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Abstract

In this paper, we consider the problem of estimating the location and scale parameters of
an extreme value distribution based on multiply Type-II censored samples. We first
describe the best linear unbiased estimators and the maximum likelihood estimators of
these parameters. After observing that the best linear unbiased estimators need the
construction of some tables for its coefficients and that the maximum likelihood
estimators do not exist in an explicit algebraic form and hence need to be found by
numerical methods, we develop approximate maximum likelihood estimators by
appropriately approximating the likelihood equations. In addition to being simple explicit
estimators, these estimators turn out to be nearly as efficient as the best linear unbiased

estimators and the maximum likelihood estimators. Next, we derive the asymptotic



variances and covariance of these estimators in terms of the first two single moments and
the product moments of order statistics from the standard extreme value distribution.
Finally, we present an example in order to illustrate all the methods of estimation of

parameters discussed in this paper.

1. Intiroduction

Consider the extreme value distribution with probability density function

_ (y—u)/o
g(y;u,0) = %e(y u)/ae—e ,o<y<moo< p<o 0c>0, (1.1)
and cumulative distribution function
(y—u)/ o
G(y;po) =1-¢° ,w<y<owo<p<o >0 (1.2)

Order statistics from the above given extreme value distribution and their moments have
been studied by various authors including Lieblein and Zelen (1956), Lieblein and Salzer
(1957), White (1969), and Balakrishnan and Chan (1991). Of these, Lieblein and Salzer
(1957) and White (1969) give the means and variances of order statistics, respectively, for
sample sizes up to 100. While Lieblein and Zelen (1956) give the covariances for sample
sizes up to 6, Balakrishnan and Chan (1991) have recently computed the means, variances

and covariances of all order statistics for sample sizes up to 30.

By using Lloyd’s (1952) least—squares theory on the linear estimation of the location and
scale parameters (for details, see David (1981) or Balakrishnan and Cohen (1990)),
Lieblein and Zelen (1956) tabulated the best linear unbiased estimators of yu and o for
very small sample sizes. Recently, Balakrishnan and Chan (1991) have tabulated the best
linear unbiased estimators of x and o by considering complete as well as Type-II censored
samples for sample sizes up to 30. Mann (1967a) derived the best linear invariant
estimators of 4 and o and the necessary tables for the calculation of these estimators for

sample sizes up to 25 (based on complete and Type-II right—censored samples only) have



been prepared by Mann (1967a,b, 1968) and Mann, Schafer and Singpurwalla (1974, pp.
194 — 207). D’Agostino (1971) considered some approximations to the best linear
unbiased estimators as well as the best linear invariant estimators. Mann and Fertig
(1977) and Engelhardt and Bain (1977) have made surveys of several such linear
estimators that have been proposed in the literature and require fewer tables than the
best linear unbiased estimators or the best linear invariant estimators. Linear estimation
of the parameters y and o based on optimally selected order statistics and some
associated inference problems have been studied in great detail by Chan and Kabir
(1969), Chan and Mead (1971), Hassanein (1968, 1969, 1972), and Hassanein, Saleh and
Brown (1984, 1986).

Harter and Moore (1968) proposed an iterative procedure for obtaining the maximum
likelihood estimates of u and o based on complete and doubly Type-II censored samples.
They examined the bias, variances, covariance and conditional bias of these estimates by
using Monte Carlo simulations. These results are reproduced by Harter (1970).

Recently, by appropriately approximating the likelihood equations for 1 and o based on a
general doubly Type-II censored sample, Balakrishnan and Varadan (1991) derived the

approximate maximum likelihood estimators of y and o.

Let us assume that the following multiply Type-II censored sample from a sample of

size n

2+1:n ¢ g Yr2+s2:n R Yrk+1:n ¢ Yrk+sk:n

(1.3)

is available from the extreme value distribution in (1.2). In Section 2, we describe the

Y . <..<Y <Y
1'1+1.n r1+s1.n T

best linear unbiased estimation of the parameters 1 and o based on the multiply Type-II
censored sample in (1.3). In Section 3, we present the maximum likelihood estimation of

the parameters x and ¢ based on the multiply Type-II censored sample in (1.3) and note



that these estimators do not exist in an explicit algebraic form and that they need to be
determined by numerically solving the two likelihood equations simultaneously. By
appropriately approximating these two likelihood equations, we derive in Section 4 the
approximate maximum likelihood estimators of x and ¢ based on the multiply Type-II
censored sample in (1.3). These estimators are simple explicit estimators which turn out
to be nearly as efficient as the best linear unbiased estimators and the maximum
likelihood estimators. In Section 5, we derive the asymptotic variances and covariance of
these estimators in terms of the first two single moments and the product moments of
order statistics from the standardized extreme value distribution. In Section 6, we take
an example from a life—testing experiment considered earlier by Mann and Fertig (1973)
and Lawless (1982) and illustrate all the methods of estimation of parameters x and o
discussed in this paper. Similar work for the normal and the logistic populations have

been recently carried out by Balakrishnan, Gupta and Panchapakesan (1991 a,b).

The Weibull distribution with probability density function

aa a—1
e_x/b a.x'—'a—, xZO,a.>0,b>0
b

and cumulative distribution function

a;.a
1-eX /b7 x»0,a>0,b>0
is used extensively as a failure—time model. It is very easy to see that the random
variable Y = f X has its density function to be

20-8D) oyt b)

e ,<y<wa>0b>0

and its cumulative distribution function to be

a(y—fn b)
1-¢° , w<y<wma>0b>0

Upon comparing these expressions with Egs. (1.1) and (1.2), we simply observe that the
variable Y defined above has the extreme value distribution in (1.2) with the location

parameter 4 = fn b and the scale parameter ¢ = 1/a. Thus, the methods of estimation



discussed in this paper may very well be applied to estimate the parameters a and b of

the above given Weibull distribution.

2. Best Linear Unbiased Estimation
Let X;. = (Yi:n -wfo,i= I+ Loty + 8p, Ty + LTy + 8g,Ty + Loty + 8.
Then, X;., are simply order statistics from a sample of size n from a standard extreme

value population with probability density function

f(x) =eXe® ,—-m<x<m, (2.1)

and cumulative distribution function

X
Fx)=1-¢°,w<x<u (2.2)

Let us denote E(X;. ) by a

i:n’?

2
- E(X )bya( ) Var(X;. ) by '51111’ E(X;.0X50) by

% jn’ and COV(X1 - X_] o) by ﬂl s Then, we 1mmedlate1y have E(Y,. ) =p+ 0 ai:n’
Va,r( ) = " ﬂl i and Cov(Y. i’ Jn) = a ﬂ . Further, let us denote
T
¥= [YI1+131'"YI1+81211 Yr2+1:n"'Yr2+s2:n'"Yrk+1:n“'Yrk+sk:n] )
r % % * * * * T
¢= ar1+1:n'"ar1+slzn ar2+1:n”'ar2+s2:n"'ark+1:n"'ark+sk:n]
. T
1= .1 1.1} o ,
21: Sixl
([ *
8= _[ﬂi,j:n]] fori, je I whereI = {rl + 1.0y + 89, Ty + LTy + Sg5ees

R + 1,...,rk+sk},
and

Q=g

Then, the Best Linear Unbiased Estimators of y and o based on the multiply Type-II

censored sample in (1.3) derived by minimizing the generalized variance



[X-u},-og]TQ[X-#L-ae] (2:3)
are given by (see David, 1981; Balakrishnan and Cohen, 1990)
0-¢'01¢ 0
(g 29 (1" Q1) -(g @ 1)2]

N N

Y

N

=-g 8y
k ri+si
=X ¥ a. Y, (2.4)
and
« [L91e9-19e1 9
g = Y
(¢ 09 1 eV - g8p°
=18y
k TiTsj
=% % bY., (2.5)
i=1j=r,+1 1 I
k
where A is a skew-symmetric matrix of order ¥ s, given by
i=1
T 1T
O 1S v) 8 (2.6)
v~ T T 2° )
(¢ Q¢ ) (1 D—(eg 1)

* *
The variances and covariance of the estimators 4 and ¢ in (2.4) and (2.5), respectively,

are given by
*_ 2 ¢ 0 g
MR U wE YL TR 92}’ 0
£ g 19}
Var(o ) = o (gtT 3 o) (},T 9 1) - (gT g ‘%)2], (2.8)
and
2 QT 21
Cov(p ,0 )=~-0 {(QT 7 (LT a1 - (gT g ;)2] (2.9)



By using the values of means, variances and covariances of order statistics from the
standard extreme value distribution tabulated by Lieblein and Salzer (1957), White
(1969), and Balakrishnan and Chan (1991), we may compute the coefficients 3 and bj in
Egs. (2.4) and (2.5) and also the variances and covariance of the best linear unbiased
estimators u* and ¢ from Egs. (2.7) — (2.9). For large sample sizes, we may determine
these quantities approximately by making use of the approximate expressions of means,
variances and covariances of order statistics from the standard extreme value distribution
derived by David and Johnson’s (1954) method; for example, refer to David (1981) or
Arnold and Balakrishnan (1989).

3. Maximum Likelihood Estimation

The likelihood function based on the multiply Type-II censored sample in (1.3) can be

written as
n! Il n—rk—sk
e (el al) ()
k+1 7y
I (Sl
k T ;s 4 k I +s;
x]—[ {F[xfi“’n] _F[Xri-ﬁ Si—1‘n]} 3 ]_[ fXjn)s
i=2 i=1 j=r;+1

(3.1)
where as before, X, = (Y. —p)/0, f(x) and F(x) are the density function and the
distribution function of the standard extreme value population as given in Egs. (2.1) and
(2.2), respectively, and 1,=5,=0 and 41 =0 From Eq. (3.1), we have the
log-likelihood function to be

L= Const—Af o+ Kn{F[Xl_l_H:n]} +[n-r -5 &f1- F[ka“k:n]}

k 12< Ti¥8y :
+ 3 t.en{F[x ,]-F[x ]}+ 5 mfX.),
j=9 1 r,+1n r,_;+s 4 i=1 j=r+1 J,n)

(3.2)



k
wheret. =r1. ~1. ., —8. , fori =2,3,....k, and A = ¥ s. is the size of the available
1 1 i1 i1 j=1 1

multiply Type-II censored sample. From Eq. (3.2), we obtain the likelihood equations

for 1 and o to be

gL _ 1 [r f(Xr1+1:n) et -5) f(er+sk:n)
ou o 1F (xr1+1:n) k 7k 1_F(er+sk:n)
. ];} . f(Xri+1:11) - f(Xri_1+si_1:n)
j=2 ! F(Xri+1:n) - F(Xri_1+ si_lzn)
kit oe(x. )
¥ 121 j=§i+1 HX3.0) ]
=0, (3.3)
and
OfnL _ 1 [A +r, X f(Xr1+1:n) - [n—r —S ] X f(xrk+sk : n)
P o 1 7ry+1lin FY( XI1+1311’ k "k} Trp4sn I_F(er+sk:n)
A ])5 . Xri+1:n f(Xri+1:n) ) Xri_1+si_1:n f(Xri_1+si_l:n)
i=2 ! F(Xri+1:n) — F(Xri_1+si_1:n)
k Tit8i £ (X, )
¥ izl j=§i+1 Xj:n I(Xj:n) ]
=0, (3.4)

where f’(x) denotes the derivative of the function f(x) given in (2.1). Egs. (3.3) and (3.4)
cannot be solved explicitly. But, they may be solved by using numerical methods in

order to determine the maximum likelihood estimates of x4 and o.

4. Approximate Maximum Likelihood Estimation

Following the notations of Balakrishnan, Gupta and Panchapakesan (1991a,b), let us set
. -1
p, =if/(n+1),qy =1-p,and § =F (p;) = (- q;). Let



X .

tX; 410 exr1+1:n e i
b (X, )= = , (4.1)
1 r1+1.n F(xr1+1:n) Xr1+1:n

( 1—©

£ (X.. ) X,
ho(X. =‘mr"—j:n=1‘ Ja 4.2
2( ]:11) jm € ! (4.2)
and
f(X

T 1{+ s k- n) Xrk+sk:n
h,|X = =e .
3 [ rk+sk:n] 1-F (X )

(4.3)
rk+sk:n

By expanding the functions h(X ) hz(xj:n) and (X ) in (4.1), (4.2) and

r1+1:n rk+sk:n

(4.3) around the points §r1 41 £ f and frk 5, respectively, in Taylor series (see David
(1981) or Arnold and Balakrishnan (1989) for reasoning) we may approximate them by

f(Xr1+1:n)
h[X ,]= vny—0X s 44
1 r1+1.n X +1:n5 r1+1.n (44)

I

(i £ (X )
2[ j:n] - r(XT];_)_ =9 —ﬂj Xj:n’ (4.5)

and
ho(X ) B 1 g .. X (4.6)
. = rl-0 + e ? .
where
Tyt fn 1 - (-t ) Tyt fn ? o [
1=-——0ngq —fn(-fnq + q —fn q
g | ) e G T R
r1+1 1 1 pI1+1 1 1
(4.7)
qr1+1 1
= 14 —— .
’ Pr +1 a Oy +1 { ¥ Pr 41 a q‘1+1}’ (48)
=1 {1 - fl|- . .
R ! =

and
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'H_] =-f Qj- (4'10)

From Eq. (4.10), it is clear that ﬂj > 0. Also, from Eq. (4.8) upon using the fact that

f(1 —z) < -z for 0 <z < 1, we easily observe that § > 0.

Now let
f(Xri+1:n)
I [x X ] - (4.11)
1 ri_1+si__1.n ri+1.n T(Xr.+1:n) _F(Xr. +s. :n)
i i-1 "%
and
f(X )
I, 1ts; 0
k [X oy X . ] = . (4.12)
2(Mr g8y TrHlm) T OFX ) - PR o )
i i-1"%i-1
Upon expanding the functions k1 [Xri—l 5,y Xri +1:n] and k2 [Xri—l 5,y Xri +1:11]

in (4.11) and (4.12) around the point [{L ] in bivariate Taylor series, we
i

t8 Gt

may approximate these functions by

and
* ¥ *
k2 [Xri_1+si_1:n’ XI'1+111] g 7’01+7711 Xfi_1+si_1311 - 7721 Xri+1:n’ (414)

where

q q i q fnq
Lty Tyl T oCrgtsi o Tl

)y ’

nli = (p — (4.15)
nEl Tt
qri+1 b qri+1

o1 = 2 {[pr-+1 “Pr 4, ] o L ja 4 11}

(4.16)

q fh q
ri+1 L1

Moi =~ D o ~ M ln[—ln qri_1+si_
AR SR B

1

(4.17)
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q {n q
S e e o Ti-175i1 _ [y
i = (p -p )2 pri+1 pri_1+si_1 pri+1
Gl Tr g t8ig
fhhgq } (4.18)
T +8)
* AU, _+s. 9% . +1 fn Q. +s. b 9. +1
_ _ =177 i i-1""i-1 i
Toi = My = ( % : (4.19)
N
and
q g
* LTatsiy TiatSia ¢+
Mo ~ -7 tn[—tnq ]+n fn(-tnq__ )
ot Pro+1 7P, 45, I Ti1%8i1 2 5+l
1 i-1"7i-1
(4.20)

*
It is readily seen from Eqs. (4.15) and (4.19) that n;; = 7y, is positive. In order to see
from Eq. (4.16) that Tlog is positive, we simply have to note that fn Q41 <~ Ppyg and
i i

consequently
P..1-P ] + [1 -P ] fnq
[ Gl ratsig Gatsia) ot

<P -P =P + P b

p q
< 0.
*
Similarly, in order to note from Eq. (4.18) that 7, is positive, we simply have to use the

fact that /n q, <-D and consequently

i-178i1 g tsia

p -p ] - [1 -p ] fnq
[ ri+1 ri_1+si_1 ri+1 ri_1+si_1

>Pp +p

-p -p P
LT gy gt hatSig

Pr419 I
5 1 S |
> 0.

By making use of the approximations in Egs. (4.13) and (4.14), we obtain

k[X X _]:k[x X ,]-k[x X ]
r,_y+s_ ;0 Trtlm 17 q+s_4m r,+1mn 207+ 80 Tr+lm
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(X, 1) — X )
3 ri+1.n ;8,40
“FX 1.) - FX )
ri+1.n Lt 8 40
= <.01 - C].l Xl'i_1+si_1;n - <2l Xri+1:n; (421)
where
*
i =% u
q fh q
_ Tiattia Tiattig B .
C (pqP )2 Pkl P e ) T Ok
il Try sy
g  ,-lg ]} (4.22)
Coi = Soi ~ Cai
qri+1 fn qri+1 A
- 2 {qf- +s8; [ U, 45 O qr.+1]
(p -p ) i-1"%-1 i-1"%-1 i
SR S|
“Pr,+1 7P ]} (4.23)
and
Coi = Soi ~ Soi
I, +s, {n 9@ s, " 941 & 9. +1
— i-1"%i-1 i-1"%1—1 i i
- D1 -PD tGiatlhg g )
ntl Try s i-171 811
G bat-hg ) (4.24)

Now, by first defining the function

4(xy) = (y-x) -(1-y) &l -x) + (1-y) bl -y), y 2 x,
and noting that £ (x,x) = 0 and that ¢,(x,y) is monotonically increasing in y since
-ag 4(xy) =t H:—J; > 0, we have

P41~ P +4q [fn q 4 - g ]

[ L+l 'y +84 r,+1 r,+1 L1t 8

=4 [p P ] >0
17 g8 4l

which immediately implies from Eq. (4.22) that {;; > 0. Similarly, by defining the

function
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b(xy) = (1-x) b(l=x)-(1-x) b(l-y) -y +x y2%
and noting that £(x,x) = 0 and that £y(x,y) is monotonically increasing in y since -—%

LZ(X,Y) =(y- x)/(1 - y) > 0, we have
[&1 qr- 1+s. 4 ~fh qr.+1] - [pr.+1 - pri—1+si—1]
_12(p 18 ’pr+1) >0

which readily implies from Eq. (4.23) that (o, > 0.

q
L1180

Now, upon using the approximations in Eqgs. (4.4), (4.5), (4.6) and (4.21) into the
likelihood equation for u in (3.3), we get the approximate likelihood equation for u to be

f1[" - 6X11+1:n] - [“ "k Sk] [1 "ty Pyt ka’“sk:“]
k

* 122 b [COI St Xri_1+si_1:n ~ Co Xri+1:n]
I, +8,
¥ i§1 j=§i+1 [ ] ﬂJ XJ n] (4.25)
Eq. (4.25), when solved for , yields the approximate maximum likelihood estimator of x
to be
p=B-0C, (4.26)
where
=T~ S =28k
k k I, +8;
m=rl+ [n Tk sk] ﬂrk+sk * 122 [Cll + C21] i= 1 J_zr: +1 ﬁJ
B = Elf {I16 Yr1+1 n T [11 Ty sk] ﬂrk+sk 14,0
k k k Titsi
* i£2ti gt Yri—1+si—1‘n ¥ i£2 i Cai Y‘i“:’1 ¥ 121 = f 1 Pi¥ n}

and



14

k k 5 tS;
1
C=—{r'y—[n—r —s][l—a ]+E t( )y }
m| 1 k 'k T8k i=2 1 1 j=r+1 J
(4.27)
Next, upon using the approximations in Eqs. (4.4), (4.5), (4.6), (4.13) and (4.14) into the

likelihood equation for ¢ in (3.4), we get the approximate likelihood equation for o to be

A+ ler1+1:n[7 — 6 Xr1+1:n] B [n ' sk] er+sk:n [l_c"rk+sk +8 rk+serk+sk:n]

+ iiz ti Xri+1:n ["oi T Xri_1+si_1:n = Thoj Xri+1:n]
k * *
T imy i Ky s g [""i i Ky sy g T Xfi+1=n]
k Tit8i
+ 3% Xy (oA Jll)—0 (4.28)

Eq. (4.28), when solved for ¢ simultaneously by using the solution for p in (4.26), yields

the approximate maximum likelihood estimator of o to be

7= {- D + (D2 + 4AR)Y/ 2} [2A, (4.29)
where
k
A=1% 8 is the size of the available sample,
i=1
k
D=1 7 Yrl-}-lzn B [n Tk T sk] [1 - ark+sk] Yrk+sk:n + iiz 4 Toi Yri+1:n
kK« k it
-2 t.n.Y + 2 3 a. Y. —mBC,
i=2 1O Tt et j=rgn IR
and
1,6 Y2 +lo-r, -5 |8 .. Y +1§t¢Y2
r,+1ln k k] "rts Trpsen U T, 1l T g +s; m
k k r.+s. 0
2
+ 2t Cy + ¥ X B. Y.
i=2 r+1n i=1 J—I‘+1 J o
k 2 9
+2tn.[Y . -Y ,]—mB
= L r+lm 1448 40
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2 2
= r15[Y1'1+1:n B B] + [n Tk sk] 'Hrk+sk [Yrk+sk:n - B]

k 2 k 2

¥ i£2 ' Cli [Yl'i_l-i-si_l:n - B] + i£2 4 C2i [Yri+1:n - B]

+3 8 gy -8+ 3 ynyly -y 2
i=1 j=r,+1 JU Ja j=g 11 r,+1n I,_yt8_;m

(4.30)
It needs to be mentioned here that upon solving Eq. (4.28) we get a quadratic equation in
o which has two roots; however, one of them becomes negative and hence inadmissible

since #, ﬂ Ch’ (21 and 7,; are all positive and consequently E > 0.

Remark: For the special case when the available sample is a doubly Type-II censored

Y

sample Y r+2:n""’Yn—s:n’ that is, when I =1,Iy = r+l,..,r =1+ k-1,s

r+1l:n’ g s |
=8p=..=8 ;=landsy =n-r-s-k+1, the estimators x and ¢ in Eqgs. (4.26)
and (4.29), respectively, simply reduce to the approximate maximum likelihood

estimators of 4 and ¢ derived by Balakrishnan and Varadan (1991).

5. Approximate Variances and Covariance of the Estimators

By using the linear approximations in (4.4), (4.5), (4.6), (4.13) and (4.14), we also derive
from the likelihood equations for x and ¢ in Egs. (3.3) and (3.4) that

[ & in L]
ot
[ g;%—l‘] SEZVI, (5.2)

ag

and

o —2 V2, (5.3)

[ L ]
do

where, as earlier,

k Tit8i

[Cll + 421] + 1§1 j= f +1 ﬂj, (54)

k
m=r6+[n—r —s]ﬂ +
1 k k 1 +8y



16

k
9 * * *
ViTm {rl 6 ar1+1:n + (- ' s‘k) ﬂrk+sk ark+sk:n + iiz b SH ari_1+si_1:n
k * k T ' +s ' %
+3 4Gy it 2 J_f o il G (55)
and
k
3 *(2) [ ] o (2) ¥ *(2)
V=—{r6a ,+n—r—s,B +Etn .
2" m|1" "ry+lm k k] "rptsy rk+sk jmg 1 17Ty qts qm
.48,
k *( k ! 1 1 k *
2) *(2) _ }
+iE2 Mo & +1.n + 1§1 j= ? +1 ‘B_] a_] n 2 E by @ 1+si_1,1'i+1:n
2 * * IE( *
“m {rl 7 ar1+1:n B [n kT sk] [1 B ark+sk] ark+sk:n + =9 b oi ari+1:n
ko ox R
_F b 5 } -4 6
1=2 ' "oi ari—1+si 1 * i=1 _]—r +1 J _]n m (59)
From these expressions, we may compute
Var(p) » { 2}, (5.7)
oty v
2 "1
Var(o) = 21 (5.8)
Rl e -
21
and
A a 21 V1
Cov(p, 0) & — — {m} (5.9)
21

Approximate variances and covariance of the estimators ;L and ;’ may be determined from
Egs. (5.7) — (5.9) either by directly using the tabulated values of means, variances and
covariances of order statistics from the standard extreme value distribution given by
Lieblein and Salzer (1957), White (1969) and Balakrishnan and Chan (1991), or by using
approximate expressions of these quantities presented by David (1981) or Arnold and
Balakrishnan (1989).

Theorem: Asymptotically, u and o Jomtly have a bivariate normal distribution with

mean vector (’;) and variance—covariance matrix
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2
a

2

-V 1]

1
where m, V, and V, are as given in Egs. (5.4), (5.5) and (5.6), respectively.
For a proof of this theorem, one may refer to Kendall and Stuart (1973) or Rao (1975).

6. Illustrative Example
Let us consider the example of Mann and Fertig (1973) who give failure times of airplane
components for a life test in which 13 components were placed on a test. Failure times in

hours observed are as follows:
0.22, 0.50, 0.88, 1.00, 1.32, —, 1.54, 1.76, 2.50, 3.00, —, —, —

The failure time of the sixth component to fail was not observed due to experimental
difficulties and, in addition the test terminated at the time of the tenth failure resulting

in the censoring of the last three observations.

By assuming that the above data arose from a Weibull distribution, in order to obtain
estimates of the parameters we transform the above data to the extreme value form by
taking the logs of the observations, which are as follows:

~1.541, —0.693, —0.128, 0, 0.278, —, 0.432, 0.565, 0.916, 1.099, —, —, —

Now by assuming that the above given multiply Type-II censored sample has come from
an extreme value population, we shall use the results developed in this paper to estimate
the parameters p and ¢ and also to obtain approximate confidence intervals for these
parameters.

For the approximate maximum likelihood estimation of 4 and o, we have:



18

n = 13,
r1=0,sl=5,r2=6,s2=4,

t, =1,

2
A=s1+s2=9,

Dy 9% % b
0.0714 0.9286 0.7331 0.0741
0.1429 0.8571 0.5575 0.1542
0.2143 0.7857 0.4158 0.2412
0.2857 0.7143 0.2971 0.3365
0.3571 0.6429 0.1973 0.4418
0.4286 0.5714 0.1155 0.5597
0.5000 0.5000 0.0528 0.6931
0.5714 0.4286 0.0123 0.8472
0.6429 0.3571 0.0004 1.0297
10 0.7143 0.2857 0.0296 1.2528

_ (0.6429) (0.5) ¢n(0.6429) /n(0.5) _ 4.8202

OO0 =T UM = e

12 (0.5 - 0.3571)*
g = —0 (0-5) {[0.5 - 0.3571] + 0.6429 zn[o.s]} = 5.1378,
(0.5 — 0.3571)
oy = = 05 (0.5 _, 0 tn[—en 0.6429] + gy en[—tn 0.5] = 4.4802,
(0.5-0.3571)

* _0.6429 /n(0.6429)
ha = )
(0.5-0.3571)

*
Nog = Mo = 48202,

¥ 0.6429 £n(0.6429 * * _
Moy = — —0"517(’5571—)‘ ~ 1y fn(—fn 0.6429) + 7y zn[—tn 0.5] = 4.3544,

*
(1o = Mg — Ty = 5.0596 — 4.8202 = 0.2304,

{[0.5 - 0.3571] -0.5 h[0.6429]} = 5.0596,

Cog = Mg = n;2 = 5.1378 — 4.8202 = 0.3176,
Con = Tog - ’7;2 = 4.4802 — 4.3544 = 0.1258,
m = 9.3860,

B = 7.3033/9.3860 = 0.7781,

C = —0.4895/9.3860 = —0.0522,

D = -3.2568,

E = 2.1139,

and hence
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. _D+(D%+4AE)!/?
= D1

and

= 0.6982

4 =B - oC = 0.8145.
Also, from Egs. (5.5) and (5.6) we have

V, = -0.2112 and V2 = 1.87563

1
using which we obtain the standard errors of the estimates u and o to be

A - Vo, 11/2
SE(p) = —= {——27—} = 0.6982(0.1091)1/ 2 _ 0.2306
fm { V—V7]

and

-~

5 1/2
1 1/2
SE(0) = 4—_—; {m} = 0.6982(0.0582) 12 — 0.1684.
27 "1

Now, upon applying the asymptotic normality of the estimators ;L and ;7 (see the Theorem
in Section 5), we obtain approximate 95% confidence intervals for y and o to be

[0.8145 — 1.96(0.2306), 0.8145 + 1.96(0.2306)] = [0.3625, 1.2665]

and

[0.6982 — 1.96(0.1684), 0.6982 + 1.96(0.1684)] = [0.3681, 1.0283], respectively.

By using the results presented in Section 2 and the tables of means, variances and
covariances of order statistics from the extreme value distribution prepared recently by
Balakrishnan and Chan (1991), we find the best linear unbiased estimates of 4 and o to
be
p.* = -0.0034(-1.541) + 0.0046(-0.693) + 0.0139(-0.128)
+ 0.0244(0.000) + 0.0584(0.278) + 0.0932(0.432)
+ 0.0841(0.565) + 0.1061(0.916) + 0.6187(1.099)
= 0.8814
and
o = -0.0904(-1.541) — 0.0946(~0.693) — 0.0932(-0.128)
— 0.0878(0.000) — 0.1072(0.278) — 0.0836(0.432)
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~ 0.0240(0.565) + 0.0073(0.916) + 0.5735(1.099)
= 0.7743

and the standard errors of the estimates p,* and a* to be

SE(s") = o (0.1062)1/2 = 0.7743(0.1062)1/% = 0.2523
and

SE(c") = o(0.0849)1/2 = 0.7743(0.0849)"/2 = 0.2256.
Now, upon applying the asymptotic normality of p* and a* (since they are linear
functions of order statistics), we obtain approximate 95% confidence intervals for x and o
to be
[0.8814 — 1.96(0.2523), 0.8814 + 1.96(0.2523)] = [0.3869, 1.3759]
and
[0.7743 — 1.96(0.2256), 0.7743 + 1.96(0.2256)] = [0.3321, 1.2165],
respectively.
It should be mentioned here that with the sixth observation as 1.33 (or the transformed
observation as 0.285), by starting with the graphical estimate of 0.69 as an initial guess
for o Lawless (1982) used Newton’s method to solve iteratively the likelihood equations
based on the Type-II right censored sample in order to obtain the maximum likelihood
estimates of  and ¢ to be 0.821 and 0.706, respectively. In this case of right censoring
only, Balakrishnan and Varadan (1991) computed the approximate maximum likelihood
estimates of z and o to be 0.81098 and 0.71010, respectively. It is pleasing to note here
that the results obtained for the multiple censoring case are quite close to the results
based on the right censoring only.
Acknowledgements
The first author would like to thank the Natural Sciences and Engineering Research
Council of Canada while the second author would like to thank the National Science
Foundation for funding this research. The authors would also like to thank

Domenica Mazepa for the excellent typing of the manuscript.



21

References

Arnold, B.C. and Balakrishnan, N. (1989). Relations, Bounds and Approximations for
Order Statistics, Lecture Notes in Statistics No. 53, Springer—Verlag, New York.

Balakrishnan, N. and Chan, P.S. §1991). Means, variances and covariances of order
statistics, and BLUEs of the location and scale parameters based on complete and
censored samples from extreme value distribution, Submitted for publication.

Balakrishnan, N. and Cohen, A.C. (1990). Order Statistics and Inference: Estimation
Methods, Academic Press, Boston.

Balakrishnan, N., Gupta, S.S., and Panchapakesan, S. (1991a). Estimation of the mean and
standard deviation of the normal distribution based on multiply Type-II censored
samples, Submitted for publication.

Balakrishnan, N. Gupta, S.S., and Panchapakesan, S. (1991b). Estimation of the mean and
standard deviation of the logistic distribution based on multiply Type-II censored
samples, Submitted for publication.

Balakrishnan, N. and Varadan, J. (1991). Approximate MLEs for the location and scale
parameters of the extreme value distribution with censoring, To appear in IEEE Trans.
on Reliab.

Chan, L.K. and Kabir, A.B.M.L. (1969). Optimum quantiles for the linear estimation of
the parameters of the extreme—value distribution in complete and censored samples,
Naval Res. Logist. Quart. 16, 381 — 404.

Chan, L. K. and Mead, E. R. (1971). Linear estimation of the parameters of the
extreme—value distribution based on suitably chosen order statistics, IEEE Trans. on
Reliab. R-20, 74 — 83.

D’Agostino, R.B. (1971). Linear estimation of the Weibull parameters, Technometrics 13,
171 - 182.

David, F.N. and Johnson, N.L. (1954). Statistical treatment of censored data. I.
Fundamental formulae, Biometrika 41, 228 — 240.

David, H.A. (1981). Order Statistics, Second edition, John Wiley & Sons, New York.

Engelhardt, M. and Bain, L.J. (1977). Simplified statistical procedures for the Weibull or
extreme value distribution, Technometrics 19, 323 — 331.

Harter, H.L. (1970). Order Statistics and their Uses in Testing and Estimation, Vol. 2,
U.S. Govt. Printing Office, Washington, D. C.

Harter, H.L. and Moore, A.H. (1968). Maximum-likelihood estimation, from doubly
censored samples, of the parameters of the first asymptotic distribution of extreme
values, J. Amer. Statist. Assoc. 63, 889 - 901.

Hassanein, K.M. (1968). Analysis of extreme value data by sample quantiles for very large
samples, J. Amer. Statist. Assoc. 61, 852— 855.



22

Hassanein, K.M. (1969). Estimation of the parameters of the extreme value distribution by
use of two or three order statistics, Biometrika 56, 429 — 436.

Hassanein, K.M. (1972). Simultaneous estimation of the parameters of the extreme value
distribution by sample quantiles, Technometrics 14, 63 — 70.

Hassanein, K.M., Saleh, A.K. Md. E., and Brown, E.F. (1984). Quantile estimates in
complete and censored samples from extreme-value and Weibull distributions, IEEE
Trans. on Reliab. R—-33, 370 — 373.

Hassanein, K.M., Saleh, A.K. Md. E., and Brown, E. F. (1986). Estimation and testing of
quantiles of the extreme—value distribution, J. Statist. Plann. Inf. 14, 389 — 400.

Kendall, M.G. and Stuart, A. (1973). The Advanced Theory of Statistics, Vol. 2, Charles
Griffin and Co., London.

Lawless, J. F. (1982). Statistical Models & Methods For Lifetime Data, J ohn Wiley &
Sons, New York.

Lieblein, J. and Salzer, H.E. (1957). Table of the first moment of ranked extremes, J. Res.
Nat. Bur. Stand. 59, 203 — 206.

Lieblein, J. and Zelen, M. (1956). Statistical investigation of the fatigue life of deep—grove
ball bearings, J. Res. Nat. Bur. Stand. 57, 273 - 316.

Lloyd, E. H. (1952). Least squares estimation of location and scale parameters using order
statistics, Biometrika 39, 88 — 95.

Mann, N. R. (1967a). Tables for obtaining the best linear invariant estimates of parameters
of the Weibull distribution, Technometrics 9, 629 — 645.

Mann, N. R. (1967b). Results on location and scale parameter estimation with application
to the extreme-value distribution, Technical Report No. 23, Aerospace Research
Laboratories, Wright—Patterson AFB, Ohio.

Mann, N. R. (1968). Point and interval estimation procedures for the two—parameter
Weibull and extreme-value distributions, Technometrics 10, 231 — 256. .

Mann, N. R. and Fertig, K. W. (1973). Tables for obtaining Weibull confidence bounds
and tolerance bounds based on best linear invariant estimates of parameters of the
extreme value distribution, Technometrics 15, 87 — 102.

Mann, N. R. and Fertig, K. W. (1977). Efficient unbiased quantile estimators for
moderate-size complete samples from extreme-value and Weibull distributions:
confidence bounds and tolerance and prediction intervals, Technometrics 19, 87 — 94.

Mann, N. R., Schafer, R. E., and Singpurwalla, N.D. (1974). Methods for Statistical
Analysis of Reliability and Life Data, John Wiley & Sons, New York.

Rao, C. R. (1975). Linear Statistical Inference and Its Applications, Third edition, John
Wiley & Sons, New York.

White, J. S. (1969). The moments of log-Weibull order statistics, Technometrics 11,
373 — 386.





