. For example, Bala-
ban (1975) favors the mixed classical/Bayesian pair (y,*) to determine a Bayesian reliability
demonstration test. Also see Easterling (1970), Schafer and Sheffield (1971), Schick and Drnas
(1972), Goel and Joglekar (1976).

Let N = N(T) be the number of failed units at the time when testing stops. Let Nty
denote the total sample size or the total number of testing units put on test. Finding the
expected stopping time, E(T) = [ E(T|0)w(6)df, and the expected sample size, E(N7y) =
J E(Nty|6)m(6)d6, is important for design. The following relationship between the total sample
size and the number of failures follows immediately from the definition of the stopping rule,

and allows us to consider E(N) instead of E(Nty).

Theorem 3.1 Ny = N +m — I(R) and E(Nty) = E(N)+ m — P(R), where I(-) is the

indicator function. O

In Section 3.3, we will find expressions for all the above risks for our decision rules. In Sec-
tion 3.4, we will find the distribution and expected value of the number of failures. Expressions

for E(T) are developed in Section 3.5. Some examples are given in Section 3.6.

10



3.2 Technical Preliminaries

Forn=1,-...,14g, let
Gn = {(y1,:-,90) 19 > 0,¢j—b<p+---+y;j<dj1-b,j=1,---,n}, (15)

let ||Go|| = 1 and let |G| denote the volume or Lebesgue measure of G,, (» > 1). It will be
seen that all the risk expressions involve ||Gy|| (n < o). For all theorems involving ||G,|, it

will be assumed that
cj<dj—1, forj=1,2,-.-,m, (16)

where both {c¢;};>0 and {d;};>0 are increasing sequences of positive numbers. If (16) is vio-
lated, i.e., if there is j (< n), such that ¢; > d;_1, then Gy, is an empty set, and hence ||G,]| = 0.
An analytic formula for ||G,|| is given in Lemma 3.2. The following notation will be needed.

For j=1,2,---,1=0,1,2,---, and y > 0, define

(civjAdj—1))Vy—(c;Vy), ifi>1, .
aii(y ={ (17)

dj_1—c;Vy, ifz=0,

where z V y = max(z,y) and z A y = min(z,y). Then (16) implies that

Civj Ndj1 —c¢j, ifi>1,

asj(¢;) = { (18)

dj—l — ¢y, ifi=0.

For n > 2, define two sets of partitions of n by

k
Vo = {(in,eo0i) 2 Yo d5=m, k21, 521} (19)
j=1
and ‘
= {(ia, i) (i, ) € Wy 2 2}, (20)

For example, the first few ¥,, and ¥} are as follows:

Uy ={(1)} ¥2={(1,1),(2)}, ¥s={(1,1,1),(1,2),(2,1),(3)},
Uy = {(1, 1,1, 1)’ (17 1, 2)7 (1’ 2, 1)? (2’ 17 1)’ (3’ 1)(173)7 (27 2)’ (4)}’
Ui =0, ¥3={2)}, ¥5={(12),03)}

=1, 1a2)7(1’3)’(2,2)’(4)}°

(21)

11



For 1 < r < n,(%1, -+ ik) € ¥,, define

p1(bymyrsiin, - ik) = p1r(bymiriie, ks cj,djo1,1<5 <n)

—ryr (B)

7!

i1 k-1
el a5, Jass(0), itk 22

—on o
Iz %5 ! =2

and for 2 <1< r < n, (4, -+ i) € ¥F,

: ifk=1,
(22)

pa(by ;7 ldy, - ir) = pa(bynyrilida,e - ik ¢y di1,1<5<n) !

Wy r (dr—1)
1

_a:.:_,,.,,,,(c,-) g * * * .
Hk i {Ha’r,j(cr,j)}ar,k(dr—l)”Gr._zH, if k>2,
J=1%"

1Gr=ill, ifk=1,
(23)

i=2

where ig = 0, i(;) = fo+i1+- - +1j, ay ()= a:-j:_hr_i(j)(-), a;;(-) is given by (17), ¢}, ; = Cr—icjy
a;nd H;=2‘ = 1-
The following lemma will be used in the proof of Lemma 3.2. It also provides the number

of terms in the formula for ||Gy||.

Lemma 3.1 The numbers of elements in ¥,, and ¥}, are
#{U,} =2""" and #{¥;} = 272, (24)
respectively. Furthermore, we have the following recursive formulas:

Vo = U {Gueiatl), G, (25)

(‘il,'--,‘ik)E\I’n
o= U {6 st (26)
(i].?"'f’ik)e‘pﬂ
PROOF. See Section 4.2. 0

Lemma 3.2 The volume of G, (n > 1) is

) n
IGull = > prlbsmymsin,--yix) = > >, pabinsniliiy, -, ik), (27)

(1,48k)ETn =2 (iy,-ix )€Y}

where p1(b; njn;iy,---,1k) and pa(b;n;n;l;éy,- -+, i) are given by (22) and (23), respectively.

In equation (23), ||Gi|l,---, and ||Gn-2|| appear. Therefore, (27) is essentially providing
an iterative algorithm for their computation. Using (24), the total number of terms in (27) is

gn—1 + E?=2 -2 _9n _ 1.

12



3.3 Evaluation of Risks

Define Ir(z;y) = [§ t°te~tdt, for z,y > 0.

Lemma 3.3 For any fixed u > 0, we have

PO2p) = Ir(a, @%) /), (28)
P(A]6) = ij gf(g Q(o)} >0, (29)
and
P((6>u)nA)= OZ__% d—l;;_”n—i’zlz%lp(a+n, Qd(Z)) (30)
PROOF. See Section 4.3. : 0O

The following theorem concérnjng the rejection and acceptance probabilities follows from

Lemma 3.3 and the fact that P(A) = lir%P((G > p)NA).
n—
Theorem 3.2 The rejection probability is

=l paP(a+n
P(R)=1-P(A)=1-> %IIGMI- (31)

n=0

Theorem 3.3 The classical risks are

Gl

7 = PRIG)=1- Y gusex (a)} (32)
i9—1
_ S NGall g dn—
§ = P(A|0)—E 0 exp{ le)}. (33)
PROOF. The results follow immediately from (29). 0
Theorem 3.4 The average risks are
— _ 1 3 0lGall In(atn, dn/Q(62))
7= PRI20)=1- 3 S b0t (3
5 T 1[Gl K(atn) — Ir(a+n,dn/Q(61))
6 = P 0 = .
(A0 <00= 2, i~ T~ e, 5/Q(0) (3)
PROOF. Note that
¥ = P(RI6202)=1-P((6 2 6;)NA)/P(6 2 2). (36)

13



So (34) follows by substituting (28) and (30) into (36). Similarly,

P(A) - P((6 > 6:) N A)
1-P(0>6;)

Combining this, (28) , (30) and (31), we get (35). O

§ = P(AF<6)=

Theorem 3.5  The posterior risks are

Ir(a, 55) — S0 b9||G || I (e + 1, S22 /detn
o P(6 > 0,|R) = (a, 515y) — 2on=o V*llGnllIr(a+n, 585)/d7

= , 37
I(a) — g b Gall L (at m) a5 7
8 = PO<L6,|A)= 0. (38)
PROOF. Note that
N P(6>6)— P((0 >6:)N A)
= >

v =P(>6,|R)= B(R) (39)

Substituting (28), (30) and (31) into (39), one gets (37). Similarly,

|Gl T |IGw]
* < -1 n n .

*=PO<6]A)=1 n; g lo(atm, ot ))/n_0 i T(a+n) (40)
Since gy = bxEpmy(1 — 01), Fr(a+ m, g)/T(a+ 1) = P((ainy < Xyapm(L = 1)) =
1 — ay. Therefore, * = ;. This completes the proof of Theorem 3.5. 0O

Intuitively, it is easy to understand why P(8 < 61 |.A) = ;. Indeed, A = {data: P(§ < 0, |
data ) = a1}, and a standard measure-theoretic argument immediately gives the conclusion.
Similarly, since R = {data : P(8 > 02|data) < az, with a positive probability that strict

inequality holds}, we conclude that
Fact 3.1 P(0 >0, IR) < Qag.
From (38) and Fact 3.1, one is able to control the two posterior risks by choosing a; and
Q9.
3.4 Distribution and Expected Value of the Number of Failures

Recall that N is the number of failures at the time we stop the test and make a decision. It is

easy to see that 0 < N < ig. The distribution and the expected value of N are as follows.

Theorem 3.6  Let Py(-) = P(+|6). The cumulative distribution of N for given 8 is

exp{——%"(%o)é} ifn=0,
Py(N < n) = UGl g di—b : - (41)
1-Jgnt _zn:lQ ) P{—W}, if 1<n<1p;
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the expected number of failed units for given 8 is

‘= =2 |1Gall dr — [Gio-1ll 1—
E(N|6 Jon — 2 —— dig—1 b
(V10)= 3 Jon =2 X Gy -G a) i) U G(9) OB
the marginal cumulative distribution of N is
o < (%) : ifn=0,
<n)= boT
(W< n) 1—Jn,+ Z Gl daffr?;) if 1< n<ip;

and the expected number of failed units is

io—1 t0—2 be I‘(a+n) b® I‘(a'l'ZO'—l)
E(N) = 3, Jn =2 3 Gl gy — G-l Geinmm gy
n= n= T

where [|Go|| = 1, ||Gr| is the volume of G, 3257 - =0, Jpo = Jo = 1, and

( exp{—%%é ifn=1,
s | aw= /- / exp{- % ‘525)8"‘ Yooy ody, 22,
. ( ?Vb)_a’ 1 ifn=1,

B i B AR e s o L S L

Here so = basn—l =Y+ Yn-1-

PROOY. See Section 4.4.

The formulas for computing Jp,, and J, are given by the following lemma.

Lemma 3.4 For2 < n <ig— 1, we have

Jam:exp{_chb b} nz: P{ W}HG ”+ex{ Q(o)}z gn,'r
=0

Q(6) Q(9) Q7 (6)’
and
n—2 . n—1
b°T'(a + 2)||Gil| b°T'(a + )
J (c V b)a Z I\(a)(cnvdz.)a-}-i + ~ c%+'rr(a) £n,’l‘a
where
bnyp = Z p1(b;ns 7y ty,e - o tg) — E Z p2(b;nyrs Ly, - o ix).
(ily...’ik)eqlr =2 ('i11"'1ik)€‘1’;

(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)

Here py(b; n; 7341, - - i) and po(b;n; 75541, - -, i) are defined by (22) and (23), respectively.

15



PROOF. See Section 4.4. _ O

The above computation is quite complicated, but there is a simple inequality for J,,:

b*l|Gn|[T(a+n —1) <. b“IIGnlIF(a+n—1)
(cn V dp—2)3t"=1T(a) = &t M(e)

If d—2 < cp, then J,, = b%||G,||T(a + n — 1)/{c2t""'T'(a)}. Since d;;—1 < ¢;,, we have d,_ <
¢y, for somewhat large n.
3.5 Expected Stopping Time E(T)

The expected stopping time in general cannot be evaluated in closed form. In this section,
an upper bound and a lower bound for E(T|0) are found. By using a result about Poisson
processes, a closed form is given for exponential failure time.

3.5.1 Bounds for E(T)

Note that
E(N;(T)|60)E(t11|0) < E(T|0) < E(N;(T)+ 1|6)E(t11]0),
where N;(T') is the number of failure units for machine j at time T. Therefore,
L B(N|6)B(tu10) < B(T|6) < (-E(N16) + DE(t|6),
where N is the total number of failure units. Note that E(N |6) can be evaluated by (42), and

Bn10)= [0 = [ Gl ee{-ggta

Remark 3.1 For the Weibull distribution, W(4, ),

E(t11]0) = é—gﬁfow tﬁe:vp{—;—Z}dt = I‘(l + %)0,

0 < E(T|6) - Ty < E(t11]6),

. _ b°I'(a — ) 1/8
0<E(T)-T*<E(n)=T (1"'5)[ I'(a) ] ’
where
\ r(1+ I+ (& 2 |Gl exp{-455*
T = {Z_% Olan=2 3, — gt
[Gig—1| io—1—b
(zo—ol),@— Xp{— 005 }}, (50)

16



T =

I‘(1+ﬁ){“3‘1 =2 b*T(atn—3%)

Y T2 Gl =

n=0 n=0 I‘( a)

b“I‘(a+zo— 1- l)
L

0—1

(51)

IGoll = 1, Zal -=0, Jgn is givén by (45), and

bl/ﬂl—l:s&_lzﬁ!y if "= 0,
" b°T'(a—1/B) e
Jn = F(a)(clavb)a—l 8 ifn=1,
(ae—%) ”I‘(a+z 1 gn,,r(a_H._L)} .
= , ifn>2.

3.5.2 E(T) for Exponential Failure Time

Suppose that M(t) (¢ > 0) is a Poisson process with intensity 1/6. Thus M(¢) has a Poisson
distribution with mean ¢/6. For two increasing sequences of constants {an}»>0 and {bs}n>0

satisfying ag < 0 < bg, define
T =inf{t > 0:¢ > by or t < aprp)}-
Lemma 3.5 If 3 4p such that b;,—1 < a;,, then
E{M(T)} = E(T)/6. (52)

PROOF. See Section 4.5. . O

Note that, for an arbitrary stopping time 7', equation (52) may be invalid. For example, if

= inf{t > 0:¢ > M(¢) + 1}, then it is easy to show that T' = M(T)+ 1 and T= M(T) +1
for T = min(T, 3). Thus E{M(T)} # E(T)/8 and E{M(T)} # E(T)/9.

Theorem 3.7 For the BSRDT Plan, if the product lifetime is £(0) distributed, then E(T|0) =
Ty and

il 02 b*I'(a+n—1) b°T'(a+i9—1—1)
BT = ¥ 7i-2 % [Gal i = Gl i —2 |
& gl gy e g

where T} is given by (50) with § =1 and

£, ifn=0,

bd.

Jn =19 e ifn=1,

bo { a~1) _ yn-2 [Gilll(atiz) | s~n-1 _mi(‘“r_—l} ifn>2.

I(a) | (enVb)a—T =0 (cpvd;)ati—1 atr—T

17



PROOF. The first result follows from Lemma 3.5 immediately. The rest follows from the

expression of T and the assumption 6 ~ ZG(a,b). O

3.6 Numerical Examples

A Fortran program has been developed to compute the cumulative distribution of N, E(NV),
T*, and all the risks. For fixed 6y, 602, @; and ag, if ég = 10, the computing time is about two
seconds to compute all the risks and stopping quantities on a Sun 3/60 workstation. It takes
about 15 seconds if ¢g = 15 and 30 minutes for ¢g = 30.

EXAMPLE. Suppose that the p.d.f. of failure time is W(6, ), a guess for the mean of 8 is
8o = 8,000 (hours), and a guess for the standard deviation of 8 is 5o = 6,000 (hours). Assume
that 8 = 1.35. Then we can compute that the parameters a and b in the prior distribution are
2.5 and 304,931, respectively.

Choose ay = 0.10 and ag = 0.10, and #; = k62 for various k mentioned below. We choose
6: to be proportional to f; for convenience in graphing the results. Various risks, T (with
m=1), E(N), and the cumulative distributions of N with respect to #, are shown in Figures
2-4 for k = 0.70 (with a dashed curve), k = 0.75 (with a solid curve) and k = 0.80 (with a
dotted curve).

The classical consumer’s risk, average consumer’s risk and the acceptance probability have
a similar shape for these three situations. Almost all the curves bend at the value f; =
[25/x5(511y(1 = 1)]1/P. The curve of the posterior consumer’s risk, P(6 < 6; | A), has not been
drawn since it is the constant «;. The posterior producer’s risk P(6 > 62| R) is not monotone
with respect to 8, and is always less than as = 0.10, as shown in Fact 3.1. Also, it reaches its
local minimum at 63 = {2b/x§(a+i)(a2)}1/ﬁ, i=0,1,.... Here T* is the lower bound for E(T),
and the upper bound is T* + E(t11), where F(t11) = 7,335.91. As intuition would suggest,
a larger k induces a larger rejection region, and hence increases all the producer’s risks, the
expected number of failures and the expected testing time, but decreases all the consumer’s

risks.
4 Proofs of Theorems and Lemmas
Note that A and R can be written as disjoint unions:
A=Ud An(N =n), R=U2, RN(N =n), (53)
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where

AN(N=n) = {¢;<W;+b<dj_1,j=1,---,0,Wpp1 +b>d,}, (54)
RN(N=n) = {c;<W;+b<dj_1,j=1,---,n—1,W,+b< ¢c,}. (55)
Here W, = V(T,), and V(-) is defined by (9) and T, is the nth failure time. It is easy to see that
evaluation of F(N) and all the risks depends on the joint distribution of (Wy,Wy,- .., W;,),

which is given by Lemma 4.1 in the following section. We will use the notation, ¥; = W4,Y; =

W; — Wji_1,(j > 2). Also, let Py(-) denote the conditional probability P(-|6) for fixed 4.

4.1 A Crucial Result

The following lemma gives the distribution of Y3,---,Y, and is of independent interest.

Lemma 4.1 For given § and any n, Y1,Ys,---,Y, are i.i.d. exponential random variables

with common mean ¢)(8).

In order to prove the lemma, the following notation is needed. For n € A, define

Dn = {-I?nl = [(k117'"’klb1)7(k217'"7k2b2)""7(k117"'7k1b1)] :
(k117 v 'sklb17k217' "ak2b2, * ",klly' : ',klbg) isa PermUtation Of (17 v ',TL),
I
Le N, I <min(n,m),» bi=n, kiy<---<kip,i=1,--+,1 and kip, <---<kzp,}.

=1

Define » new random variables by
fl = min{i il = Tl},
& = min{i:3j€ {1,2,---,min(k,m)}, ta+--+t; =Tk}, k=2,---,n.
For I?’nl = [(kll, "ty klb])) (k21, Tty k2b2), M} (klla Y klbz)] € Dn, let
G(Eun) = {(&,&,---,&): 3 distinct ay,---a; € {1,---,m} such that
fj = a1 for .7 S {klla e "klbl},' Tty and 5_7 =aq for .7 € {klh e '9klbl}}°

Remark 4.1 1) {Q(I_fnl) K, € 'Dn} is a partition of the sample space , i.e., G(I_fnl) N
G(By) = 0if Ry # Kipo € Doy and @ = Uy G(Ki).
2) On g(I?n,), exactly ! machines will fail. Among these ! machines, one of them fails b,

times, another machine fails b, times, etc., and m-l1 machines never fail.
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PROOF of Lemma 4.1. It is enough to prove that the joint conditional density of (Wy, W,

-, W,,) for given 6 is

O<wy<we < -+ <wy <00. (56)

_1 exp{__"’P_}
Q™ (0) Q) )’
First, we know that Py(Ty > t) = exp{—mH(t)/Q(0)}, i.e. T1 has the density

mH'(t) {_ mH (t)
Q(0) Q(9)
We will use induction. For n = 1, Wi = mH (mini<i<m ti1) = m (mini<i<m H(%:1)). Since

H(t11), H(t21), - - - H(tm1) are iid £(1/Q(6)), Wy has the £(1/Q(0)) distribution. This proves

}, fort>0. (57)

the result for n = 1.

Next, consider n = 2. If m = 1, (W, W) = (H (t11), H(t11) + H(t12)), whose joint density
has the form (56), since H (t11), H(t12) are iid £(1/Q(0)). For m > 2, we denote K =1[(1,2)]
and K29 = [(1)(2)]. Note that for 0 < t; < t2 < o0,

Py ((Ty < 11, T2 < 12) (\6(Ean))
/t1 {/tz H'(ug—u1) exp{—H—(uz;Q-Ll—)}{Pe(tn > uglty > ul)}m—lduz} a8, )

w Q) Q(9) () H ()
_ [R( [ H (uz—u1) _H(uz—ul)_(m—l H(uy)—H(uy u
- [ (L =t 6w Q) paun)
mH'(ul) oxc _mH(ul) }du1
Q(0) Q(0) ’

which implies that

2
Bt(?at Do ((Tl <t,T2 < tz)ﬂG(Km))
mH'(t))H'(t2 — t1) _H(t1)+H(t2——t1)—|—(m—1)H(t2)
@ oF { 26) 2 (58)
for 0 < t; <ty < 00. Similarly,
52

5D (@<, <) 6(R20)

mH'(tl)H'(tz) exp {_H(t1)+H(t2—t1)+(m—1)H(t2)
Q%(6) Q(9)

Therefore, for 0 <1, <13 <00,

}, 0<t; <ty < 00.

2

Jt10t, Pa(TlstlaT2St2)
mH'(t2){ H'(t 1)+ (m— 1)Hr(tz)} { H(ty)+H(ta—t1)+(m— l)H(t2)}
_ i Q(6)
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Note that wy; = mH(t;) and wy = H(t1) + H(ta — t1) + (m — 1)H(#2), so that the Jacobian of

the transformation is

a('wl ) ’UJ2)
d(t1,12)

mH'(t;) 0 \
x  H'(ty—t1)+ (m~ 1) H'(t)
= mH'(0){H'(t:— 1)+ (m - 1)H%)}.

| 2]

Thus the joint density of (Wi, Wz) is

0 < w < wy <00,

ex
Q2(9) - Q(O)}
establishing the result for n = 2.
Now suppose Lemma 4.1 holds for n; in order to show it for » + 1, we need additional
notation. If [ = 1, K3 =[(1,2,---,n)], define
Ru1 =1[(1,2,-+,nyn+ 1)) and Knz = [(1,2,-+-,n),(n+ 1)],
and if [ > 2, define

I_(’nll = [(k21,'"7k262),"',(k117'"7klb¢)’(k11,"',k1b17n+1)]7
Kz [(Rary -+ Kby )y (Rany e = -5 abg )y - -+ (i, -+« ki), (R -+ -5 Kaby, e+ 1)),

-Z?nll [(kll, Y k1b1)7 Tty (kl—l,h R} kl—l,b;_l), (kll, Tty klbp n + 1)]7

I?nll+1 = [(k117 ttty klb1), tty (klh ttty klbl)) (n + 1)]
Define a coset of K, by

C(R) = {Burs -, Bty Buipsa},  ifl<m,
n - P > .
{Knn,- -+, Knu}, ifl=m
Then
1) Dpt1 = Ug,ep,C(Eni)-

2) UR’nzjec(Rn,) G(l_fnzj) = G(Rn), i.e., for any Ky €Dy andw e g(I?nlj), Wp(w) is a

constant.
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It follows that {G(Kn) : K, € Dy} are nested, and
Wo=V(T)= ), hg (Ty,-- - T)I(G(hg ),
KnleDn
b; - .
where h}?nl(tla vy tn) = ;:1 Vit H (b —th;i0) + §=!1 H(tkw, ~thj, )+(m—l)H(tktb, )- Tt is
easy to see that W; depends on T}, - T,-, 50

is a lower triangular matrix. Let Jn(I?nz) be the Jacobian from (W3, - -+, W,) to (T1, «-+, T»)

on g(ffnz). By an argument similar to (58),

o i - . gKnl(tl,"'7tn) hKnl(t1>"'7tn)
aree P (11T < Mot )= S -}, (o)

7=1

where g (f1,- - o) = Hl_l(m j+1) Hz—l H' (tkj,. - tkj,i_1) . By the induction assumption,

> {og (t e ota) [In(Bu) } = 1. (60)

Knl GDn

Now, for any K,j; € C(En),

Eﬂ—Po (nf[ (T; <) ﬂg(f?n,j)>

RN TRRAN L
! coe
g (b1, tn) H (tnaa —tkjbj) {_ hK,, (t1, tn+1)} if1<ji<l,
@) a0 A2 o)
LN 798 — [ 1y°° 1
IRnl 1 (m l)H(t"’H)ex R s } ifl<m & j=1+1,
Q™(9) Q(9) Q(6)
where
1
hKnlj(t]-" o) = Z {H(tkhl) + H(trpy, —thpy )+ oF H(tkhbh —tkhbh—l)}
h=1
1
+ Z H(tn+1 —tkhbh) + (m - I)H(tn+1)’
h=1
for 0<t; < +++ <tpy1 < 00; note that the right hand side is independent of j. Also,
Wopr= D, > b, (Tt Tn, Tar)1(G (g )
Kﬂlevﬂ RnlJGC(Rnl)
and, on g(hkﬂ”),
Do (Ruig) = (But) 27222 TG (hg,,,)
o (R { s Bt =t + (=D )}, i1,
In(Bnt) Thoy H'(ts1 =t ) if I=m.
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Hence it follows from (61) and (62) that, for [ < m,

n+1 n+1
) %_PQ(H(Th < th)HG(Knlj))/Jn+1(I?nlj)

RujeC(Ru) 10+ Otnia h=1

Logg, (ty o to) H' (tng1 —thy, ) Wn
= {Z O"+1(9) eXP{_W}

Jj=1
IR, (b - ta)(m =D H (1) {_ wn, }}
Q"1(0) A0

/{Jn (I?nl) {12;21 H'(tngr — tryp,) +(m - I)H'(tn+1)}}

1 gl?nz(tl"”’tn)ex {"M}
Qn(g) Jn(I?nl) Q(o) ’

where g (t1,- -,t,) is defined following (59), and if [ = m,

tr=ty (w1, Wr)

+

KMEC:(RM) al_?:a_;_ Pg(ﬁ(Th < th)ﬂg(Knlj)) / i1 (Eniz) bt (1)
_ {32; gﬁnl(tl,-..g:1?£;§n+l ) p{ Q(O)}}/{ ( n,)gﬂ(tnﬂ—tk]b )}

1 gjznl(tl,"'atn)ex {_%}
Q™M0)  J.(En) Qo)

Therefore the joint density of (Wq,: -+, Wry1) is

2 a 5 Otni1 Pe(n I1(Thn < th)ﬂg(ﬁnﬂyl)) /Jn+1(I?n+l,l)

tr=ir (’lUl 1"‘1w1‘)

R, zE'Dn+1
an+ n+41

= 2 E ot Ot (H(Th < th)ﬂg(Knla)) /Jn+1(anJ)

Knlevn nl;ec(Rnl) 1 n+l h=1 t,-:t,.(wl,...,wr)

anl(tla"',tn) W1
= L2 Temm SUTem) )
KnlEDﬂ
1 Wn+1 }

= —~ 0 oLy, )

FEm ) e

The last equality follows from (60). This completes the proof of Lemma 4.1. O

4.2 Proofs of Technical Preliminaries

PROOF of Lemma 3.1. First, for fixed 2 < k < n, we will show that

#{(il,iz, PR AR T E’J = n} (n B 1) (63)

7=1
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k
_ LN . , n—2
#{(1'1712, e ',’Lk) B 210 2 27;:1: ;= n}= (k _ 1) . (64)
Induction on k will be used to prove (63). f k =2 and n > k,

)iz Liti=n} = #{La-1,@n-2)0-1,1}

n—1
= n—-1= (k _ 1) .
So (63) holds for k = 2. Suppose, next, that (63) is true for all £ < n; then, for £+ 1 < 7,
k+1

k
#{ (i1, iny k) 1 6521, Zz, =n}= 2#{@1, : ,ik,l):z'j21,2ij =n-1},
which equals, by the induction assumption, Y7 "5 = (") = ((k - ' ,). This means

that (63) is also true for k + 1 < n. The proof of (64) is similar. Since
n
#{a} = #{(n)}+ Z#{(il,---,z‘k) v 2 Lt ki =),

equation (63) yields #{¥,} = 1+ 3% 2~ = 271, Similarly, #{¥}} = 272 using (64).
So (24) holds. Note that the right hand 31de of (25) is a subset of ¥,,1, and the number
of elements in the right hand side of (25) is 2(2"1) = 2(nt1)=1 by (24). Thus (25) is true.
Similarly we can prove (26). This completes the proof. O

In order to prove Lemma 3.2, an integral formula is needed.
Lemma 4.2 For any integers i > 0 and j > 2, and any real number z > 0,

do
/ z](y)dy = azg(cJ)a‘J
Y
where a;;(-) is defined by (17).

ot (b) -

+ 1 a;; x+1(d0)’ (65)

+1”

PROOF of Lemma 4.2. We first consider the case ¢ = 0. Denote

so= [ agtady= [ (@2 =i v i,
c1Vb c1Vb
Since § > 2 and ¢p < b < dp, there are 3 different situations to consider: ¢p < b < ¢j < do,
co < ¢; <b<dp,and o <b<do<cj. B); a simple calculation, Ag equals
(dj_1—¢;)%(cj—erVb)+ Fh7(dj1—c;)™H! — 7(dj—1—do)™*t, if co<b<c;j<do

(i1~ 0™ = Ay (dj1— o)™, if co<e;<b<do
(dj_l__cj)z(do_clvb), if co<b<d0§cj
(dj—1—¢; V0™ (dj_1—c;Vdo)™*
— . —pr\z . —_ _—
= (dj_1—¢;j) {(CJ/\dO)Vb clVb}+ z+1 z+1
= +1( )— .’E+1 +1(d0)’
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by the definition of (17). So (65) holds for i = 0. Similarly, we get for : > 1 that

/do afi(y)d —/do {(c A d YWWy—¢; V }wd
1 Vb 7] y)ay = Vb 147 7—1 Yy "] Yy Yy

((Citj —Cj)”(Cj—61Vb) + ;,,__1|_—1(ci+j—cj)x+1, if co<b<ej<cipj <do,
':c-1|-_1(c’i+j —b)”"+1, if cp<c; < b< e <dp,
0, - if ep<ej<eipj <b<dy,

= ﬁ(cz'+j/\dj—1—Cj)x(Cj—61Vb)+
z_-}-_l(ci'i'j Adj_1— Cj)z'H - ;-1|-_1(ci+.’i Adj_1— do)"""'l, ifco<b<e;<do<LCitjs

a:_-}-T(cHJ' Adj_1— b)‘”"’l - ﬁT(ci'H' Adj_1— do)m+1 R if co<ej<b<do<Leiy;,

(CipiAdi_1—c; ) (do—e1 VD), if co<bcgdg<Le;,
+i\Gj J 7]

= (cz-+j/\d_,,-_1 —Cj)x ((Cj/\do)Vb—qu)

1 . 1
+ 11 ((Ci+j/\dj_1)Vb—-Cij) +_ 1 ((c,'.|.j/\dj_l)Vdo—c_deo)z'}'l ,
which also equals the right hand side of (65). Thus Lemma 4.2 is proved. O

PROOF of Lemma 3.2. We will also use induction to prove Lemma 3.2. Note that

do—b d1—~(b+w1) dn—1—(b+y1+...+¥n-1)
|G| =/ / / dyn- - -dy2dy:.
ov(c1-b)Jov(co—(b+y1)) JOV(en—(b+y1+...F¥n—1))

If we write ||Gy|| = ||Gnll(b; €1, -+, ¢n; do, - -+, dn_1), then

do—b
IGriall = / IGll(®+ ya5¢2,- -+ s Cny15da,y - -+, dn)dyr
OV(C1——b)
do
= /Vb”Gn”(y;cz," “yCng1; A1, 0, dr)dy. (66)
c

Now, for n = 1, ||G1|| = a01(b), so (27) holds. For n = 2, it follows from (66) that

dO do
leal = [ IGiIwsendidy = [ aoalu)iy
c1Vb c1Vb

1 1
aoz(cz)‘ll,l(b) + 5“(2)2(17) - 5“(2)2(‘10)-

The last equality follows from (65). Thus (27) is true for n = 2. Suppose (27) is true for n.
From (66), we then know that, for n + 1,

do
|Grsall = > / p1(y; msm3 81,0 - -y ik €5, 451,255 <n+1)dy
(i1,rin) € Y 1VO
n do 3 - .
- > / p2(y;ny s by, - iks €5, d5-1,2< 5 <n+1)dy.  (67)
=2 (ily"'rik)e‘l’: a Vb
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By the definition of p; and the fact that n + 1- i;_i_l =i+ 1,

do
/ p1(y; 3 03 81, - k3 €5, 41,25 F Sn o+ 1)dy
C

1 Vb
1
H i Han+1,J(cn+1,J) / n+1 k(y)dy
h=1
1 k 1

m— H an+1 J(Cn+1,1){ Apt1, k(cn+1 k)a’n+1 k+1(b) + an+1 k(b)) — “n+1 k(do)}
_ j=1

pr(bin+ 130+ Ly nie, D+ pr(dsn+ Lin + 1dny e ikt 1)

pa(bsn+Lin+1;n 4 16,0+ 1), (68)

where the second equality follows from Lemma 4.2. In addition,

do
/ pa(y; my 15 1y da,e - oy B3 €5, 451,25 Snt+1)dy
C

1 Vb

1 k=1 .
{H anp1,5(Cny1, k)} a1 1(dny1-1)

Hh_1 il j=1

= pa(byn+ Lin+ L, -, 0) (69)

Substituting (68) and (69) into (67), [|Grt1l| equals

> {p1(b;n+ Lot Ldn, stk )+ pr(bsn+ L4 Lidg, ooy i+ 1)}
(21,12 )E¥n

S pa(byntlintlintliin, - it 1)
(ily'"ﬂ.k)ewn

n
S Y pabintlnt Ll e, ik)
1=2 (i1,-,i )€Y}
Z pl(b;n+1;n+1;i17"',ik)
(il 1"'1ik)€‘1’n+1
n+1

S>3 palbintlint ki, e, tk).

1=2 (d3,+ix) €T}

The last equality follows from (25) and (26). So (27) is true for » + 1. This completes the

induction argument. 0

4.3 Proof of Lemma About Risks

PROOF of Lemma 3.3. Since Q(8) ~ ZG(a,b),i.e.,1/Q(0) ~ T'(a,d), we have b/Q(0) ~ I'(a,1).

Thus

P> p)= T‘%:)‘/Ob/Q(u) z* le~%dz = Ir (@(kll_), a)/I‘(a).
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So (28) is true. Since
b
ﬂunm>n»_mmﬂ>%—m—uﬁ———-, (70)
(29) follows from (53) and (70), for 4o = 1. If 49 > 2, it follows from (54) that, for 1 < n < 4o,
Py(AN (N = n)) equals '

. n+1
Pg{OV(cJ—b ZYk)<Y <djoq—b- ZYk,1<]<n,ZYk>d —b}

k=1
ety
= /. . .L Pa (Yn+1 > d b Z yk) _ezp{ y]'_?:'_i.}dyn. . 'dyl
”Gn” {_dn — b}
Tgn XP —0 I (71)
So (29) holds for ig > 2. Finally,
szmnm=/ P(A|6)x(8)dd (72)
u
and
oo g=(dn—b)/Q(0) ba [ e~dnls b° dn,
—————(0)dl = = ds = —— Ir(a+n, =) 73
L GO0 = TG oy s = F@ T i Y
Equation (30) follows from combining (29), (72) and (73). O

4.4 Proofs about E(N)

PROOF of Theorem 3.6. First we have
Py(n) = Po(AN(N =n)) + Py(RN (N = n)). (74)

For ig = 1, equation (41) follows from combining (53), (54) and (70). If ip > 2,
0V (e1 — b)}
Q(f)
Combining this and (71) establishes (41) for io = 2. If ig > 3, Po(R N (N = n)) equals

P(RN(N=1))=FY1+b<c1)=1 —eXP{

Jj-1 -1 n
P, (OV(Cj—b—ZYk)< Y;<dj_1—b—) Yz, 1§j§n—1,ZYk§cn—b)
k=1 k=1 k=1

1 Sp—
/. . ./Gn—l {l—Pg [Yn >0V (cn—b—sn_l)] } O emp{—Q(ol) }dyn—l‘ - -diy

(cn—l —_ b) \Y Sp—2

_ # /.../Gn_zexp{_ 0 =2 dys - diy

- gk el e e gy )

”Gn 2” dn—2 —b
Qo2 "p{‘—o(o) }

30

= Jﬂ,n—l - Jﬁ,n -



for 2 < n < g, where s, = y1 + - - - Y. Equations (41) and (42) follow by algebra and from
(71). Equations (43) and (44) follow immediately from the assumption on the prior. D
PROOF of Lemma 3.4. It is enough to prove (47). The proof is similar to the proof of Lemma
3.2 and is hence only outlined.

1. By an argument similar to that leading to (65), the following integral formula can be

established:

)\exp{—cj \;\do}, (75)

./clvb exp{— ERé y}dy = a;j-1,1(b) eXP{——}+A exp

for j = 2,3,-+-, and A > 0, where @;_1,1(-) is given by (17).
2. Define

dn—2 ¢,V Sn_1
Jon = €W = g [, L g et

n—1Vsn—2

Then prove (47) by induction, Lemma 3.6 and equation (75).

4.5 Proof of the Lemma about a Poisson Process

PROOF of Lemma 3.5. Replace ¢; — b and dj—1 — bin (15) by a; and bj—1, respectively. From
Theorem 3.6,

el e $7 16l [zl i
E(M(T)) = n; Jom — n=0 { T exp{ : (76)
Let Y3,Y3- - -, be iid exponential random variables with common mean 1/6. Then

7= 32 {Hun+ Han}, ()

n=1
where
Hyn = bol(Y1 > bo),
Hi, = bpaI{(Y1,+,Yn-1) € Gno1) N (Sn > bn-1)}, 257 <o,
Hy = YI(Y1 <),
Hyw = Sol{(Yi, -+, ¥Yn-1) € Gn1) N (Sn < @n)}, 2 <0 <o,
Hy, = Sig-1I{(Y1,-+, Y1) € Gig=1) N (8n < big—1)}-

Note that, for 1 < n < 1p,

n—lG n—1
EHy, = 0n||1 | {_ }
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Define Hs; = Hy1 and
H3n = SnI{(}/i, ",Yn—l) € Gn—l) N (Sn .<_ bn)}, for 2 S n S Z'0-
Then

EHs,=FEHsn 31— EHypp1 — EH1n +0Jgn — E ” ex { 5 }

t=n-1

which implies that

2 bn
E(Hsp— H3p1)+ EHz oy + EHyjp = 0Jg,n — Z ” ” P{'F}

i=n—1

Therefore

io iO
ET = Y. EHin+ Y EHz,

n=1 n=1
‘io 1:0 'iO
= N EHyn+ Y E(Hsp— Hsp1) + EH3n + ) EHapn
n=1 n=1 =2
£ IIG [
= EHH+EH31+20JM_1 —02 > exp{~7 }-
=2 n=2i=n—2

Since E(Hyy + Hs1) = 0(1 — exp{—b,/0}),
= LGl plGio—all g big—1
ET =20 Z—% Jo.n — 20 Z_% { } 0200_1 { _00#

Thus (52) holds.
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